
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

6-14-2012

Covert Android Rootkit Detection: Evaluating
Linux Kernel Level Rootkits on the Android
Operating System
Robert C. Brodbeck

Follow this and additional works at: https://scholar.afit.edu/etd

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Brodbeck, Robert C., "Covert Android Rootkit Detection: Evaluating Linux Kernel Level Rootkits on the Android Operating System"
(2012). Theses and Dissertations. 1083.
https://scholar.afit.edu/etd/1083

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277523404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1083?utm_source=scholar.afit.edu%2Fetd%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Covert Android Rootkit Detection: Evaluating Linux Kernel Level Rootkits on the

Android Operating System

THESIS

Robert C. Brodbeck, Civilian, USAF

AFIT/GCO/ENG/12-14

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. government and is not

subject to copyright protection in the United States.

AFIT/GCO/ENG/12-14

COVERT ANDROID ROOTKIT DETECTION: EVALUATING LINUX KERNEL

LEVEL ROOTKITS ON THE ANDROID OPERATING SYSTEM

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Robert C. Brodbeck, B.S. Computer Science

Civilian, USAF

June 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT /GCOIEN G/ 12-14

COVERT ANDROID ROOTKIT DETECTION: EVALUATING LINUX KERNEL
LEVEL ROOTKITS ON THE ANDROID OPERATING SYSTEM

Approved:

Robert C. Brodbeck, B.S. Computer Science
Civilian, USAF

hj~~
Mr. William B. Kimball (Member)

0 Jvlf }--z_
Date

AFIT/GCO/ENG/12-14

iv

Abstract

This research developed kernel level rootkits for Android mobile devices

designed to avoid traditional detection methods. The rootkits use system call hooking to

insert new handler functions that remove the presence of infection data. The effectiveness

of the rootkit is measured with respect to its stealth against detection methods and

behavior performance benchmarks. Detection method testing confirms that while

detectable with proven tools, system call hooking detection is not built-in or currently

available in the Google Play Android App Store. Performance behavior benchmarking

showed that the new handler function inserted by the system call hooking affects the

average completion time of the targeted system calls. However, this delay’s magnitude

may not be noticeable by average users.

The covert Android rootkits implemented target the emulator available from the

Android Open Source Project (AOSP) and the Samsung Galaxy Nexus running Android

4.0. The rootkits are compiled against both Linux kernel 2.6 and 3.0, respectively. This

research shows the Android’s Linux kernel is vulnerable to system call hooking and

additional measures should be implemented before handling sensitive data with Android.

v

Acknowledgments

I would like to thank my advisor and committee for their support and contribution

to this work. Their expertise and guidance in selecting a research topic and gaining the

knowledge needed to complete this endeavor has not gone unnoticed. I am grateful for

Dr. Baldwin’s always quick and insightful feedback that helped to keep me focused and

on task. I’d like to thank Dr. Barry Mullins and Mr. William Kimball’s contagious

enthusiasm for Reverse Engineering which led me to pursue my topic and gain invaluable

knowledge and technical aptitude. Most importantly, I would like to thank my family for

their never-ending support during the countless and late hours spent working on the

computer. Thank you.

 Robert C. Brodbeck

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents ... vi

List of Figures .. ix

List of Tables ... xi

I. Introduction ...1

1.1 Research Domain ..1

1.2 Problem Statement ..2

1.3 Research Goals ...2

1.4 Document Outline ...3

II. Literature Review ..4

2.1 Introduction to Android ..4

2.1.1 The Android Software Stack ... 4

2.1.2 Summary .. 7

2.2 Software Exploitation in the Linux Kernel ...8

2.2.1 Uninitialized Pointer Dereferences .. 8

2.2.2 Memory Corruption Vulnerabilities .. 9

2.2.3 Integer Overflows .. 12

2.2.4 Race Conditions ... 13

2.2.5 Summary .. 14

2.3 Introduction to Rootkits ..14

2.3.1 User Level Rootkits ... 15

2.3.2 Kernel Level Rootkits .. 16

2.3.2.1 Hooking System Calls .. 17

2.3.2.2 Direct Kernel Object Manipulation (DKOM) 18

2.3.2.3 Run-Time Kernel Memory Patching .. 20

2.3.2.4 Interrupt Descriptor Table (IDT) Hooking .. 20

2.3.2.5 Intercepting Calls Handled by VFS ... 21

2.3.3 Firmware Level Rootkits ... 21

vii

2.3.4 Virtual Machine Based Rootkits (VMBR) .. 22

2.3.4.1 Software Virtual Machine Based Rootkit .. 22

2.3.4.2 Hardware Virtual Machine Based Rootkits ... 23

2.3.5 Summary .. 23

III. Methodology ..25

3.1 Background ...25

3.2 Problem Definition ...26

3.2.1 Goals and Hypothesis .. 26

3.2.2 Approach .. 26

3.3 System Boundaries ...27

3.4 System Services ..28

3.5 Workload ..29

3.6 Performance Metrics ...30

3.7 System Parameters ..30

3.8 Factors ...32

3.9 Evaluation Technique ...35

3.10 Experimental Design ..36

3.11 Methodology Summary ..36

IV. Covert Android Rootkit Detection Experimentation Results38

4.1 Introduction ...38

4.2 Rootkit Technical Design and Implementations...38

4.2.1 System Call Hook Development ... 38

4.2.2 Hiding a File or Directory with hide_file.ko ... 41

4.2.3 Hiding a Process with hide_proc.ko .. 42

4.2.4 Hiding a Module with hide_mod.ko .. 42

4.2.5 Hiding a Port with hide_port.ko .. 43

4.3 Rootkit Evaluation by Detection ..44

4.4 Detection Method Testing Results..45

4.5 Behavior Latency Benchmark Results ..47

4.6 Summary ...54

V. Conclusions ..56

5.1 Research Accomplishments ..56

5.2 Research Impact ..57

5.3 Future Research Areas ..58

viii

Appendix A. Detection Method Implementations ...60

A.1 Probe-based Detection ..60

A.2 Signature-based Detection ..61

A.3 Integrity-based Detection ..62

A.4 Heuristic-based Detection ...64

A.5 Behavioral-based Detection ..69

Appendix B. System Call Latency Box Plots ..74

Bibliography ..82

ix

List of Figures

 Page

Figure 2.1 The Android Software Stack ... 5

Figure 2.2 Program Stack ... 10

Figure 2.3 Normal System Call .. 17

Figure 2.4 Hooked System Call .. 18

Figure 2.5 Normal Kernel Object Linking .. 19

Figure 2.6 Direct Kernel Object Manipulation ... 20

Figure 2.7 Software Virtual Machine Based Rootkit.. 22

Figure 2.8 Hardware Virtual Machine Based Rootkit .. 23

Figure 3.1 Covert Android Rootkit Detection System (CARDS)..................................... 28

Figure 4.1 Opening the directory of the intended hidden file ... 39

Figure 4.2 System Call Hook LKM Initialization .. 40

Figure 4.3 Emulator hide_file System Call Latencies Box Plots 48

Figure 4.4 Device hide_file System Call Latencies Box Plots ... 52

Figure A.1 Astro File Manager Backup, Lookout Security & Antivirus Menu 61

Figure A.2 Integrity Check Output Pre and Post Infection .. 63

Figure A.3 Port Heuristic Detection Output .. 64

Figure A.4 Process Heuristic Detection Output ... 65

Figure A.5 Module Heuristic Detection Output .. 66

Figure A.6 File/Directory Heuristic Detection Output .. 66

Figure B.1 Emulator: File System Call Latencies .. 74

Figure B.2 Device: File System Call Latencies .. 75

x

Figure B.3 Emulator: Process System Call Latencies .. 76

Figure B.4 Device: Process System Call Latencies .. 77

Figure B.5 Emulator: Module System Call Latencies .. 78

Figure B.6 Device: Module System Call Latencies .. 79

Figure B.7 Emulator: Port System Call Latencies .. 80

Figure B.8 Device: Port System Call Latencies .. 81

xi

List of Tables

 Page

Table 2.1 The Initial State of Memory.. 11

Table 2.2 The Post State of Testing Memory ... 11

Table 2.3 Exploiting Memory ... 11

Table 3.1 Experimental Factors .. 33

Table 4.1 Emulator Rootkit Detection .. 46

Table 4.2 Device Rootkit Detection.. 46

Table 4.3 Emulator System Call Latencies (in microseconds) ... 47

Table 4.4 Emulator System Call Latency 95% t-Confidence Interval Bounds (in

microseconds) .. 49

Table 4.5 Emulator Clean vs. Infected System Call Completion Times 50

Table 4.6 Emulator Behavior Difference in Latency Means (in microseconds) 51

Table 4.7 Device Behavior Latency Data (in microseconds) ... 51

Table 4.8 Device Behavior Latency 95% t-Confidence Interval Bounds (in microseconds)

 ... 53

Table 4.9 Device Clean vs. Infected System Call Completion Times 53

Table 4.10 Device Behavior Difference in Latency Means (in microseconds) 54

Table A.1 Probe-based Detection Method Commands ... 60

Table A.2 System Calls Infected by Rootkit .. 69

Table A.3 strace Commands Used to Measure System Call Completions 70

1

COVERT ANDROID ROOTKIT DETECTION: EVALUATING LINUX KERNEL LEVEL ROOTKITS

ON THE ANDROID OPERATING SYSTEM

I. Introduction

1.1 Research Domain

Smartphones are mobile phones that offer more advanced features and computing

power than traditional cellular phones. Beyond simply making calls, a Smartphone can

carry multiple connections from cellular networks, wireless Bluetooth, the Internet (via

Wi-Fi), USB and other peripherals. With these new connections, smartphone users can

access email, social networks, and banking all from their mobile device. Information

security, then, becomes an immediate concern with sensitive data being handled on

potentially unsecure devices.

The Google Android operating system [Goo12] is currently the most widely used

platform for Smartphones and is on about a quarter of Tablet PC devices. The Android

operating system is a mobile device operating system for Smartphones and Tablet PCs

designed by Google and the Open Handset Alliance. The Android operating system stack

runs on top of the Linux kernel, typically, on a 32-bit mobile device ARM processor.

Since Android is built on top of the Linux kernel, it inherits the same vulnerabilities and

the possibility of exploitation by malware, backdoors, and rootkits to gain control of the

system or induce denial-of-service (DoS) attacks. A rootkit is a set of programs and code

that allows a permanent or consistent, undetectable presence on an operating system.

2

With the Android’s widespread adoption, research in attacks may spark interest in

developing preventive security measures for Android. This research is particularly

interested with developing kernel level rootkits that remain undetected by currently

available detection methods on the Android operating system.

1.2 Problem Statement

Android dominance of the Smartphone market has made it an inevitable target of

malicious attacks. Malware for Android typically targets sensitive information like GPS

location, Short Message Service (SMS) billing, bank account credentials, premium phone

calls, e-mails, and social network credentials. Understanding how malware remains

undetected when it accesses to this information is advantageous to increased development

in detection and operating system security measures.

Kernel level rootkits run at the highest privilege by manipulating memory known

as kernel space. Malware developers insert rootkits into operating system by exploiting

software bugs. The Android operating system is no exception and old software

vulnerability attacks become new when targeting its Linux kernel.

1.3 Research Goals

Kernel level rootkits that remain undetected persist longer and increase the

capability of an attacker to exfiltrate data from the targeted device. Rootkit effectiveness,

then, can be determined by the detectability of the rootkit. Modern rootkits divert the

flow of execution at the kernel level to prevent infection detection. Understanding and

evaluating these techniques can lead to more effective detection measures. The goal of

3

this research is to determine the effectiveness of various covert techniques implemented

in kernel level rootkits on the Android operating system’s Linux kernel. The covert

techniques are based on traditional implementations of system call hooking used to hide

infection data. The rootkits are tested against available and proven detection techniques

and benchmarked for behavior performance analysis to determine the rootkit’s

effectiveness.

1.4 Document Outline

Chapter II introduces the Android operating system, conventional software

exploits, and taxonomy of rootkits. Chapter III presents the methodology for evaluating

the rootkits developed for this research. The rootkits are designed to evade the currently

available detection methods. Chapter IV presents the design and implementation of the

rootkits. The chapter also presents the results and analysis of the rootkits against

detection methods and the delay induced by the covert techniques. Chapter V highlights

the accomplishments of this research and proposes future research in both offensive and

defensive techniques against the Android operating system.

4

II. Literature Review

This chapter reviews kernel exploits and rootkit techniques that target the Linux

kernel component of the Android operating system. The first section introduces the focus

of this research, the Android operating system and its kernel. The second provides an

overview of exploits that obtain initial access to the Linux kernel. The third section

provides an overview of rootkits focusing on those whose objective is to remain

undetectable and persistent.

2.1 Introduction to Android

The Android operating system is a mobile device operating system for

smartphones and tablets designed by Google and the Open Handset Alliance. When

released in October 2008, Google also publically released the source code as the Android

Open Source Project (AOSP) under Apache’s open source license [Goo12]. This made

the code readily available for analysis and compilation. Android runs primarily on the

popular mobile device 32-bit processor, ARM. ARM is a RISC (Reduced Instruction Set

Computer) architecture which means that it uses simpler instructions compared to x86

processor’s CISC (Complicated Instruction Set Computer) architecture. However, the

operating system concepts for a Linux kernel running on ARM are the same. Android is

currently the best-selling smartphone platform worldwide. This widespread adoption has

led to increased targeting by malware writers.

2.1.1 The Android Software Stack

The Android “software stack” includes an operating system, middleware, and key

applications [God12]. The software stack is composed of five abstract layers shown in

5

Figure 2.1. From top to bottom the layers are Applications, Application Framework,

Android Runtime, Native Libraries, and the Linux Kernel. This section describes the

features from the top to the bottom layer.

Figure 2.1 The Android Software Stack

Android comes with a set of core applications that include an email client, Short

Message Service (SMS) program, calendar, maps, browser, and contacts. Other

applications can be downloaded from the Android Application Market or from a

Universal Serial Bus (USB) connected computer to a mobile device running Android.

Developers can take advantage of the Android Software Development Kit (SDK) and

design applications for public release. Applications developed in the Android SDK are

written in the Java programming language but can also be written in C/C++ using the

Native Developer Kit (NDK). Even though the applications are designed in Java, they run

in a Dalvik Virtual Machine (DVM) rather than the Java Virtual Machine (JVM) in PC

environments. The Android application framework promotes efficiency and security with

6

its DVM application sandboxing and permission model interfaces that provide access to

the lower layers.

The Android application framework sits above the system libraries, core libraries,

and DVM. Since Android is an open development platform, developers can build

extremely rich and innovative applications. Through the application framework,

developers can utilize device hardware, access location information, run background

services, set alarms, add notifications to the status bar, and much more. The application

architecture is also designed to simplify the reuse and replacement components of

applications securely. All applications have access to a set of services and systems that

includes a rich and extensible set of Views, Content Providers, a Resource Manager, a

Notification Manager, and an Activity Manager.

The Android Runtime layer is above the system libraries and kernel providing the

DVM and core libraries. DVM is specifically designed for embedded environments such

as mobile devices, tablet computers, and netbooks to support application portability and

runtime consistency. With these features in mind, Dalvik supports multiple virtual

machine processes (i.e., instances) per device and ensures runtime memory is used

efficiently. Android runs every application in its own DVM instance. The virtual machine

has a registered-based architecture that runs classes compiled by a Java language

compiler. These classes are transformed into the optimized .dex (Dalvik Executable) file

format to be more compact and memory efficient than Java class files. Java code can also

be reused by converting Java .class and .jar files to .dex files at build time. The core

libraries are written in Java and provide a substantial subset of the Java 5 SE packages as

well as some Android-specific libraries. These libraries access the capabilities provided

7

by the hardware (storage, network access), operating system (utilities), and native

libraries (data structures).

The next layer in the Android software stack includes a collection of native

libraries implemented in C/C++ used by various components. The capabilities derived

from these libraries are available to developers through the Android application

framework. These libraries include the System C library, media libraries, Surface

Manager, LibWebCore, SGL, 3D libraries, FreeType, and SQLite.

Lastly, the Linux kernel layer acts as an abstraction layer between the hardware

and the rest of the software stack. The kernel handles system services such as security,

memory management, process management, network stack, and driver model. The

components of the Linux kernel include display driver, camera driver, flash memory

drive, binder (ipc) driver, keypad driver, Wi-Fi driver, audio drivers, and power

management. The Linux kernel supports programs written in the C programming

language. Since Android is built on top of the Linux kernel, it inherits its vulnerabilities

and the possibility of exploitation by malware, backdoors, and rootkits to gain control of

the system or cause denial of service.

2.1.2 Summary

This section gives a brief overview of the Android operating system structure and

features. The abstraction of the platform’s kernel from the end-user is both an advantage

from a usability standpoint and a disadvantage from a security awareness standpoint

[Pap10]. Executing code below the application framework layer discreetly can easily and

completely subvert a user. If this execution is malicious, attackers can perform malicious

activities such as exfiltrate sensitive or personal data without detection. Exploiting

8

software vulnerabilities allow attackers to install tools to perform malicious activity. The

following section discusses these vulnerabilities and exploitation of Android’s Linux

kernel.

2.2 Software Exploitation in the Linux Kernel

Vulnerabilities in software are often due to programming errors known as bugs.

Bugs are defined as a malfunction in a program that makes the program produce incorrect

results, behave in an undesired way, or simply crash [Per10]. Security issues arise from

vulnerabilities that are exploited. Exploits that can be reused on similar vulnerabilities

can be generalized into vulnerability classes. Classes discussed in the following sections

include uninitialized pointer dereferences, memory corruption vulnerabilities, integer

overflows, and race conditions.

2.2.1 Uninitialized Pointer Dereferences

A pointer is a variable that holds the address of another variable in memory.

When dereferencing a point, the object pointed to is accessed. Static, uninitialized

pointers will always contain a NULL (0x0) value and a NULL return value indicates a

failure in memory allocation. NULL pointer dereferences occur when a kernel path

dereferences a NULL pointer causing a kernel panic. The kernel will try to use the

memory address 0x0 which usually is not mapped. Exploitation can occur when an

attacker can predict or force a pointer dereference to an uninitialized, unvalidated, or

corrupted pointer resulting in a read or write to an arbitrary location by the kernel [Per10]

[Sqr07].

9

2.2.2 Memory Corruption Vulnerabilities

Memory corruption vulnerabilities classes include cases in which kernel memory

is corrupted as a consequence of poorly written code that overwrites the kernel’s

contents. Kernel memory consists of the kernel stack and the kernel heap [Per10]. The

kernel stack is associated with each process whenever it runs at the kernel level. The

kernel heap is used each time a kernel needs to allocate memory. The fundamentals of

exploiting these structures translate to the user space as buffer overflows. Buffer

overflows are explained below to introduce kernel memory exploitation.

Buffer overflow exploits are a common avenue for an attacker to gain access and

control of a machine. The vulnerability is typically exploited by sending more data to a

program than the developer intended [How09]. The memory a program uses to store

instances of the same data type is known as a buffer which stores things like character

arrays or strings. Strings are primarily used for input and output to the user. The structure

of how this data is handled in a program must be understood to take advantage of a buffer

overflow.

A program process is organized into three memory sections: text, data, and stack

[Ale96]. The text section is fixed by the program and includes code and read-only data.

As this section contains executable code, it normally has read-only permissions; attempts

to write to this section will result in a memory segmentation fault. The data section

contains initialized and uninitialized data. Data variables for the program are stored here.

This section corresponds to the data-bss section of the executable file. While these two

sections are important to executing a program, the stack section is the target of a buffer

overflow.

10

The stack section is where dynamic data is stored. It is used for local variables, to

pass parameter values, and to return values from functions and procedures. The stack

section is a Last-In-First-Out (LIFO) data structure which means that elements are added

or removed from only one end or top of the structure. The stack grows into the higher

memory addresses as elements are added. If the data and stack section grow into each

other, the process is blocked and run again with more memory allocated.

A pointer to the top of the stack in memory is stored in a CPU register called the

stack pointer (SP). The stack consists of logical stack frames that are allocated when

calling a function and unallocated when returning. The base of the current stack frame is

pointed to by the stack frame pointer (FP). When a function is called, the previous FP is

pushed (i.e., saved) onto the stack. The SP is copied into the FP to allocate the new frame

and the SP is incremented to allocate space for local variables. These actions are called

the prolog of the function while the actions of a returning function are called an epilog.

At the epilog, the actions of the prolog must be “reversed” and cleaned up. An attacker

can develop an exploit with a process’ stack structure via buffer overflows.

Figure 2.2 Program Stack

Consider a vulnerable program stack as shown in Figure 2.2. The variable bufferX

has 8 bytes allocated and the saved frame pointer and return pointer have 4 bytes

11

allocated, respectively. If bufferX is controlled by user input and the bounds of the buffer

are not checked within the program, a malicious user could exploit this. To test for buffer

overflow vulnerabilities, the user may enter a large amount of input. Based on the

example presented earlier, this will change the memory state from Table 2.1 to Table 2.2

supposing the user entered hexadecimal A’s.

Table 2.1 The Initial State of Memory

 bufferX Saved Frame PTR Return PTR

Address 0x00 – 0x07 0x08 – 0x0B 0xC – 0x0F

Data 0x0 0x1234 0x600D

Table 2.2 The Post State of Testing Memory

 bufferX Saved Frame PTR Return PTR

Address 0x00 – 0x07 0x08 – 0x0B 0xC – 0x0F

Data AAAA AAAA AAAA AAAA

A segmentation fault will occur but the user now knows a buffer overflow is

present. Therefore, the user will probe the program until the location of the return pointer

is located. The objective of this exploit is for the malicious user to run shellcode [Sko06].

Suppose it is determined that the return pointer starts 12 bytes from buffer; the process

can be forced to return to an address where desired malicious code resides by overwriting

the 4 bytes after that. If the input from Table 2.3 is entered the instruction pointer will

point to the malicious code in bufferX and the malicious user has successfully

compromised the program and the machine running it.

Table 2.3 Exploiting Memory

 bufferX Saved Frame PTR Return PTR

Address 0x00 – 0x07 0x08 – 0x0B 0xC – 0x0F

Data /bin/sh SSSS 0x00

12

The heap data structure can also be targeted by a malicious user if the buffer

bounds are not properly checked when memory is allocated. These exploits are known as

heap overflows. As in buffer overflow, heap overflow can allow an attacker to redirect

the flow of program execution or change other variables in vulnerable programs. The

buffer overflow example is simplified but the same technique is applied to stack and heap

structures. This technique can be leveraged by attackers to run shell code and gain access

from remote machines, exfiltrate information, or install software such as rootkits.

2.2.3 Integer Overflows

Integer overflow occurs when the value of an integer is increased beyond the

maximum value it can represent given the number of bytes allocated. The result can

include ignoring the overflow or aborting the program. However, most compilers store

the incorrect value and continue executing causing sometimes disastrous and unexpected

results.

Integers are typically the same size as a pointer on the system they are compiled

on. The Android operating system runs on 32-bit ARM processors therefore the pointers

and the integers will be 32-bit. Suppose a program sets an unsigned short integer variable

x to its maximum value of 65,535 (represented in hexadecimal as 0xffffffff). Suppose the

program is overwritten so that it will add 1 to x until it reaches 70,000 where it will

terminate. The program will actually never terminate. If overflow is ignored when 1 is

added to 65,535, the result is truncated to a size that can be stored into the 32-bit length

of x, in this case is 0x00000000. Thus, the program will continue in an infinite loop.

Signed integers also have this problem because the range for a 32-bit signed integer is

from –32,768 to 32,767. When 1 is added to 32,767, the result is –32,768. Integer

13

overflow affecting the sign of the value is classified as a signedness bug. These examples

are clearly programming errors and cannot be exploited by a malicious user. If, however,

there was user input and a more complex control structure, a malicious user could alter

the execution flow by entering input targeting the integer overflow and thereby exploit

the program.

Frequent targets of integer overflow exploits include network daemons and

operating system kernels. However, all integer overflows are not exploitable because

memory is not being directly overwritten [Ble02]. They do not allow direct execution

flow control but the subtle effect of an erroneous value can lead to problems later in the

code which may enable the exploitation of bugs such as buffer or heap overflows

[How09]. Although, integer overflows may not cause direct compromise of an

application, the application will not detect that a calculation was performed incorrectly

and will continue to execute. The unexpected behavior of the application continuing after

an integer overflow introduces a vulnerability into the system.

2.2.4 Race Conditions

A race condition occurs when two actors (i.e., processes or threads) compete

within the same time interval for the same resource. The integrity of the resulting data or

the correctness of computing tasks may be affected. Race conditions primarily occur in

operating systems but can also occur in multithreaded or cooperating processes [Pfl11].

The type of system can complicate exploiting a race condition. Symmetric

multiprocessing (SMP) systems are easier to exploit because multiple kernel paths can be

concurrently executing on multiple processors increasing the likelihood of a kernel race

condition. On uniprocessor (UP) systems, however, it is more difficult to set up a

14

situation where race condition will occur. For example, suppose two kernel tasks with a

possible race condition are concurrently executing on an UP system. The first task must

somehow be preempted. The scheduler then must be forced into selecting the second

‘racing’ thread. Finally, the race condition is exploited if the second task modifies the

same kernel memory as the first. Race conditions can be prevented using synchronization

primitives (e.g., locks, semaphores, conditional variables, or monitors) but these reduce

performance and often induce deadlocks in a system [Per10].

A race condition is possible at a relatively high level in Linux using files and

other objects [How09]. Suppose an application needs to create a temporary file. It first

checks to see if the file already exists and if not the application creates the file. An

attacker deduces the naming scheme of the temporary file and creates a link back to a file

of the attacker’s choice. If the temporary file’s suid bit is set to root, the file executes as

root causing a privilege escalation for the attacker. Thus, this race condition causes a

privilege escalation.

2.2.5 Summary

This section reviewed software exploitation of a Linux kernel. There are

protection technologies built to defend against these exploits but attacks continue to

overcome these protection mechanisms. The following section discusses how rootkits

avoid detection and maintain persistence within a compromised system.

2.3 Introduction to Rootkits

Suppose a user with malicious intent has an exploit for an Android phone. The

exploit runs shellcode but the delivery mechanism may be detected. Therefore, the

15

attacker wants to deliver one payload that maintains access and is not detectable by the

end user or an administrator. A backdoor that bypasses authentication mechanisms is a

good solution, but it is not the best because backdoors are noisy and detectable by an

Intrusion Detection System (IDS). The best solution to avoid detection would be a

rootkit. A rootkit allows an attacker to permanently or consistently maintain undetectable

access to the root, that is, the most powerful user on a system. Rootkits can enable an

attacker to install a backdoor to remote control a compromised system and exfiltrate

information.

Rootkits are typically organized into two classes, user level and kernel level. A

typical user level rootkit is designed to gain full control of the memory space of a

targeted application, while kernel level rootkits run at the highest privilege by controlling

the memory known as kernel space. This section explains the techniques used in these

classes of rootkits.

2.3.1 User Level Rootkits

User level rootkits are unprivileged and are stored outside of kernel memory

space. They are user space code that patches or replaces existing applications to provide

cover for malicious activities. User level rootkits replace system binaries, add malicious

utilities, change configuration files, delete files, or launch malicious processes [Gri06].

For example, the Linux system program ‘ls’ could be changed so as to not reveal the

presence of a malicious file in a directory. These rootkits, while effective, are easily

detected by file system integrity and signature checking tools [Dav08], therefore, most

modern IDS software prevent these rootkits from being installed or can detect an active

intruder.

16

2.3.2 Kernel Level Rootkits

Kernel level rootkits defeat such tools by directly modifying the operating system

kernel. These rootkits modify the execution flow of kernel code to run their own payload.

However, modifying the kernel in this way can drastically affect the stability of the

system causing a kernel panic.

The simplest way to introduce code into a running kernel is through a Loadable

Kernel Module (LKM) [Kon07]. LKMs add flexibility to an operating system by

providing a means to add functionality without recompiling the entire kernel. Added

functionality might include device drivers, filesystem drivers, system calls, network

drivers, TTY line disciplines, and executable interpreters [Hen06]. Most modern UNIX-

like systems, including Solaris, Linux, and FreeBSD, use or support LKMs [Zov01].

However, the kernel packaged with Android does not support LKMs by default. The

kernel can be recompiled and installed on Android to add LKM support if physical access

to the mobile is available. LKMs are very useful, but they also allow maliciously written

kernel modules to subvert the entire operating system which can lead to a loss of control

of the Linux kernel and consequently all the layers above the kernel [Pap10]. Kernel level

rootkits typically subvert the kernel to hide processes, modules, connections and more to

avoid detection. Particular techniques include hooking system calls, direct kernel object

manipulation (DKOM), run-time kernel memory patching, interrupt descriptor table

hooking, and intercepting calls handled by Virtual File System (VFS). These techniques

are discussed at a high level in this section.

2.3.2.1 Hooking System Calls

The kernel provides a set o

in user space can interact with the system. The applications in user

through this interface and the kernel fulfills requests or returns an error. The execution

flow of a system call can be seen in Figure 2.3

system call to jump from user space to the assembly language function called the system

call handler in kernel space. The system call number passes from the wrapper routine to

the handler function via the EAX register. The system call table calls the appropriate

system call service routine location

indicating success or error. Not allowing user space applications to access or run in

kernel space provides stability and security to the entire operating system. This

arbitration prevents applications from incorrectly using hardware, stealing other

processes’ resources, or otherwise doing harm to the system inadvertently or otherwise.

Even so, system calls can be hooked to exploit the power of the kernel.

Figure 2.

Hooking is a technique tha

control flow [Kon07]. A new hook registers its address as the location for a specific

17

Hooking System Calls

The kernel provides a set of interfaces or system calls by which processes running

space can interact with the system. The applications in user space send requests

through this interface and the kernel fulfills requests or returns an error. The execution

l can be seen in Figure 2.3 [Bov05] [Lov10]. A process invokes a

system call to jump from user space to the assembly language function called the system

call handler in kernel space. The system call number passes from the wrapper routine to

ction via the EAX register. The system call table calls the appropriate

system call service routine location based on the number passed and returns a number

indicating success or error. Not allowing user space applications to access or run in

provides stability and security to the entire operating system. This

arbitration prevents applications from incorrectly using hardware, stealing other

processes’ resources, or otherwise doing harm to the system inadvertently or otherwise.

alls can be hooked to exploit the power of the kernel.

Figure 2.3 Normal System Call [Bov05] [Lov10]

Hooking is a technique that employs handler function, called hooks,

. A new hook registers its address as the location for a specific

f interfaces or system calls by which processes running

space send requests

through this interface and the kernel fulfills requests or returns an error. The execution

. A process invokes a

system call to jump from user space to the assembly language function called the system

call handler in kernel space. The system call number passes from the wrapper routine to

ction via the EAX register. The system call table calls the appropriate

the number passed and returns a number

indicating success or error. Not allowing user space applications to access or run in

provides stability and security to the entire operating system. This

arbitration prevents applications from incorrectly using hardware, stealing other

processes’ resources, or otherwise doing harm to the system inadvertently or otherwise.

t employs handler function, called hooks, to modify

. A new hook registers its address as the location for a specific

function, so when that function is called the hook runs instead. Typically, a hook will call

the original function at some point to preserve the original behavior. System

hooked using a maliciously designed LKM to alter the structure of the system call table.

To hook the system call table, the original targeted system call pointer to the

function must be saved. The original system call is

behavior because the objective of a hooked call is to modify the I/O of the function, not

destroy it. A pointer to the hooked

saved in the system call table location of the target. At a

made, it will move through the hooked system call handler providing a system

stored in kernel space. Figure 2.

and how it maintains the execution flow by calling the proper system call service routine.

The hooked system call returns control to user space after completion.

Figure 2.

2.3.2.2 Direct Kernel Object Manipulation (DKOM)

Hooking the system write call allows a rootkit to hide from system binaries like

ls, lsmod, and ps; even so, robust IDSs can still detect the existence by following the

kernel structures. All operating sy

18

function, so when that function is called the hook runs instead. Typically, a hook will call

the original function at some point to preserve the original behavior. System

hooked using a maliciously designed LKM to alter the structure of the system call table.

To hook the system call table, the original targeted system call pointer to the

function must be saved. The original system call is also called to preserve the original

behavior because the objective of a hooked call is to modify the I/O of the function, not

destroy it. A pointer to the hooked system call handler, typically located in the LKM,

saved in the system call table location of the target. At any point the target system call is

made, it will move through the hooked system call handler providing a system

Figure 2.4 [Bov05] [Lov10] shows the inserted hooked system call

s the execution flow by calling the proper system call service routine.

The hooked system call returns control to user space after completion.

Figure 2.4 Hooked System Call [Bov05] [Lov10]

Direct Kernel Object Manipulation (DKOM)

Hooking the system write call allows a rootkit to hide from system binaries like

ls, lsmod, and ps; even so, robust IDSs can still detect the existence by following the

kernel structures. All operating systems store internal record-keeping data in main

function, so when that function is called the hook runs instead. Typically, a hook will call

the original function at some point to preserve the original behavior. System calls can be

hooked using a maliciously designed LKM to alter the structure of the system call table.

To hook the system call table, the original targeted system call pointer to the

rve the original

behavior because the objective of a hooked call is to modify the I/O of the function, not

located in the LKM, is

ny point the target system call is

made, it will move through the hooked system call handler providing a system-wide hook

shows the inserted hooked system call

s the execution flow by calling the proper system call service routine.

Hooking the system write call allows a rootkit to hide from system binaries like

ls, lsmod, and ps; even so, robust IDSs can still detect the existence by following the

keeping data in main

19

memory [Kon07]. The Linux kernel is no exception and provides generic data structures

and primitives to encourage code reuse by developers [Bov05]. These structures, that all

programmers are familiar with, include linked lists, queues, maps, and binary trees.

Altering the data in these structures to hide an attacker’s activity is called Direct Kernel

Object Manipulation (DKOM)

For example, the Linux kernel contains a process list that links together all

existing process descriptors in a doubly linked list. Each process is contained in a

task_struct structure as in Figure 2.5 [But04]. The task_struct contains the pointers to the

prev_task and next_task. Removing the malicious process from the list of prev_task and

next_task will hide the malicious process from the system as shown in Figure 2.6

[But04]. This technique can change depending on the kernel version but the technique is

essentially the same in each implementation.

Figure 2.5 Normal Kernel Object Linking [But04]

20

Figure 2.6 Direct Kernel Object Manipulation [But04]

2.3.2.3 Run-Time Kernel Memory Patching

The classic and arguably easiest way to introduce code into the Linux kernel is

through a LKM. Another technique patches a running kernel with user space code, also

known as Run-Time Kernel Memory Patching (RKP) [Kon07][Pra99]. Interacting with

/dev/kmem device allows reading and writing to kernel virtual memory. Note that root

permissions must be present. RKP has been used to install LKMs without LKM support

[Ces98] and cloak system call hooks [Sdd01].

2.3.2.4 Interrupt Descriptor Table (IDT) Hooking

An interrupt is an event that alters the sequence of instructions executed by the

processor. When an interrupt occurs a system table called the Interrupt Descriptor Table

(IDT) associates each interrupt or exception with the address of the corresponding

handler [Bov05]. System calls use software interrupts to switch from user mode to kernel

21

mode. The interrupt handler invokes the system call handler from the address stored in

the system call table. A rootkit can hook the IDT by modifying the interrupt handler

address in the IDT or by patching the first few instructions of the interrupt handler

[Sha08]. These modifications would put the rootkit code in the flow of execution while

still letting the system handle interrupts properly [Kad02].

2.3.2.5 Intercepting Calls Handled by VFS

The virtual file system (VFS) can also be targeted to compromise the kernel and

hide the attacker’s presence. The VFS is a software layer in the Linux kernel that handles

all system calls related to the standard UNIX file system. VFS can handle several

different types of file systems [Lev06]. The adore-ng kernel-level rootkit targets the VFS

by replacing the VFS handler routines with its own routines. These handler routines

provide directory listings to /proc file systems. Therefore, modifying these handles can

hide specified files and processes from the user mode programs.

2.3.3 Firmware Level Rootkits

Firmware-based rootkits (also known as bootkits) can ensure persistence against

removal. A firmware-based rootkit hides by modifying the software on devices such as

the Advanced Configuration and Power Interface (ACPI) BIOS and Peripheral

Component Interconnect (PCI) BIOS. The firmware is modified to contain malicious

ACPI Machine Language (AML) instructions that interact with system memory and the

I/O space thereby allowing the rootkit to bootstrap code that overwrites kernel memory as

a means of infection [Hea06]. Although an effective technique, firmware rootkits are

easily detected by Trusted Computing Group’s Trusted Platform Module (TPM). TPM

checks the integrity of the operating system

today [Dav08].

2.3.4 Virtual Machine Based Rootkits (VMBR)

Rootkit activity can be also hidden using a Virtual Machine Based Rootkit

(VMBR). VMBR operates without modifying anything on the system while monitoring

an operating system’s activity. Therefore, any IDS integrity checks will not detect any

presence of a rootkit because it is actually handling the virtualization of the entire

operating system. VMBRs can be either software or hardware based.

2.3.4.1 Software Virtual Machine Based Rootkit

Software VMBRs virtualize the target operating system by executing the rootkit

within a separate operating system hosting a virtual machine monitor (VMM).

shows how the subverted system is stacked after a software VMBR is installed. The

rootkit code remains hidden from the subverted operating system because it executes in a

separate operating system context

uses this technique by installing a microkernel to subvert the Android operating system to

provide malicious services [

rootkit induces performance overhead

between virtual and physical hardware

Figure 2.

22

operating system image and firmware and is in widespread use

Virtual Machine Based Rootkits (VMBR)

Rootkit activity can be also hidden using a Virtual Machine Based Rootkit

MBR operates without modifying anything on the system while monitoring

an operating system’s activity. Therefore, any IDS integrity checks will not detect any

presence of a rootkit because it is actually handling the virtualization of the entire

system. VMBRs can be either software or hardware based.

Software Virtual Machine Based Rootkit

Software VMBRs virtualize the target operating system by executing the rootkit

within a separate operating system hosting a virtual machine monitor (VMM).

shows how the subverted system is stacked after a software VMBR is installed. The

rootkit code remains hidden from the subverted operating system because it executes in a

separate operating system context [Kim08]. µBeR, a proof of concept VMBR rootkit,

uses this technique by installing a microkernel to subvert the Android operating system to

[Tri10]. Although the microkernel has a small footprint, the

rootkit induces performance overhead which can be detected based on discrepancies

virtual and physical hardware [Dav08].

Figure 2.7 Software Virtual Machine Based Rootkit

image and firmware and is in widespread use

Rootkit activity can be also hidden using a Virtual Machine Based Rootkit

MBR operates without modifying anything on the system while monitoring

an operating system’s activity. Therefore, any IDS integrity checks will not detect any

presence of a rootkit because it is actually handling the virtualization of the entire

Software VMBRs virtualize the target operating system by executing the rootkit

within a separate operating system hosting a virtual machine monitor (VMM). Figure 2.7

shows how the subverted system is stacked after a software VMBR is installed. The

rootkit code remains hidden from the subverted operating system because it executes in a

BeR, a proof of concept VMBR rootkit,

uses this technique by installing a microkernel to subvert the Android operating system to

. Although the microkernel has a small footprint, the

which can be detected based on discrepancies

23

2.3.4.2 Hardware Virtual Machine Based Rootkits

Hardware VMBRs are a specialized rootkit that uses specific instruction sets to

switch contexts between VMM and the guest operating system. The rootkit virtualizes an

operating system by gaining root access and installing the rootkit hypervisor. It carves out

memory for the hypervisor and migrates the running operating system into a virtual

machine. The rootkit then intercepts access to hypervisor memory and selected hardware

devices. Figure 2.8 illustrates the structure of the system after the hypervisor is installed

[Zov06]. Hardware VMBRs are specialized because they only target specific

technologies such as AMD SVM (Bluepill) and Intel VT (Vitriol) processors [Rut06]

[Zov06]. Hardware VMBRs are detectable because hypervisors must use cache, memory

bandwidth, and TLB entries in the course of multiplexing a CPU. A guest operating

system can be made intentionally sensitive to these resources to detect an attempted

hypervisor install [Kim08].

Figure 2.8 Hardware Virtual Machine Based Rootkit [Zov06]

2.3.5 Summary

This section provides a taxonomy of rootkits and an overview of techniques that

can be employed by a kernel level rootkit in Linux. The rootkits described include user

24

level rootkits, kernel level rootkits, firmware level rootkits, and virtual machine based

rootkits. The kernel level rootkit techniques covered include hooking system calls, direct

kernel object manipulation (DKOM), run-time kernel memory patching, interrupt

descriptor table (IDT) hooking, and intercepting calls handled by the virtual file system

(VFS). This section reviews the attack target, initial compromise through exploits, and

maintaining persistence and stealth within the Linux kernel with rootkits.

25

III. Methodology

3.1 Background

The Android operating system is a mobile device operating system for

Smartphones and Tablet PCs designed by Google and the Open Handset Alliance. The

code is open source licensed and available under the Android Open Source Project

(AOSP) [Goo12]. Releasing the code under open source license makes it readily

available for analysis and compilation. The Android operating system stack runs on top

of the Linux kernel typically on the 32-bit mobile device ARM processor. Since Android

is built on top of the Linux kernel, it inherits its vulnerabilities and the possibility of

exploitation by malware, backdoors, and rootkits to gain control of the system or induce

denial of service (DoS). Widespread adoption of Android has led to increased targeting

by malware writers. Android attacks have naturally sparked interest in researching

protections for Android. This research is particularly interested in developing kernel level

rootkits; a set of tools consisting of small programs that allow an attacker to permanently

or reliably maintain undetectable access to the root user, that is, the most powerful user

on a system. Kernel level rootkits run at the highest privilege by manipulating memory

known as kernel space. Attackers insert rootkits into operating system by exploiting

software bugs. This research examines the detectability of system call hooking rootkits

for the Android operating system by examining subversion techniques inherited from the

underlying Linux kernel. The rootkit’s detectability is measured against currently

available security mechanisms and anomaly detection methods.

26

3.2 Problem Definition

This section describes the specific goals of the research along with the research

hypothesis. The approach describes how the hypothesis is tested against the research

goal.

3.2.1 Goals and Hypothesis

The goal of this research is to determine the effectiveness of traditional system

call hooking techniques implemented by a kernel level rootkit against the Android

operating system. The effectiveness of the rootkit is measured with respect to its stealth

against currently available security mechanisms and anomaly detection methods.

The hypothesis of this research is that the Android’s Linux kernel cannot be

trusted and additional measures should be implemented before handling sensitive data

with Android. The rootkit is expected to be effective without the end user noticing,

thereby preventing any indication of infection.

3.2.2 Approach

Rootkits maintain access to a system by hiding their presence from the end user.

An administrator may use the conventional Linux tools to look for suspicious files,

processes, modules, or ports. These tools include ls, netstat, ps, and lsmod, respectively.

The cat command is also used to probe files containing system information. A rootkit

designed to hide from these commands would then be an effective way to remain

undetected by an end user or administrator. Modifying the behavior of these tools’

processes can be done by hooking system call functions with code at the kernel level to

remove signs of an access breach or infection.

27

The most straightforward way to introduce code into the kernel is by using a

loadable module in Linux. The operating system allows these extensions to be loaded so

manufacturers of third party hardware can add support for their products. Therefore, any

code can be loaded into kernel space via a Loadable Kernel Module (LKM). Code

running at the kernel level has full access to all privileged memory of the kernel and

system processes. This research leverages LKMs to introduce covert techniques by

hooking system calls to control the Linux kernel component of the Android operating

system.

The effectiveness of each rootkit is evaluated against rootkit detection methods on

both an emulator and device. These detection methods are probe-based, integrity-based,

behavior-based, heuristic-based, and signature-based. Each method’s implementation is

discussed in detail in Appendix A.

3.3 System Boundaries

The System Under Test (SUT) is the Covert Android Rootkit Detection System

(CARDS). CARDS includes the Android mobile device, the Android operating system

(OS), an Android LKM rootkit, and the infection data hidden by the covert techniques.

The Android operating system platform is built for the ARM processor architecture. No

other operating system or processors are considered. The SUT does not initially include

any Android applications that provide system protection. The workload is the covert

techniques employed by the LKM rootkit and the detection methods used against the

rootkit.

28

The Component Under Test (CUT) is the LKM rootkit inserted into the Android

operating system on the emulator or device. Figure 3.1 shows CARDS complete with

input, outputs, and internal components.

Figure 3.1 Covert Android Rootkit Detection System (CARDS)

3.4 System Services

The service that CARDS provides is stealth from detection methods. Since the

rootkit is hiding from both the operating system and user, no functionality or service

should be restricted in any way unless it is an outcome of the subversion. For example,

the command netstat will not print out information about port 31337 because it is

required to provide a backdoor to the operating system and end user. The rootkit should

29

not cause denial of service such as loss of network communications, application crashes,

or operating system crashes.

CARDS stealth service has two outcomes: the rootkit is detected or is undetected

on the device. The desired outcome for the stealth service is to be undetected, but even if

it is, functionality degradation can prompt a user to wipe the devices internal memory

which will result in the removal of the rootkit and infection data. Therefore, the

performance latency of an infection is evaluated with the behavioral-based detection

method to account for possible functionality degradation.

3.5 Workload

The workload is the rootkit employing varying system call hooks to achieve

covert operations and the detection methods used to detect an infection or anomalies.

Detection methods use system commands, forensics tools, and Android applications.

System commands include Linux system binaries used by administrators to determine a

rootkit’s presence. The forensics tools are open source programs compiled for the ARM

processor. The Android application is publicly available in the Google Play Store. The

end user initializes system commands, forensics tools, and Android applications;

however, some tools are automated using scripts for streamlining data collection.

Each workload specified has separate parameters. The different covert techniques

are employed interchangeably by the LKM rootkit. The Android applications, the system

commands and forensic tools are included in the detection methods workload. Varying

the workload will determine the stealth effectiveness against the detection methods.

30

3.6 Performance Metrics

The first metric is a binary response of detection methods. Successful scan

detection is classified by a “yes” and an unsuccessful scan is classified by a “no”. This

metric determines if the rootkit remains undetectable against probe-based, signature-

based, integrity-based, and heuristic-based detection methods. The covert technique

performance is best when it is not detected by any method.

The second metric, latencies, compares the measured time for an uninfected or

clean system call execution with an infected system call execution. The system calls

measured are unique to each rootkit. System call hooking can potentially add delay to the

time for a system call to be completed because the additional code added by the LKM is

executed before returning to user space. This delay may alert the presence of a rootkit to

the end user or a system administrator. The measurement of this metric is the difference

between the beginning and the end of the system call.

3.7 System Parameters

The parameters listed below affect the performance of the rootkit:

Device Type – The device type specifies the particular mobile device platform

being tested. The device determines the targeted operating system configuration

and therefore the techniques that can be employed by the rootkit. This research

uses an emulator from AOSP and GSM Samsung Galaxy Nexus (GN).

Operating System (OS) – The operating system determines the kernel that the

LKM rootkit can be compiled against. The operating system version used in this

research is Android 4.0 (Ice Cream Sandwich).

31

Kernel Version – The kernel version changes how the rootkit covert techniques

are implemented. The emulator uses Linux kernel 2.6 and GN uses Linux kernel

3.0.

Central Processing Unit (CPU) – The processor determines how fast the system

can execute instructions in which how the operating system performs. The rootkit

may become more detectable if the processor cannot handle the overhead of the

rootkit. The emulator has an ARMEABI-v7A ARM Cortex-A8 processor and the

GN has a 1.2 GHz TI OMAP 4460 ARM Cortex-A9 dual-core processor.

Onboard Random-Access Memory (RAM) – The RAM available determines how

quickly the operating system can read and write to memory thus affecting overall

performance. After a power cycle, RAM is wiped and the operating system is

reloaded at boot. Consequently, the LKM rootkit will also be wiped at this time.

The emulator has a 1024MB allocated RAM and the GN has 1GB of onboard

RAM.

Onboard Storage Space – The storage space available in the system determines

how much data and programs can be loaded on the device at a time. More

executable code can be loaded with higher capacities. The emulator has a 496MB

storage and 4GB SD card allocated and the GN has 16GB of onboard storage.

Network Connections – Network connections allow the phone to communicate

with other devices and can be leveraged by the rootkit for remote command and

control or to exfiltrate data. The emulator has only an Internet network connection

shared from the host machine. The network connections the GN has are GSM

850/900/1800/1900 MHz, HSPDA 850/1700/1900/2100 MHz, and Wi-Fi: IEEE

32

802.11 a/b/g/n (2.4/5 GHz). The netstat command can be used to view the open

ports; the rootkit hides its open connection.

CPU Scheduler – The CPU scheduler allocates CPU time efficiently while

providing responsive user feedback. By allocating CPU time to a process, the

current running process is preempted until it runs again by the scheduler.

Preemption can lead to artificial execution completion delays in performance.

Installed Applications – Installed applications indicate the type of data that may

be covertly exfiltrated from the target. Default applications on Android 4.0

include: Browser, Calculator, Calendar, Camera, Clock, Email, Gallery,

Messaging, Movie Studio, Music, People, Phone, Search, Settings, and Voice

Dialer.

System Commands – These programs are installed with the kernel and can be

used over the Android Debug Bridge (ADB) command line. These tools are in the

directory /system/bin and are included in the PATH environment variable by

default. Commands typically loaded on a Linux device can also be used by

compiling compatible open source code for ARM. These missing programs are

included in the side-loaded BusyBox toolkit.

3.8 Factors

The following experimental factors are used at the indicated levels. Table 3.1

contains all the factors and levels.

33

Table 3.1 Experimental Factors

Factors Levels

Covert Techniques

hide_file

hide_proc

hide_mod

hide_port

Platforms
Emulator

Device

Detection Methods

Probe

Integrity

Signature

Heuristic

Behavioral

• Covert Techniques

o hide_file – a technique that hooks system calls to hide files that contain a

specified magic string. The rootkit is designed to completely hide the

specified file from the command ls and cat.

o hide_proc – a technique that hooks system calls to hide running processes

that contain a specified magic string. The rootkit is designed to completely

hide the specified running process from the command ps, ls /proc, and kill.

o hide_mod – a technique that hooks system calls to hide modules that

contain a specified magic string. The rootkit completely hides such

modules from the command lsmod, cat /proc/modules, and rmmod.

o hide_port – a technique that hooks system calls to hide a specified open

port from the command netstat and cat /proc/net/tcp6.

• Platforms

o Emulator – a virtual mobile device that runs a full Android system

stack on a computer. The emulator allows a simulation of how the

34

rootkits are expected to perform. The emulator is compiled with

AOSP and runs the codenamed Goldfish Linux kernel.

o Device – a physical mobile device compatible with the Android

OS. The device allows a real world performance analysis for the

rootkits. The device is the Samsung Galaxy Nexus and runs the

codenamed Maguro Linux kernel.

• Detection Methods

o Probe – Rootkit detection using the system commands to find an

unusual presence of a file, open port, process, or module. This

method is the base detection method that all the covert techniques

implemented should circumvent.

o Integrity – Rootkit detection by comparing files and memory with

a trusted source. An example of a trusted source is a baseline

system or a previous snapshot of the files and memory.

o Signature – Android applications installed on a mobile device to

scan for signatures of known malware. The rootkits implemented

are not expected to be detected because they have not been

publicly released.

o Heuristic – Rootkit detection by recognizing any deviations in a

computer’s expected output.

o Behavioral – Rootkit detection by deducing a rootkit infection by

monitoring normal system execution to identify anomalies in

performance.

35

3.9 Evaluation Technique

A combination of simulation and measurement is used to evaluate the system.

Each rootkit's objective functionality is validated by the probe-based detection and then

tested against the test harness that includes the signature, integrity, and heuristic detection

methods. Performance latencies are measured via system call completion times using the

strace command. The completion times are measured 5 times before and after infection

for a total of 10 measurements for each system call hooked by the rootkit. Repeating

capture of system call completion times 5 times was determined to be sufficient to

distinguish a difference between the uninfected and infected state. The evaluation is

performed on the emulator and then performed on the mobile device to show real-world

performance.

This evaluation is performed on both the emulator and a mobile device loaded

with Android 4.0 Ice Cream Sandwich (ICS). A Dell Latitude E6510 laptop is used to

compile code, run the emulator, and communicate via ADB. AOSP provides an emulator

for the Android environment [Goo12]. The mobile device tested is an unlocked GSM-

version of Samsung Galaxy Nexus, which is one of few phones recommended for

building Android from AOSP [Goo12]. The kernel is configured to enable LKM

installation and loaded to the emulator and device via ADB. Tools installed on to

Android include: BusyBox [Vla12], unhide-tcp [Lin12], skdet [Gev12], Lookout Security

& Antivirus [Loo12], and strace v4.5.18 [Kra12]. Scripts used to automate testing are

included in Appendix A.

36

3.10 Experimental Design

A full factorial design is used to evaluate the interaction between the factors. The

factors include covert techniques employed by each rootkit, platforms used for

evaluation, and detection methods, with 4, 2, and 5 levels, respectively. This results in 4 x

2 x 5 = 40 experiments. Each experiment is run until the output can be determined. The

kernel versions, CPU, onboard RAM, onboard storage, network connections depend on

the device type. The operating system, CPU scheduler, installed applications and system

commands are consistent throughout all the experiments while factors vary.

The variance in the results in this research should be low or zero because the

results directly depend on a successful detection and the latency of repeated system call

code. The latency of the system calls will be reported with 95% confidence. System

overhead is expected to be higher for most of the system calls infected by each rootkit.

3.11 Methodology Summary

As mobile devices become more widespread, they continue to become targets for

malicious attackers. Unfortunately, mobile operating systems have inherited the same

vulnerabilities as their PC counterparts. This chapter describes the methodology for

evaluating the detectability of a kernel level rootkit against the Google Android operating

system on an emulator and Samsung Galaxy Nexus. The goal of the research is to

determine whether a novel kernel level rootkit is undetectable to current security

mechanisms.

The SUT and CUT are identified along with accompanying parameters. Factors

are selected from the system and workload parameters. The methodology tests these

37

factors during experimentation to produce results to determine the effectiveness of the

rootkit. The metrics used for evaluation are detectability and system call latencies.

The methodology consists of both simulation and measurement evaluations.

AOSP supplies an emulator to use for simulations and Samsung Galaxy Nexus connected

to a Dell Latitude E6510 laptop is used for the measurement evaluations. A full factorial

design is implemented with 40 experiments.

38

IV. Covert Android Rootkit Detection Experimentation Results

4.1 Introduction

This chapter presents the covert techniques that utilize system call hooking

implemented in the tested rootkits. The evaluation technique used to determine the

effectiveness of the rootkits is presented. Finally, the results for detection method testing

and behavior latency benchmarking for covert technique rootkits are reported.

4.2 Rootkit Technical Design and Implementations

The Android operating system is fundamentally an application framework built on

top of a Linux kernel. The applications that execute within the framework are written in

Java and run in individual Dalvik Virtual Machine (DVM) instances [God12]. However,

the system below that framework is written in a combination of C/C++, therefore C

executables can be compiled and executed over a command line shell via Android Debug

Bridge (ADB). Loadable kernel modules (LKM) can also be compiled for extending the

kernel without recompiling. Modules operate within kernel space allowing a degree of

control over the operating system. Therefore, they can be used to deliver rootkit code that

can hide an intrusion in the operating system.

4.2.1 System Call Hook Development

System call hooking can be used to modify control flow of a system call in an

operating system by employing an intercepting handler function. This technique is

commonly installed via LKMs because the modules give direct control over memory in

kernel space. This software is commonly referred to as a rootkit with the objective of

39

hiding and maintaining privileged access to a system. To understand how this is

implemented, this section will inspect targeting and hooking individual system calls.

One of the goals of a rootkit is to hide from the user without disrupting the

execution flow of the operating system. However, in most cases, one cannot know which

code is being executed by a process unless it is open source. The simplest way to

determine which system calls are invoked by the process is the strace command. The

strace command intercepts and records the system calls used by a specified process and

the signals (or return values) received by that process [Cla05]. For instance, an attacker

wants to hide a file in the directory from the ls command. A report of the system calls for

the ls command can be generated using the command ‘strace –o ls.out ls’. The grep

command can then search the output for the directory of the intended hidden file to

identify that the open() operates on the directory. By targeting that open() in the output, it

can be seen that the getdents64() is invoked with the pointer returned by open() as seen in

Figure 4.1.

Figure 4.1 Opening the directory of the intended hidden file

The sequence of system calls reveals that getdents64() is the pivotal function to

the execution of ls and should be the target of the rootkit. Note that the grep command

may not always be available on the Android image. BusyBox, a toolkit of common UNIX

utilities optimized for embedded systems, can be installed on the system to access the

missing tool [Vla12].

40

To intercept the execution of the system call, a new function needs to be inserted

in place of the targeted system call table entry. The system call table can be modified by

code delivered by LKM. Prior to 2.5 Linux kernels, the system call table structure

(sys_call_table) was exported to the entire kernel memory space. This new feature is an

obstacle since Android runs on 2.6 or higher Linux kernels. However, there are other

ways to determine the address of system call table. The first method brute forces the

address by starting at a location in kernel space and incrementing the address [Cla05].

After each increment, the address is compared to the known locations of exported system

calls, such as sys_read() and sys_write(), to determine the actual system call table

location. The second, simpler way is by searching (using the grep utility) for

‘sys_call_table’ against the System.map file or, if that is unavailable, /proc/kallsyms on

the Android image.

Once the system call table address is determined, it is simple to change the system

call table entry to the location of a new handler function. The system call table entry is

changed when the LKM is loaded using the insmod command. Figure 4.2 contains code

that saves the original address of the open() and getdents64() system call table entries and

changes them to new function handlers prefixed with “hooked_”.

Figure 4.2 System Call Hook LKM Initialization

41

In Figure 4.2, the symbol representing the offset of the system call found in

unistd.h header (AOSP: kernel/arch/arm/include/asm/unistd.h) refers to the system call

table entry. That entry is saved into a global variable and replaced with a new handler

function defined in the LKM. The new handler function is called instead of the original

system call when it is invoked. Therefore, the handler function must match the

declaration of the original function to handle the intercepted parameters properly. The

system call table entries can be restored by assigning the saved original addresses.

Restoring the system call table to its original state is typically performed when the

module is removed with the rmmod command.

This method of targeting system calls and writing functions to alter the return

values of system calls can also be used to hide files, processes, ports and modules. The

next section describes the implementations of the LKM rootkits that hide these targets.

The full source code implementation and description can be obtained available from Dr.

Rusty O. Baldwin at the Air Force Institute of Technology (rusty.baldwin@afit.edu).

4.2.2 Hiding a File or Directory with hide_file.ko

The hide_file.ko rootkit hooks the system calls lstat64(), open(), and getdents64()

to hide files or directories that are named with a specified substring. The new lstat64()

handler function simply checks if the path contains the hidden file constant string. If the

string is present, the system call returns a “No such file or directory” signal. Otherwise,

the original lstat64() returns. The new open() handler function compares the inode of a

specified path to hide and the inode of the requested file path to open. If the two inodes

are equal, open() returns “No such file or directory” signal. Otherwise, the original open()

is returned. The new getdents64() handler function calls the original system call and

42

copies the returned dirent buffer into kernel space and then iterates through the entries. If

an entry contains the specified substring of the intended hidden file, the entry is removed

from the buffer and size are changed to reflect the removal. The buffer is then copied

back to user space and the size is returned. All these operations hide the files or

directories so that the infection is covert from probe-based detection methods.

4.2.3 Hiding a Process with hide_proc.ko

The hide_proc.ko rootkit hides processes that are named with a specified

substring by hooking the system calls getdents64() and kill(). The new getdents64()

handler function calls the original system call and copies the returned dirent buffer into

kernel space and then iterates through the entries. The PID (process id) of the iterated

entry is compared to every running task. Once the matching running task is found, the

task name is extracted and compared to the specified substring. The matching record is

removed from the buffer and size is changed to reflect the removal. The buffer then is

copied back to user space and the size is returned. The new kill() handler function

compares the passed PID value to every running process to extract the name of the task.

If the task name contains the specified substring, the function returns a “No process or

process group can be found corresponding to that specified by PID” signal. Otherwise,

the original kill() system call returns. All these operations hide processes so that the

infection is covert from probe-based detection methods.

4.2.4 Hiding a Module with hide_mod.ko

The hide_mod.ko rootkit hides modules that are named with a specified substring

by hooking the system calls delete_module() and read(). The new delete_module()

handler function simply checks if the module name passed to the function contains the

43

specified substring. If the substring is present, a “No module by that name exists” signal

is returned. Otherwise, the original delete_module() system call returns. The new read()

handler function calls the original read to obtain the buffer that will be returned to the

user. The function then determines the inode of the current open file and compares that

inode to the /proc/modules inode obtained when the module was loaded. If the inodes

match and the current running task is lsmod or cat, the buffer is examined. Since the

structure of the data in /proc/modules is consistent, the data in the buffer can be modified

to make a search easier. Each new line is first changed to a terminating null. This

technique allows the code to iterate through the data like an array of character strings. If

one of those strings contains the substring of the intended hidden module, the string is

removed from the buffer and the size is changed to reflect the removal. The newlines are

inserted back into the null terminator positions after iterating through the buffer. The

buffer is then copied back to user space and the size is returned. All these operations hide

modules so that the infection is covert from probe-based detection methods.

4.2.5 Hiding a Port with hide_port.ko

The hide_port.ko rootkit hooks the read() system call to hide a specified port

number. /proc/net/tcp6 is targeted because the open backdoor connection is created over

an IPv6 TCP port. The new read() handler function calls the original read to obtain the

data that will be returned to the user. The function determines the inode of the current

open file and compares that inode to the /proc/net/tcp6 inode obtained when the module

was loaded. If the inodes match and the current running task is netstat or cat, the buffer is

examined. Since the structure of the data in /proc/net/tcp6 is consistent, the data in the

buffer can be modified to make a search easier. Each new line is first changed to a

44

terminating null. This technique allows the code to iterate through the data like an array

of character strings. The first string is skipped because that is the line containing the

column headers for the data. Each line after that begins with a line number beginning at

line 0. The line number and local port number are extracted from each string. If the local

port number matches the intended hidden port, the string is removed from the data and

the size is changed to reflect the removal. The iteration then begins from the beginning of

the data again and corrects the line number if the cat command is used on /proc/net/tcp6.

Once the data has been iterated through without any removals, the newlines are inserted

back into the null terminator positions. The buffer is then copied back to user space and

the size is returned. All these operations hide ports so that the infection is covert from

probe-based detection methods.

4.3 Rootkit Evaluation by Detection

The detectability of the covert Android rootkits effectiveness is determined by its

effectiveness in hiding the presence of infection data from different detection methods.

The covert techniques used are hide files, hide open ports, hide processes, and hide

modules.

Two metrics measure the effectiveness of rootkits’ stealth on both the emulator

and device. The first metric is detection to determine the detectability by traditional

detection methods. Four scans using methods discussed in Chapter 3 are used for this

metric. The scans are probe-based, integrity-based, signature-based, and heuristic-based

method detection. A successful detection by any of these scans is indicated by a “yes”

and an infection not detected is indicated by a “no”.

45

The second metric is system behavior when rootkits are present (infected) and not

present (clean). The system call hook is intercepting the system call and running more

instructions before returning. It is likely that this adds a delay to the execution of the

system call. These delays, also described in Appendix A.5, are measured using the strace

tool.

4.4 Detection Method Testing Results

Table 4.1 contains the detection method testing results for each of the covert

techniques tested on the emulator. The first column lists the configurations tested and

each row represents a covert technique implemented in its respective rootkit. The

remaining columns to the right indicate the type of detection method tool used against

each covert technique rootkit. Probe-based and signature-based did not detect the rootkit

infection and thereby did not limit the effectiveness of the rootkits. These results were

expected because the rootkits were designed for commands used in the probe-based

detection. Signature-based detection methods failed because they only search application

folders, SD card files, SMS and contacts. Root privileges cannot be provided to the

scanner to search for infections in the system area and the implemented covert techniques

rootkits have not been publicly released. The Integrity-based scanner detected 100% of

the covert technique rootkits; however, it is dependent on having a trusted source to find

infections. The heuristic-based scanner limits the effectiveness of each rootkit

configuration except hide_file. The results are not surprising because the tools used to

determine an infection for a heuristic scan perform exhaustive collection of system data.

46

Table 4.1 Emulator Rootkit Detection

 Detection Method

Configuration Probe Integrity Signature Hueristic

hide_file no yes no no

hide_proc no yes no yes

hide_mod no yes no yes

hide_port no yes no yes

The detection method results for each of the covert techniques tested on the

device are shown in Table 4.2. The results are similar to the emulator except for the

Lookout Security & Antivirus scan against the hide_proc rootkit and the infection data

not being detected by the heuristic scanner for the hide_mod rootkit. The freezing during

Lookout Security & Antivirus is because the hide_proc rootkit must have unintentionally

corrupted the execution of the application. Although this is not helpful for the test results,

such a crash could lead a user to wipe the phone to fix the unintended behavior. The wipe

would remove the rootkit infection and lead to an ineffective infection. The heuristic scan

was not able to find the hidden module on the device because the buffer from the

/proc/modules read() system call is constructed differently than that on the emulator.

Overall, the integrity and heuristic-based detection methods best limit the effectiveness of

the covert rootkits.

Table 4.2 Device Rootkit Detection

Detection Method

Configuration Probe Integrity Signature Hueristic

hide_file no yes no no

hide_proc no yes no* yes

hide_mod no yes no no

hide_port no yes no yes

* phone became unresponsive when starting app and rebooted if the

rootkit was removed via ADB

47

4.5 Behavior Latency Benchmark Results

The measurements of the system call completion times with the rootkit installed

(infected) and not installed (clean) on the tested emulator are shown in Table 4.3. The

system calls targeted by the rootkit are the only ones timed since the others will not be

affected by the system call hooking. The table is organized by the specific test

configurations: type of the intended target, the rootkit infection, and the system calls

being measured. The clean latencies are placed above the infected latencies to make it

easy to compare and do not illustrate the order in which the data was collected. The

system call completion times measured five times and the sample mean are listed to the

right of each test configuration. All the clean latency means were less than infected

except the lstat64() system call.

Table 4.3 Emulator System Call Latencies (in microseconds)

Target Rootkit System Call Run 1 Run 2 Run 3 Run 4 Run 5 Mean

file

none getdents64 350 435 362 412 483 408.4

hide_file getdents64 511 434 392 479 458 454.8

none lstat64 167 232 187 202 155 188.6

hide_file lstat64 108 147 125 173 167 144

none open 232 167 215 174 163 190.2

hide_file open 190 257 203 243 233 225.2

proc

none getdents64 1093 1310 1193 1387 1107 1218

hide_proc getdents64 1788 1314 1370 1400 1625 1499.4

none kill 109 132 106 124 131 120.4

hide_proc kill 180 162 176 156 173 169.4

mod

none delete_module 142 131 113 126 112 124.8

hide_mod delete_module 207 201 194 212 188 200.4

none read 151 147 157 148 153 151.2

hide_mod read 255 215 226 221 268 237

port
none read 15597 17248 17013 17960 16536 16870.8

hide_port read 18762 18492 18054 17064 17666 18007.6

The time elapsed is calculated from the difference between the beginning and the

end wall-clock timestamps. If the process executing the system call is preempted by the

48

scheduler for a longer than average time, the elapsed time can be quite large. For

example, Run 5 of clean getdents64() had a large outlier of 2602 microseconds which put

the average latency for the test configuration at 832 microseconds. This latency is 313%

higher than the average latency indicating it was preempted longer than the other runs. It

is also well past the 1.5 IQR from the second quartile, a further indication that it is indeed

an outlier. Therefore, it was replaced by collecting a new latency using the command

from the Perl script. There were 6 outliers total in the data collected from the emulator.

These were all handled the same way.

Figure 4.3 is a box plot comparing the clean verses infected system call

completion times on the emulator. As seen in the collected data and calculated means, the

infected getdents64() and open() system calls for hide_file tend to take longer to

complete than the clean system call while lstat64() opposes that trend. Box plots for all

the clean verses infected system call completion times for the tested emulator are

available in Appendix B.

Figure 4.3 Emulator hide_file System Call Latencies Box Plots

49

Table 4.4 shows the upper and lower bounds of the 95% confidence intervals for

the results from the emulator. The table is organized by the specific test configurations:

type of the intended target, the rootkit infection, and the system calls being measured.

The clean CI are placed above the infected CI to make it easy to compare but do not

indicate the order the data was collected. The true population mean is 95% certain to lie

between the upper and lower bounds of the confidence interval for each test

configuration. As seen previously, the confidence intervals trend higher for infected

system call completion times except, again, for lstat64().

Table 4.4 Emulator System Call Latency 95% t-Confidence Interval Bounds (in microseconds)

Target Rootkit System Call Lower Mean Upper

file

none getdents64 340.820 408.4 475.980

hide_file getdents64 398.819 454.8 510.781

none lstat64 151.035 188.6 226.165

hide_file lstat64 109.792 144 178.208

none open 151.415 190.2 228.985

hide_file open 190.518 225.2 259.882

proc

none getdents64 1058.994 1218 1377.006

hide_proc getdents64 1251.018 1499.4 1747.782

none kill 105.228 120.4 135.572

hide_proc kill 156.934 169.4 181.866

mod

none delete_module 109.109 124.8 140.491

hide_mod delete_module 188.407 200.4 212.393

none read 146.202 151.2 156.198

hide_mod read 208.240 237 265.760

port
none read 15780.623 16870.8 17960.977

hide_port read 17171.667 18007.6 18843.533

Table 4.5 shows the results of a single-sided t-test to determine if the difference in

the means of the clean verses infected system calls on the emulator. The left column is

the target while the remaining right columns are the system calls affected by each rootkit.

The null hypothesis is that the clean was less than the infected system call. As expected,

50

all the system calls except lstat64() were statistically significant meaning that the means

of the clean latencies were less than the infected latencies. The clean lstat64() system call

was greater than the infected. The actual function invoked by that system call is inspected

to determine what causes this difference.

Table 4.5 Emulator Clean vs. Infected System Call Completion Times

System Call

Target open() lstat64() getdents64() kill() delete_module() read()

files LESS GREATER LESS - - -

procs - - LESS LESS - -

modules - - - - LESS LESS

ports - - - - - LESS

Table 4.6 shows the difference between the means of the clean and infected

system call latencies on the emulator. All show an increase in the infected system call

completion times except lstat64() under hide_file. This exception can be attributed to the

short amount of code the hooked function runs. In the source code in

/kernel/common/fs/stat.c, lstat64() executes more code since it handles more initializing

and flag checking. Although, hooking lstat64() results in a shorter execution time, the

existence of the difference in means indicates that an infection can still be detected by a

specially designed algorithm. Since all the differences are less than 0.1 second (or

100,000 microseconds), the threshold proposed by Nielsen for a user to notice a

difference in system performance [Nie93], the latency induced by the covert technique

would likely remained unnoticed by the average user.

51

Table 4.6 Emulator Behavior Difference in Latency Means (in microseconds)

Rootkit System Call
Clean Mean

Latency

Infected Mean

Latency

Difference in

Latency Means

hide_file

getdents64 408.4 454.8 46.4

lstat64 188.6 144 -44.6

open 190.2 225.2 35

hide_proc
getdents64 1218 1499.4 281.4

kill 120.4 169.4 49

hide_mod
delete_module 124.8 200.4 75.6

read 151.2 237 85.8

hide_port read 16870.8 18007.6 1136.8

Table 4.7 lists the measurement of the system call completion times with the

rootkit installed (infected) and not installed (clean) on the device tested, Samsung Galaxy

Nexus. The table is organized identically to the emulator data in Table 4.3. The

measurements were taken on the device to show the real-world performance of the covert

technique rootkits. The latencies measured for the device do not reflect the same range or

magnitude as the emulator. However, the difference in means caused by the additional

instructions added by the system call hook is evident as it was on the emulator.

Table 4.7 Device Behavior Latency Data (in microseconds)

Target Rootkit System Call Run 1 Run 2 Run 3 Run 4 Run 5 Mean

file

none getdents64 2346 2503 2165 2471 2230 2343

hide_file getdents64 2319 2382 2442 2563 2748 2490.8

none lstat64 274 428 305 335 458 360

hide_file lstat64 152 184 214 244 275 213.8

none open 396 214 244 275 305 286.8

hide_file open 763 793 824 916 1099 879

proc

none getdents64 672 701 763 793 824 750.6

hide_proc getdents64 1373 1402 1465 1494 1556 1458

none kill 30 31 61 91 92 61

hide_proc kill 152 183 213 244 274 213.2

mod

none delete_module 91 61 31 30 92 61

hide_mod delete_module 152 183 214 244 275 213.6

none read 91 61 31 30 92 61

hide_mod read 244 275 335 306 336 299.2

port
none read 946 976 1007 1037 1068 1006.8

hide_port read 2258 2289 2319 2350 2411 2325.4

52

The measured system call completion times also suffered from outliers. As with

the emulator, outliers were replaced by collecting a new latency measurement using the

specific command from the Perl script. There were 4 outliers total in the data collected

from the device. These were handled the same way as described when replacing outliers

with the emulator data.

Figure 4.4 shows a box plot that illustrates the comparison for the clean verses

infected system call completion times on the tested device. As expected, the infected

getdents64() is shown to tend to take longer to complete the clean system call. Box plots

for all the clean verses infected system call completion times on the tested device are

available in Appendix B.

Figure 4.4 Device hide_file System Call Latencies Box Plots

Table 4.8 shows the upper and lower bounds of the 95% confidence intervals on

the tested device. The table is organized identically to the emulator data in Table 4.4. The

true population mean is 95% certain to lie between the upper and lower bounds of the

Clean Infected

2
2
0
0

2
3
0
0

2
4
0
0

2
5
0
0

2
6
0
0

2
7
0
0

getdents64()

S
y
s
te

m
 C

a
ll

C
o
m

p
le

tio
n
 T

im
e
 (

u
s
e
c
)

Clean Infected

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

lstat64()

S
y
s
te

m
 C

a
ll

C
o
m

p
le

tio
n
 T

im
e
 (

u
s
e
c
)

Clean Infected

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

open()

S
y
s
te

m
 C

a
ll

C
o
m

p
le

tio
n
 T

im
e
 (

u
s
e
c
)

Device: hide_file

53

confidence interval for each test configuration. Again, all the clean latency means were

less than infected except for the lstat64() system call.

Table 4.8 Device Behavior Latency 95% t-Confidence Interval Bounds (in microseconds)

Target Rootkit System Call Lower Mean Upper

file

none getdents64 2160.465 2343 2525.535

hide_file getdents64 2280.175 2490.8 2701.425

none lstat64 261.301 360 458.699

hide_file lstat64 153.721 213.8 273.879

none open 200.046 286.8 373.554

hide_file open 710.520 879 1047.480

proc

none getdents64 672.126 750.6 829.074

hide_proc getdents64 1367.371 1458 1548.629

none kill 23.124 61 98.876

hide_proc kill 153.320 213.2 273.080

mod

none delete_module 23.124 61 98.876

hide_mod delete_module 153.327 213.6 273.873

none read 23.124 61 98.876

hide_mod read 249.865 299.2 348.535

port
none read 946.920 1006.8 1066.680

hide_port read 2252.360 2325.4 2398.440

Table 4.9 shows the results of a single-sided t-test to determine if the difference in

the means of the clean verses infected system calls on the tested device. The table is

organized identically to the emulator data in Table 4.5. The null hypothesis tested that the

clean was again less than the infected system call. As expected, all the system calls

except lstat64() were statistically significant meaning that the means of the clean

latencies were less than the infected latencies. The clean lstat64() system call was again

determined to be greater than the infected.

Table 4.9 Device Clean vs. Infected System Call Completion Times

System Call

Target open() lstat64() getdents64() kill() delete_module() read()

files LESS GREATER LESS - - -

procs - - LESS LESS - -

modules - - - - LESS LESS

ports - - - - - LESS

54

Table 4.10 shows the difference between the means of the clean and infected

system call latencies. The table is organized identically to the emulator data in Table 4.6.

As seen on the tested emulator, all the cases show an increase in the infected system call

completion times except lstat64() under hide_file. This exception is attributed to the short

amount of code the new handler function runs compared to the original system call as

explained previously on the emulator. As before, the existence of the difference in means

indicates that an infection can still be detected by an algorithm but may be unnoticed by a

user because the differences are less than 0.1 second.

Table 4.10 Device Behavior Difference in Latency Means (in microseconds)

Rootkit System Call
Clean Mean

Latency

Infected Mean

Latency

Difference in

Latency Means

hide_file

getdents64 2343 2490.8 147.8

lstat64 360 213.8 -146.2

open 286.8 879 592.2

hide_proc
getdents64 750.6 1458 707.4

kill 61 213.2 152.2

hide_mod
delete_module 61 213.6 152.6

read 61 299.2 238.2

hide_port read 1006.8 2325.4 1318.6

4.6 Summary

This chapter presents the evaluation technique used to determine the effectiveness

of the rootkits. The results of the covert techniques tested against detection methods are

presented and statistical analysis is performed on the data provided for the behavioral-

based detection. Both the evaluations were performed on the emulator and Samsung

Galaxy Nexus device.

The results of the detection method testing showed that while conventional probe-

based and signature based-detection did not limit the effectiveness of the tested rootkits,

integrity-based and heuristic-based were able to detect the presence of an infection

55

thereby limiting the stealth and the effectiveness of the rootkit. The results of behavior

latency benchmark showed that the difference in means is statistically significant and

could be used as a basis for detecting system call hooking rootkit infections. As expected,

the results were similar for both the emulator and the device. Chapter V addresses

accomplishments of this research and proposes future work for kernel level rootkit design

and detection on Android.

56

V. Conclusions

5.1 Research Accomplishments

This research defined software attacks from a technical perspective, designed

kernel level rootkits with covert functionality on Android mobile devices, and evaluated

the effectiveness of the rootkits by scanning an infected system with detection methods

and benchmarking the behavior of the covert techniques used.

A mobile device, such as a Smartphone, can carry multiple connections from

cellular networks, wireless Bluetooth, the Internet (via Wi-Fi), USB and other

peripherals. Smartphone users can access email, social networks, and banking, all from

their mobile device. Information security becomes an immediate concern with this

amount of sensitive data being handled on these potentially unsecured devices. This

research demonstrates that the Android software stack is not robust enough to be fully

trusted since the kernel can be directly manipulated to hide an attacker’s presence. The

kernel level rootkits tested against detection methods were designed for the Linux kernel

used by the latest release, Android 4.0 Ice Cream Sandwich. These rootkits focused on

covert techniques to hide the presence of data used by an attacker to infect a mobile

device. Detection methods were used to measure the effectiveness of the kernel level

rootkits. The effect of hooking system calls have on performance behavior was analyzed

in depth.

A rootkit is most effective when its presence cannot be detected. The most

popular free Antivirus, Lookout Security & Antivirus, and the built-in system commands

for Android were not able to detect the presence of an infection hidden by the covert

57

rootkits. The Lookout Security & Antivirus has signatures for attacks that take advantage

of the native Linux kernel but are ineffective since they only look for a signature of the

data unpacked on to the device from the application.

Integrity-based detection methods were 100% effective against the covert

techniques but rely on installing prior to the infection or have a trusted source. Heuristic-

based detection also shows signs of weakening the effectiveness of the kernel level

rootkits. However, the strace command can be used to target the processes of both these

methods to implement new hooks to block detection.

The behavioral-based detection method analysis showed that the rootkits tested

can have a noticeable impact on the latency of a system call completion time. The

magnitude is too small for a user to notice but the differences could be discovered by

another algorithm. However, this method again requires an uncompromised state to

identify anomalies [Sha12].

5.2 Research Impact

Rootkits are a real threat on mobile devices, especially ones that use the Android

platform. While the installation method used to test this requires a custom setup not

common to all phones, it may be possible to exploit and install this rootkit using exploits

[Ces98]. Keeping the device updated also might not be possible because of fragmentation

in Android, therefore, the user is left to depend on the manufacturer for security. This

security model is unsustainable and more research into Android rootkits and detection

needs to be performed because the problem is only going to get worse.

58

5.3 Future Research Areas

Kernel level rootkits are a real threat on the Android operating system even

though as yet there are not many reported cases. Sophisticated attackers can use rootkits

to maintain long periods of undetected presence on an Android mobile device. The proof

of concept rootkits and the detection methods presented can be extended for new research

in both attack and defense.

Integrity and heuristic detection methods limited the effectiveness of the kernel

level rootkits during testing. The rootkit could be more effective by evading integrity

detection using techniques presented in [You11] and [You12] since the system call table

structure is not directly modified. Heuristic detection can be evaded by designing the

covert technique to thwart detection tools like unhide-tcp and skdet. Research into

exploring different kernel level rootkits is always expanding and designing rootkits for

the post-PC era devices should not be ignored.

Behavioral detection also limited a rootkit’s covert effectiveness by detecting

differences in the mean of the system call latencies. However, its reliance on having an

uncompromised state to compare the measured latencies needs to be removed.

Algorithms designed to monitor system behavior for performance anomalies should be

investigated further. This additional detection measure could increase the effectiveness of

an IDS for Android or other operating systems.

Beyond the stealth and detection, research methods to hook into the Android

framework from the kernel level rootkit should be developed. Although the personal data

such as contacts, text messages, and application data can be found by searching known

locations, new ways of getting to this data in a more abstract and Android framework

59

friendly way would make data exfiltration and remote control of an Android mobile

device much easier. Removing the need to reverse engineer a target application for that

application’s data would have a long lasting impact on the security research for Android.

The rootkits were designed for the Android operating system but should also be

easily portable by compiling for a targeted Linux kernel. As Android and Linux continue

to be used across more devices and platforms, the need for security research increases

since the inherent vulnerabilities are not going away. The success of implementing a

kernel level rootkit in a mobile device environment demonstrates that additional security

measures should be implemented on Android and its Linux kernel.

60

Appendix A. Detection Method Implementations

This appendix contains the detection method implementations including

description and scripts.

A.1 Probe-based Detection

Probe-based detection identifies signs of infection by forensic analysis using the

system commands: ls, cat, ps, kill, lsmod, and rmmod. The function of the system

commands are described below:

• List Files (ls) – lists the files in a current or specified directory.

• Catenate File (cat) – writes the contents of each file specified in the standard

output.

• List Processes (ps) – lists the processes currently running.

• Kill Process (kill) – sends a signal to a process. The default signal sent is the

termination signal but the command can also send other specified signals. This

extra functionality is not used in this research.

• List Modules (lsmod) – lists the modules currently installed.

• Remove Module (rmmod) – removes a specified module.

• List Network Connections (netstat) – lists all incoming and outgoing network

connections, routing tables, and network interface statistics.

Table A.1 is a list of the system commands used to search for infection traces

during probe-based detection.

Table A.1 Probe-based Detection Method Commands

Infection Traces System Commands Used

Files ls, ls <filename>, ls –l, ls –l <filename>, cat <filename>

Processes ps, ps <process_name>, ls /proc/, kill <pid>

Modules lsmod, cat /proc/modules, rmmod <module_name>

Ports netstat, cat /proc/net/tcp6

61

A.2 Signature-based Detection

The signature-based malware detection tool Lookout Security & Antivirus

[Loo12] is scanned against each covert technique on both Android platforms. Anti-virus

(AV) tools like Lookout Security & Antivirus are ineffective in detecting all attacks

because they typically only scan application folders, SD card files, SMS and contacts

[Far11]. Since a typical Android device does not have root privileges by default, the AV

applications cannot search for infections in the system area that is the most targeted and

vulnerable.

The Lookout Security & Antivirus application is available in the Google Play

Store. The application was downloaded from the Google Play Store on another device

and the .apk installer file was copied using Astro File Manager [Gop12] from that device.

The .apk is then installed over the ADB with the command ‘adb install Lookout-

70800.apk’ [God12]. The security scan was then initialized when running Lookout

Security & Antivirus. Figure A.1 shows the interface of Astro File Manager and Lookout

Security & Antivirus.

Figure A.1 Astro File Manager Backup, Lookout Security & Antivirus Menu

62

A.3 Integrity-based Detection

Rootkits often take control over of a kernel by modifying static system structures.

Integrity-based detection compares data of a trusted source with potentially infected data

to find differences that identify a possible attack. In the case of the system call hooking

technique, used by the rootkits in this research, the rootkit overwrites the address of the

system call table entry so that the malicious code in a new handler function is executed.

The addresses in the system call entries are supposed to be permanent and should not

change even after a reboot of the operating system. Therefore, the system structures need

to be validated in a trusted state before searching for changes from an attacker. The

trusted source for a system call table can be found in the System.map file if it is available.

Android devices typically do not have the System.map file available. Therefore,

the addresses of the system call table entries can be determined by scanning kernel

memory using an LKM [Bur10]. The system call table address can be found the same

way as described in Section 4.2.1. When the LKM is installed, each system call table

entry is saved into a copy array. Upon removal of the LKM, each system call table entry

is compared to the copy array. A detection message prints to the message buffer of the

kernel if a difference is found and can be read using the dmesg command.

During testing, the LKM used to test integrity was named scprint. The scprint

module was compiled for the specific kernel being tested, the same as the rootkits. Prior

to the rootkit infection, scprint was installed. This way the system call table is in a trusted

state. The specific covert technique rootkit is installed which hooks its respective system

calls. The scprint module is then uninstalled and the proper detection messages are

printed to the message buffer of the kernel. The process of downloading, installing, and

63

uninstalling the scprint module was automated using a Perl script named integrity.pl.

Figure A.2 shows a successful detection by the integrity-based detection.

Figure A.2 Integrity Check Output Pre and Post Infection

The code for integrity.pl:

#!/usr/bin/perl -w

Android System Call Table Inegrity Check

Bobby Brodbeck, AFIT, June 2012

use 5.10.0;

print "Android Integrity Check (AIC) over ADB \n";

my $lsmod_out = `adb shell lsmod`;

if ($lsmod_out =~ /scprint/)

{

 print "Found scprint! Unistalling...\n";

 `adb shell rmmod scprint`;

 print "Collecting output...\n";

 my $dmesg_out = `adb shell dmesg | tail -10`;

 # print "Output:\n$dmesg_out\n";

 my @detects = ($dmesg_out =~ /(DETECTION:(.)+)\n/g);

 for($i = 0; $i < @detects; $i++)

 {

 print "$detects[$i]\n";

 }

}

else

{

 print "scprint.ko LKM must be installed prior to infection for this script to work

correctly.\n";

 print "Pushing over ADB...";

 `adb push ~/mods/scprint/scprint.ko /data/local/`;

 print "Installing...\n";

 `adb shell insmod /data/local/scprint.ko`;

 print "Installed. Run check again after infection.\n";

}

############## EOF: integrity.pl ##############

A.4 Heuristic-based Detection

Rootkits take control of execution flow to hide data; however, there are other

ways to find data that is hidden. Heuristic

comparing the returned data from different functions targeting the same source. The

heuristic scan was designed custom for detecting the rootkits tested in this research. They

used a combination of tools created to detect Linux rootkits and comm

available on the Android kernel. The heuristic scan searches for anomalies to identify

hidden files, processes, modules, and ports.

The heuristic scan is implemented by a Perl script that runs commands over ADB

and analyzes the output. The ana

ADB. The heuristic scan starts by running unhide

Hunter Project [Boe12] uses unhide

identifies TCP/UDP ports that are listening but not listed by the netstat command by

brute forcing all TCP/UDP ports available [http://sourceforge.net/projects/unhide/files/].

If any hidden ports are detected, the results are printed to the output.

the output when a hidden port is detected by unhide

Figure A

64

based Detection

Rootkits take control of execution flow to hide data; however, there are other

ways to find data that is hidden. Heuristic-based detection identifies an

comparing the returned data from different functions targeting the same source. The

custom for detecting the rootkits tested in this research. They

used a combination of tools created to detect Linux rootkits and comm

available on the Android kernel. The heuristic scan searches for anomalies to identify

hidden files, processes, modules, and ports.

The heuristic scan is implemented by a Perl script that runs commands over ADB

and analyzes the output. The analysis is printed to the terminal of the machine running

ADB. The heuristic scan starts by running unhide-tcp to find hidden ports. The Rootkit

uses unhide-tcp to enhance its detection capabilities. Unhide

that are listening but not listed by the netstat command by

brute forcing all TCP/UDP ports available [http://sourceforge.net/projects/unhide/files/].

If any hidden ports are detected, the results are printed to the output. Figure A

the output when a hidden port is detected by unhide-tcp.

Figure A.3 Port Heuristic Detection Output

Rootkits take control of execution flow to hide data; however, there are other

based detection identifies anomalies by

comparing the returned data from different functions targeting the same source. The

custom for detecting the rootkits tested in this research. They

used a combination of tools created to detect Linux rootkits and commands already

available on the Android kernel. The heuristic scan searches for anomalies to identify

The heuristic scan is implemented by a Perl script that runs commands over ADB

lysis is printed to the terminal of the machine running

tcp to find hidden ports. The Rootkit

tcp to enhance its detection capabilities. Unhide-TCP

that are listening but not listed by the netstat command by

brute forcing all TCP/UDP ports available [http://sourceforge.net/projects/unhide/files/].

Figure A.3 shows

65

The heuristic scanner identifies hidden processes by comparing the output of the

ps –T command and skdet tool. The ps –T command returns all the running task threads

on the device. The ps command from the BusyBox toolkit is used. Skdet is designed to

detect rootkits such as SucKIT, adore-ng, trojaned files, and more. The Rootkit Hunter

Project can also take advantage of skdet to enhance its detection capabilities. The

heuristic scanner uses skdet for an alternative source of running task threads by using the

–c option. The difference of the two sets of data PIDs is then printed out. The operator

running the heuristic scanner must have some extra knowledge to understand the printed

difference. Three of the processes are unique to the ps command and skdet tool because

of the shell over ADB. Therefore they can be ignored in the results. These processes

found during testing were sh (shell), adbd (ADB daemon), and the skdet tool. Figure A.4

shows the output of the heuristic scanner when a hidden process is detected

(hidemy_proc).

Figure A.4 Process Heuristic Detection Output

Hidden modules are identified by comparing the number of lines in the lsmod

command output verses the line count of /proc/modules. The lsmod command is built into

the Android Linux kernel but the wc command is found with the BusyBox toolkit. If the

line counts are not equal, the difference is printed out. The lsmod command is expected

to have the smaller amount of lines since it is the command targeted by the system call

hook. Figure A.5 shows the output of the heuristic scanner when a hidden module is

detected.

Figure A

Hidden files are identified by comparing the num

output verses the number of lines in the output from ‘find <directory_name>

1’. The ls command is built into the Android Linux kernel but the find command is found

with the BusyBox toolkit. The ‘maxdepth’ option dic

from the directory specified in the command line arguments. One line is subtracted from

the results of the find command because it will include a line for the target directory. If

the line counts are not equal, the dif

have the smaller amount of lines since it is the command targeted by the system call

hook. Figure A.6 shows the output of the heuristic scanner when a hidden file or

directory is detected.

Figure A

The code for heuristic.pl

#!/usr/bin/perl -w

Android heuristic scanning

Bobby Brodbeck, AFIT, June 2012

use 5.10.0;

print "Android Heuristic Scanner (AHS) over ADB

66

shows the output of the heuristic scanner when a hidden module is

Figure A.5 Module Heuristic Detection Output

Hidden files are identified by comparing the number of lines in the ls command

output verses the number of lines in the output from ‘find <directory_name>

1’. The ls command is built into the Android Linux kernel but the find command is found

with the BusyBox toolkit. The ‘maxdepth’ option dictates the amount of levels to descend

from the directory specified in the command line arguments. One line is subtracted from

the results of the find command because it will include a line for the target directory. If

the line counts are not equal, the difference is printed out. The ls command is expected to

have the smaller amount of lines since it is the command targeted by the system call

shows the output of the heuristic scanner when a hidden file or

Figure A.6 File/Directory Heuristic Detection Output

Bobby Brodbeck, AFIT, June 2012

"Android Heuristic Scanner (AHS) over ADB \n\n";

shows the output of the heuristic scanner when a hidden module is

ber of lines in the ls command

output verses the number of lines in the output from ‘find <directory_name> -maxdepth

1’. The ls command is built into the Android Linux kernel but the find command is found

tates the amount of levels to descend

from the directory specified in the command line arguments. One line is subtracted from

the results of the find command because it will include a line for the target directory. If

ference is printed out. The ls command is expected to

have the smaller amount of lines since it is the command targeted by the system call

shows the output of the heuristic scanner when a hidden file or

67

my $prog;

HIDDEN PORT SCANNING ################

print "Scanning for hidden ports with Unhide-TCP...\n\n";

RUN UNHIDE-TCP AND PRINT OUTPUT

$prog = "/data/local/unhide-tcp";

my $find_ports = `adb shell $prog`;

printf("%s\n", $find_ports);

HIDDEN PROCESS SCANNING #############

print "Scanning for hidden processes...\n\n";

GET ALL THREADS PIDS PROVIDED TO PS

$prog = "/data/local/busybox ps -T";

my $ps_out = `adb shell $prog`;

remove first line

$ps_out = substr($ps_out, (index($ps_out,"\n")+1));

my @ps_pids = split /\s+[0-9]+\s+[0-9]+[:][0-9]+\s+.*\R/, $ps_out;

trim whitespace

foreach (@ps_pids)

{

 $_ =~ s/^\s+//;

 $_ =~ s/\s+$//;

}

for($i = 0; $i < 5; $i++)

{

 # printf ("ps[%i] = %s\n", $i, $ps_pids[$i]); #Prints ith first element

}

GET ALL THREADS PIDS ATTAINED BY SKDET

$prog = "/data/local/skdet -c";

my $skdet_out = `adb shell $prog`;

my @skdet_pids = split /\s+[\b]+\s.*\R/, $skdet_out;

my @skdet_pnames = split /.*[\b]+\s+/, $skdet_out;

chomp(@skdet_pnames);

for($i = 0; $i < 5; $i++)

{

 # printf ("skdet[%i] = %s\t%s\n", $i,

 # $skdet_pids[$i], $skdet_pnames[$i+1]); #Prints ith first element

}

GET THE DIFFERENCE OF THE TWO SETS

%ps_pids = map {$_=>1} @ps_pids;

my @absent_pids = grep(!defined $ps_pids{$_}, @skdet_pids);

foreach(@absent_pids)

{

 # print $_."\n";

}

GET INDEX OF THREADS MISSING FROM PS

my @absent_index;

for($i = 0; $i < @absent_pids; $i++)

{

 @absent_index[$i] = grep{ $skdet_pids[$_] == $absent_pids[$i]} 0 .. $#skdet_pids;

}

PRINT OUT THE NAMES OF THE THREADS MISSING FROM PS

print "Threads missing from 'ps':\nPID\tNAME\n";

for($i = 0; $i < @absent_index; $i++)

{

68

 printf("%s\t%s\n", $skdet_pids[$absent_index[$i]],

$skdet_pnames[$absent_index[$i]+1]);

}

print "\n";

HIDDEN MODULE SCANNING ##############

print "Scanning for hidden modules...\n\n";

GET LSMOD OUTPUT AND COUNT LINES

$prog = "lsmod";

my $lsmod_out = `adb shell $prog`;

my $lsmod_lines = $lsmod_out =~ tr/\n//;

printf("lsmod = %i modules\n", $lsmod_lines);

GET LINE COUNT FROM MODULES FILE

$prog = "/data/local/busybox wc -l /proc/modules";

my $wcl_out = `adb shell $prog`;

$wcl_out =~ s/[^0-9]//g;

printf("wc -l = %i modules\n", $wcl_out);

COMPARE VALUES

if($wcl_out != $lsmod_lines)

{

 my $hidden_mods = $wcl_out - $lsmod_lines;

 printf("There is %i hidden module/s present\n\n", $hidden_mods);

}

else

{

 printf("There are no hidden modules present\n\n");

}

HIDDEN FILE SCANNING ################

print "Scanning for hidden files...\n\n";

$prog = "ls /sdcard/ -a";

my $ls_out = `adb shell $prog`;

my $ls_lines = $ls_out =~ tr/\n//;

printf("ls = %i files/dirs\n", $ls_lines);

$prog = "/data/local/busybox find /sdcard/ -maxdepth 1";

my $find_out = `adb shell $prog`;

my $find_lines = $find_out =~ tr/\n//;

$find_lines--; # for the parent dir

printf("find = %i files/dirs\n", $find_lines);

if($find_lines != $ls_lines)

{

 my $hidden_files = $find_lines - $ls_lines;

 printf("There is %i hidden file/s present\n\n", $hidden_files);

}

else

{

 printf("There are no hidden files present\n\n");

}

COMPLETE ############################

print "Android Heuristic Scan Complete!\n"

############## EOF: heuristic.pl ##############

69

A.5 Behavioral-based Detection

Behavioral-based detection deduces a rootkit infection by monitoring kernel level

execution to identify anomalies in performance. A rootkit employing system call hooking

can potentially add a delay to a system call to complete execution because the additional

hook code is executed before returning to the user space program. This delay is the most

noticeable to the end user because slow execution hinders productivity. The annoyance

caused by the delay may lead the user to wipe the mobile device regardless if there is a

rootkit presence detected.

Behavioral-based detection measures latencies of uninfected or clean and infected

system calls using the strace command. The system calls measured are only those that

have their execution intercepted by a system call. Table A.2 lists these infected system

calls for each rootkit. Each rootkit has a Perl script that captures the system call

completion time of the target strace output. These scripts are named sc_file.pl, sc_proc.pl,

sc_mod.pl, and sc_port.pl.

Table A.2 System Calls Infected by Rootkit

Rootkit Infected System Calls

hide_file.ko getdents64(), lstat64(), open()

hide_proc.ko getdents64(), kill()

hide_mod.ko read(), delete_module()

hide_port.ko read()

The strace command shows the time spent in system calls when the –T option is

set as an argument to the command. The time elapsed is calculated from the difference

between the beginning and the end wall-clock timestamps. The –e option is set to print

only relevant system calls by using the expression “trace=”. Following the strace

command and options, the actual targeted process command is stated. These commands

70

were chosen as direct targets of the rootkit and the most straightforward output to parse

with the Perl script. Table A.3 lists all the strace commands used by the Perl scripts.

Table A.3 strace Commands Used to Measure System Call Completions

Rootkit Measured System Call strace Command

hide_file.ko getdents64() strace -T -e trace=getdents64 ls -a /sdcard/

hide_file.ko lstat64() strace -T -e trace=lstat64 ls -l /sdcard/hidemy.txt

hide_file.ko open() strace -T -e trace=open cat /sdcard/hidemy.txt

hide_proc.ko getdents64() strace -T -e trace=getdents64 ps hidemy_proc

hide_proc.ko kill() strace -T -e trace=kill kill <PID>

hide_mod.ko read() strace -T -e trace=read lsmod

hide_mod.ko delete_module() strace -T -e trace=delete_module rmmod hidemy_mod

hide_port.ko read() strace -T -e trace=open,read netstat

The code for sc_file.pl:

#!/usr/bin/perl -w

Android system call traces for hide_file.ko

Bobby Brodbeck, AFIT, June 2012

use 5.10.0;

open output file

$fout = "strace_file.txt";

open(OUT, ">>$fout") || die("This file will not open!\n");

print OUT "Run\tgetdents64\tlstat64\topen\n";

for($i = 0; $i < 5;)

{

 $i++;

 print OUT "$i\t";

 # ls -a <dir of hidden file> system call times

 my $lsa_out = `adb shell /data/local/strace -T -e trace=getdents64 ls -a

/sdcard/`;

 # print OUT "$lsa_out\n";

 my @lsa_times = ($lsa_out =~ /<(\d+.\d+)>/g);

 # print "getdents64($i): @lsa_times\n";

 # sum getdents calls

 $getdents_total = 0;

 $getdents_total += $_ for @lsa_times;

 printf(OUT "%f\t", $getdents_total);

 # ls -l <dir of hidden file> system call times

 my $lsl_out = `adb shell /data/local/strace -T -e trace=lstat64 ls -l

/sdcard/hidemy.txt`;

 # print OUT "$lsl_out\n";

 my @lsl_times = ($lsl_out =~ /<(\d+.\d+)>/g);

 # print "lstat64($i): @lsl_times\n";

 # sum lstat calls

 $lstat_total = 0;

 $lstat_total += $_ for @lsl_times;

 printf OUT "%f\t", $lstat_total;

 # cat <hidden file> system call times

71

 # print OUT "STRACE OUTPUT FOR 'cat'\n";

 my $cat_out = `adb shell /data/local/strace -T -e trace=open cat

/sdcard/hidemy.txt`;

 # print OUT "$cat_out\n";

 $cat_out =~ /open\("\/sdcard\/hidemy.txt".+<(\d+.\d+)>/;

 printf OUT "%f\n", $1;

 sleep(1);

}

close OUT;

############## EOF: sc_file.pl ##############

The code for sc_proc.pl:

#!/usr/bin/perl -w

Android system call traces for hide_proc.ko

Bobby Brodbeck, AFIT, June 2012

use 5.10.0;

open output file

$fout = "strace_file.txt";

open(OUT, ">>$fout") || die("This file will not open!\n");

ps <proc name> system call times

my $ps_out = `adb shell /data/local/strace -T -e trace=getdents64 ps hidemy_proc`;

print "$ps_out\n";

my @ps_times = ($ps_out =~ /<(\d+.\d+)>/g);

#print "@ps_times\n";

$getdents_total = 0;

$getdents_total += $_ for @ps_times;

printf(OUT "%f\t", $getdents_total);

use skdet to get pid

my $skdet_out = `adb shell /data/local/skdet -c`;

print "$skdet_out\n";

get thread names and pids

my @skdet_pids = split /\s+[\b]+\s.*\R/, $skdet_out;

my @skdet_pnames = split /.*[\b]+\s+/, $skdet_out;

chomp(@skdet_pnames);

remove carriage return

foreach(@skdet_pnames)

{

 $_=~ s/\r|\n//g; # remove /r or /n

 #$_ =~ s/(.)/sprintf("%x",ord($1))/eg;

 # print "$_\n";

 # print "$string\n";

}

get pid of hidden proc

my $pid = -1;

for($i = 0; $i <@skdet_pnames; $i++)

{

 # print "$string = $skdet_pnames[$i]\n"; #Prints ith first element

 if("hidemy_proc" eq $skdet_pnames[$i])

 {

 $pid = $skdet_pids[$i - 1];

 last;

 }

}

72

kill <pid> system call times

if ($pid > 0)

{

 # $pid = $skdet_pids[$found_index-1];

 my $kill_out = `adb shell /data/local/strace -T -e trace=kill kill $pid`;

 # print "$kill_out\n";

 $kill_out =~ /<(\d+.\d+)>/;

 printf OUT "%f\n", $1;

}

else

{

 print "Could not test kill()\n";

}

close OUT;

############## EOF: sc_proc.pl ##############

The code for sc_mod.pl:

#!/usr/bin/perl -w

Android system call traces for hide_mod.ko

Bobby Brodbeck, AFIT, June 2012

use 5.10.0;

open output file

$fout = "strace_file.txt";

open(OUT, ">>$fout") || die("This file will not open!\n");

print OUT "Run\tread\tdelete_module\n";

for($i = 0; $i < 5;)

{

 $i++;

 print OUT "$i\t";

 # lsmod system call times

 my $lsmod_out = `adb shell /data/local/strace -T -e trace=read lsmod`;

 # print "$lsmod_out\n";

 # uncomment line below for clean: hello always first

 #$lsmod_out =~ /read\(3, "hello.+<(\d+.\d+)>/;

 # uncomment line below for infected: hide_mod always first

 $lsmod_out =~ /read\(3, "hide_mod.+<(\d+.\d+)>/;

 printf OUT "%f\t", $1;

 # rmmod <hidden mod> system call times

 my $rmmod_out = `adb shell /data/local/strace -T -e trace=delete_module rmmod

hidemy_mod`;

 # print "$rmmod_out\n";

 $rmmod_out =~ /<(\d+.\d+)>/;

 printf OUT "%f\n", $1;

}

close OUT;

############## EOF: sc_mod.pl ##############

The code for sc_port.pl:

#!/usr/bin/perl -w

Android system call traces for hide_port.ko

73

Bobby Brodbeck, AFIT, June 2012

use 5.10.0;

open output file

$fout = "strace_file.txt";

open(OUT, ">>$fout") || die("This file will not open!\n");

print OUT "Run\tread\n";

for($i = 0; $i < 5;)

{

 $i++;

 print OUT "$i\t";

 # netstat system call times

 my $netstat_out = `adb shell /data/local/strace -T -e trace=open,read netstat`;

 # print "$netstat_out\n\n";

 # separate lines for parsing

 @nslines = split(m/\R/,$netstat_out);

 chomp(@nslines);

 # find boundaries of read calls

 my $start = 0;

 my $end = scalar(@nslines);

 my $tcp6_flag = 0;

 for($j = 0; $j < $end; $j++)

 {

 # print "$j: $nslines[$j]\n";

 if($nslines[$j] =~ /open\("\/proc\/net\/tcp6"/)

 {

 $start = $j+1;

 $tcp6_flag = 1; # stop looking for tcp6

 }

 if($tcp6_flag && $j > $start && ($nslines[$j] =~ /open/))

 {

 $end = $j; # grab and go on

 }

 }

 # collect read completion times

 my @reads;

 for($j = $start; $j < $end; $j++)

 {

 if($nslines[$j] =~ /<(\d+.\d+)>/g)

 {

 push(@reads, $1);

 # print "$j: $nslines[$j]\n";

 }

 }

 # sum completion times

 # print "@reads\n";

 my $read_total = 0;

 $read_total += $_ for @reads;

 printf(OUT "%f\n", $read_total);

}

close OUT;

############## EOF: sc_port.pl ##############

74

Appendix B. System Call Latency Box Plots

This appendix contains all the clean verses infected system call latencies box plots

for the emulator and device. These box plots are discussed in detail in Section 4.5.

Figure B.1 Emulator: File System Call Latencies

75

Figure B.2 Device: File System Call Latencies

Clean Infected

2
2
0
0

2
3
0
0

2
4
0
0

2
5
0
0

2
6
0
0

2
7
0
0

getdents64()
S

y
s
te

m
 C

a
ll

C
o
m

p
le

tio
n
 T

im
e
 (

u
s
e
c
)

Clean Infected

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

lstat64()

S
y
s
te

m
 C

a
ll

C
o
m

p
le

tio
n
 T

im
e
 (

u
s
e
c
)

Clean Infected

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

open()

S
y
s
te

m
 C

a
ll

C
o
m

p
le

tio
n
 T

im
e
 (

u
s
e
c
)

Device: hide_file

76

Figure B.3 Emulator: Process System Call Latencies

Clean Infected

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

getdents64()

S
y
s
te

m
 C

a
ll
 C

o
m

p
le

ti
o

n
 T

im
e

 (
u

s
e

c
)

Clean Infected

1
2

0
1

4
0

1
6

0
1

8
0

kill()

S
y
s
te

m
 C

a
ll
 C

o
m

p
le

ti
o

n
 T

im
e

 (
u

s
e

c
)

Emulator: hide_proc

77

Figure B.4 Device: Process System Call Latencies

Clean Infected

8
0

0
1

0
0

0
1

2
0

0
1

4
0

0
getdents64()

S
y
s
te

m
 C

a
ll
 C

o
m

p
le

ti
o

n
 T

im
e

 (
u

s
e

c
)

Clean Infected

5
0

1
0

0
1

5
0

2
0

0
2

5
0

kill()

S
y
s
te

m
 C

a
ll
 C

o
m

p
le

ti
o

n
 T

im
e

 (
u

s
e

c
)

Device: hide_proc

78

Figure B.5 Emulator: Module System Call Latencies

Clean Infected

1
2

0
1

4
0

1
6

0
1

8
0

2
0

0
delete_module()

S
y
s
te

m
 C

a
ll
 C

o
m

p
le

ti
o

n
 T

im
e

 (
u

s
e

c
)

Clean Infected

1
6

0
1

8
0

2
0

0
2

2
0

2
4

0
2

6
0

read()

S
y
s
te

m
 C

a
ll
 C

o
m

p
le

ti
o

n
 T

im
e

 (
u

s
e

c
)

Emulator: hide_mod

79

Figure B.6 Device: Module System Call Latencies

80

Figure B.7 Emulator: Port System Call Latencies

Clean Infected

1
5

5
0

0
1

6
0

0
0

1
6

5
0

0
1

7
0

0
0

1
7

5
0

0
1

8
0

0
0

1
8

5
0

0
read()

S
y
s
te

m
 C

a
ll
 C

o
m

p
le

ti
o

n
 T

im
e

 (
u

s
e

c
)

Emulator: hide_port

81

Figure B.8 Device: Port System Call Latencies

Clean Infected

1
0

0
0

1
5

0
0

2
0

0
0

read()

S
y
s
te

m
 C

a
ll
 C

o
m

p
le

ti
o

n
 T

im
e

 (
u

s
e

c
)

Device: hide_port

82

Bibliography

[Ale96] Aleph One (pseudo.). "Smashing the Stack For Fun and Profit," Phrack,

vol. 7, no. 49, 1996.

[Ble02] blexim (pseudo.). "Basic Integer Overflows," Phrack, vol. 11, no. 60, 2002.

[Boe12] M. Boelen, 2012. "The Rootkit Hunter Project." [Online].

http://rkhunter.sourceforge.net/, 2012.

[Bov05] D. P. Bovet and M. Cesati. Understanding the Linux Kernel, Third Edition.

Sebastopol, CA: O'Reilly Media, 2005.

[Bur10] M. Burdach, "Detecting Rootkits and Kernel-level Compromises in Linux,"

Symantec Connect. [Online]. Available:

http://www.symantec.com/connect/articles/detecting-rootkits-and-

kernel-level-compromises-linux, November 2010.

[But04] J. Butler. "DKOM (Direct Kernel Object Manipulation),"

Black Hat USA 2004, 2004.

[Ces98] S. Cesare. "Runtime Kernel KMEM Patching," [Online].

http://biblio.l0t3k.net/kernel/en/runtime-kernel-kmem-patching.txt,

1998

[Cla05] J. Clarke and N. Dhanjani. Network Security Tools: Writing, Hacking, and

Modifying Security Tools. O'Reilly Media, 2005.

[Dav08] F. M. David, E. M. Chan, J. C. Carlyle and R. H. Campbell.

"Cloaker: Hardware Supported Rootkit Concealment,"

2008 IEEE Symposium on Security and Privacy, 2008.

[Far11] R. Farmer. "A Brief Guide to Android Security." White Paper,

Acumin Consulting, 2011.

[Gev12] D. Gevers. "skdet." Personal Website Hosting Software Download. [Online].

http://dvgevers.home.xs4all.nl/skdet/

[God12] Google Inc. "Android Developers." [Online]. http://developer.android.com/,

2012.

[Goo12] Google Inc. "Android Open Source Project." [Online].

http://source.android.com/, 2012.

83

[Gop12] Google Inc. "ASTRO File Manager/Browser - Android Apps on Google

Play." [Online].

http://play.google.com/store/apps/details?id=com.metago.astro&hl=en,

2012.

[Gri06] J. B. Grizzard. Towards Self-Healing Systems: Re-establishing Trust in

Compromised Systems. PhD dissertation. Georgia Institute of

Technology, 2006.

[Hea06] J. Heasman. "Implementing and Detecting a PCI Rootkit." White Paper,

NGSSoftware Insight Security Research (NISR), 2006.

[Hen06] B. Henderson. "Linux Loadable Kernel Module HOWTO." [Online].

http://tldp.org/HOWTO/Module-HOWTO/, 2006.

[How09] M. Howard, D. LeBlanc and J. Viega. 24 Deadly Sins of Software Security:

Programming Flaws and How to Fix Them. McGraw-Hill, 2009.

[Kad02] kad (pseudo.). "Handling Interrupt Descriptor Table for fun and profit,"

Phrack, vol. 11, no. 59, 2002.

[Kim08] W. B. Kimball. SecureQEMU: Emulation-based Software Protection

Providing Encrypted Code Execution and Page Granularity Code

Signing. MS Thesis, AFIT/GCO/ENG/09-03. School of Electrical and

Computer Engineering, Air Force Institute of Technology (AU),

Wright-Patterson AFB OH, December 2008.

[Kon07] J. Kong. Designing BSD Rootkits: An Introduction to Kernel Hacking. San

Francisco, CA: No Starch Press, Inc., 2007.

[Kra12] P. Kranenburg, B. Lankester and R. Sladkey. "strace." SourceForge. [Online].

http://sourceforge.net/projects/strace/, 2012.

[Lev06] J. Levine, J. Grizzard and H. Owen. "Detecting and categorizing kernel-level

rootkits to aid future detection." IEEE Security & Privacy, vol. 4, no.

1, pp. 24-32, Jan-Feb 2006.

[Lin12] "Linux Documentation." [Online]. http://linux.die.net/man/, 2012.

[Loo12] Lookout, Inc. "Lookout Mobile Security." [Online].

https://www.mylookout.com/, 2012

[Lov10] R. Love. Linux Kernel Development. Addison-Wesley Professional, 2010.

[Nie93] J. Nielsen. Usability Engineering. San Francisco, CA: Morgan Kaufmann,

1993.

84

[Pap10] C. Papathanasiou and N. J. Percoco. "This is not the droid you're looking

for…," Defcon 18, July 2010.

[Per10] E. Perla and M. Oldani. A Guide to Kernel Exploitation: Attacking the

Core.Syngress Publishing, 2010.

[Pfl11] C. P. Pfleeger and S. L. Pfleeger. Analyzing Computer Security: A

Threat/Vulnerability/Countermeasure Approach. Prentice Hall, 2011.

[Pra99] pragmatic (pseudo.). "(nearly) Complete Linux Loadable Kernel Modules,"

The Hacker's Choice 2011, 1999.

[Rut06] J. Rutkowska. "Subverting Vista Kernel for Fun and Profit," Black Hat USA

2006, 2006.

[Sdd01] sd (pseudo.) and devik (pseudo). "Linux on-the-fly kernel patching without

LKM," Phrack, vol. 11, no. 58, 2001.

[Sha08] A. Shah. "Analysis of Rootkits: Attack Approaches and Detection

Mechanisms." Research Report, Georgia Institute of Technology,

2008.

[Sha12] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer and Y. Weiss. "“Andromaly”: a

behavioral malware detection framework for android devices," Journal

of Intelligent Information Systems, vol. 38, no. 1, pp. 169-190, 2012.

[Sko06] E. Skoudis. Counter Hack Reloaded. Pearson Education, 2006.

[Sqr07] sqrkkyu (pseudo.) and twiz (pseudo.). "Attacking the Core: Kernel Exploiting

Notes," Phrack, 2007. [Online].

http://www.phrack.org/issues.html?issue=64&id=6#article

[Tri10] J. M. F. d. Trindade, C. Pham and N. Dautenhahn, "µBeR: A Microkernel

Based Rootkit for Android Smartphones," IEEE Symposium on

Security and Privacy 2010, 2010.

[Vla12] D. Vlasenko. "BusyBox." [Online]. http://busybox.net/, April 2012.

[You11] D.-H. You and B.-N. Noh. "Android platform based linux kernel rootkit," 6th

International Conference on Malicious and Unwanted Software, 2011.

[You12] D.-H. You. "Android platform based linux kernel rootkit," Phrack, vol. 14,

no. 68, 2012.

85

[Zov01] D. D. Zovi, "Kernel Rootkits." SANS: Information Security Reading Room.

[Online]

http://www.sans.org/reading_room/whitepapers/threats/kernel-

rootkits_449, 2001.

[Zov06] D. D. Zovi. "Hardware Virtualization-based Rootkits," Black Hat USA 2006,

2006.

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

14 June 2012 Master's Thesis 20 Sept 2012 - 14 June 2012

Covert Android Rootkit Detection: Evaluating Linux Kernel Level Rootkits
on the Android Operating System

Brodbeck, Robert C., Civilian, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

AFIT/GCO/ENG/12-14

Intentionally Left Blank

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

This research developed kernel level rootkits for Android mobile devices designed to avoid traditional detection methods. The
rootkits use system call hooking to insert new handler functions that remove the presence of infection data. The effectiveness of the
rootkit is measured with respect to its stealth against detection methods and behavior performance benchmarks. Detection method
testing confirms that while detectable with proven tools, system call hooking detection is not built-in or currently available in the
Google Play Android App Store. Performance behavior benchmarking showed that system call hooking affects the completion time
of the targeted system calls. However, this delay’s magnitude may not be noticeable by users. The rootkits implemented targets
Android 4.0 on the emulator available from the Android Open Source Project (AOSP) and the Samsung Galaxy Nexus. The rootkits
are compiled against both Linux kernel 2.6 and 3.0, respectively. This research shows the Android’s Linux kernel is vulnerable to
system call hooking and additional measures should be implemented before handling sensitive data with Android.

Operating Systems, Cellular Phones, Information Security, Mobile Computing

U U U UU 98

Dr. Rusty O. Baldwin, ENG

(937) 255-3636, x 4445 Rusty.Baldwin@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	6-14-2012

	Covert Android Rootkit Detection: Evaluating Linux Kernel Level Rootkits on the Android Operating System
	Robert C. Brodbeck
	Recommended Citation

	Microsoft Word - Brodbeck_Thesis.docx

