
Fuzzing OpenSSL

Brian Chen, Ashley Kim, Jason Lam

May 2019

1 Introduction

Fuzzing is a technique for testing the security of a program by programmatically
providing it with many inputs, which may or may not be valid, and seeing if
the program crashes or exhibits other insecure behavior. Our project concerns
fuzzing OpenSSL, a standard open-source cryptography library used to secure
online communications, with one of the most popular implementations of SSL
and TLS. Among other uses, it is used to generate certificates for Let’s Encrypt,
an automated certificate authority that provides free SSL/TLS certificates.

Our main goal of this project was to successfully fuzz OpenSSL — that is,
find a novel input that causes a crash, or other unexpected behavior, through
automated testing or input generation. Through the course of our investiga-
tion, we found that there is already substantial computation power dedicated
to fuzzing OpenSSL, while there was more available room for improvement in
fuzzing infrastructure instead, so we pivoted to focusing on that. Our main
contributions are improvements to fuzzing documentation and code coverage
through writing additional fuzz targets.

2 Background and Previous Work

OpenSSL is an extremely popular open-source cryptography and SSL/TLS li-
brary first released in 1998. It secures many internet connections and provides
many cryptographic primitives for other uses. Despite (or perhaps because of)
OpenSSL’s prevalence in being used to secure the modern internet, vulnerabil-
ities in OpenSSL are frequently discovered. One of the most famous vulnera-
bilities in OpenSSL (and in modern software in general) is Heartbleed, a 2014
overrun vulnerability caused by a missing bounds check that allowed attack-
ers to read additional data, and which was estimated to affect half a million
certificates [2]. However, dozens of vulnerabilities each year are documented on
OpenSSL’s site [3]. Several of these vulnerabilities were found using the security
testing technique of fuzzing, including:

• CVE-2018-0739: Malicious recursive ASN.1 types can crash OpenSSL.

• CVE-2017-3738: Overflow bug in AVX2 Montgomery multiplication.

1

• CVE-2017-3736: Carry propagating bug in the x86_64 Montgomery squar-
ing procedure.

• CVE-2017-3735: One-byte overread in parsing the IPAddressFamily ex-
tension of an X.509 certificate.

• CVE-2017-3732: Another carry propagating bug in the x86_64 Mont-
gomery squaring procedure.

In addition, although Heartbleed was not originally discovered through fuzzing,
several tutorials have been written after its discovery about how it could have
been detected with fuzzing [11, 12].

Fuzzing has become more common and more accessible in recent years.
Bindings for parts of OpenSSL to popular fuzzers libFuzzer and AFL exist
in the OpenSSL repository at https://github.com/openssl/openssl/tree/

master/fuzz. Furthermore, many of the recent vulnerabilities have been found
using Google’s open source continuous fuzzer OSS-Fuzz [6]. OSS-Fuzz is backed
by Google’s distributed fuzzing infrastructure ClusterFuzz [17], which provides
a friendly web interface and automated crash reports.

3 Fuzzing Overview

In this section we cover how fuzzers work, including how they integrate with
target software, generate inputs, and detect potential vulnerabilities. We also
discuss the fuzzing engines we explored during our project.

3.1 Integrating Fuzzers with Targets

How a fuzzer is integrated into software varies from fuzzer to fuzzer, but typi-
cally, it requires the software implementer to implement a fuzz target, which is
a function that simply takes in a raw array of bytes and somehow processes it
with the software. The fuzz target should be written so that it never crashes on
any data if the library is operating correctly; this might mean carefully checking
the received data for validity before processing it [5].

It is good practice to declare many small fuzz targets and have them be
fuzzed independently, as it enables the fuzzer to test targets more precosely.
Some examples of existing fuzz targets in OpenSSL are functions that treat
the input data as bignums, perform simple arithmetic operations on them, and
check the results for consistency with each other. Other targets treat the data
as part of an SSL connection between the server and client.

Sometimes, fuzz targets can be written to be supported by multiple fuzzing
engines.

3.2 Running Fuzzers

Once the fuzzer and target have been integrated, the fuzzer typically generates
inputs by applying randomness, especially genetic or evolutionary algorithms,

2

https://github.com/openssl/openssl/tree/master/fuzz
https://github.com/openssl/openssl/tree/master/fuzz

to a corpus of inputs, which is initially user-provided.
The corpus ideally consists of inputs that, in loose terms, do interesting

things, with the goal of helping the fuzzer to cover as much of the code or
behavior as possible. This helps fuzzers test interesting code paths quickly. For
example, if a code path is only reached if a message has a correct cryptographic
signature, it would help the fuzzer if the corpus included an input with a message
and its correct signature, because the fuzzer would be unlikely to generate such
an input by itself, and would then be unable to test that code path. Once the
corpus contains at least one such input, however, the fuzzer can efficiently find
and test similar inputs (e.g. inputs with extra padding) and plausibly find bugs
or vulnerabilities in that code path. As fuzzers run, they may add inputs to the
corpus when they discover an input that triggers a new code path.

OpenSSL’s corpora are included in their repo [4], simply as directories of
files named by hashes of their contents, and feature varying inputs as described
above. For example, the corpora for the bignum tests include many random
numbers of various sizes, but also edge cases like when all numbers are 0; the
corpora for the SSL connection targets include random data as well as tran-
scripts that include legitimate SSL certificates from Google. When fuzz targets
can be declared in a fuzzer-agnostic way, a benefit is that corpora can be ex-
changed between different fuzzers, which improves the ability of fuzzers to find
new code paths.

3.3 Sanitizers

Fuzzer effectiveness can be further improved by fuzzing code compiled with
sanitizers, which are a type of compiler instrumentation that turns potentially
vulnerable code behavior into fatal errors. Examples of behavior that might
be caught by sanitizers include out-of-bounds memory accesses (by Address-
Sanitizer [18]), memory leaks (by LeakSanitizer [19]), reads from uninitialized
memory (by MemorySanitizer [20]), and undefined behavior (by UBSanitizer
[21]).

Although sanitizers improve the ability of fuzzers to find issues, they are
typically only used for fuzzing and similar debugging or evaluation purposes
because the added instrumentation usually makes the compiled code slower or
more memory-consuming.

3.4 Other Fuzzing Conditions

Finally, effective fuzzing sometimes requires fuzz targets to be modified. For
example, fuzzing is the most effective when fuzz targets are fully determin-
istic and do not rely on any global state or randomness, because this makes
it more likely that similar fuzz inputs will explore similar code paths and en-
sures that fuzz failures are reproducible. This often requires the software target
be modified to support a derandomized build. Of course, a cryptography li-
brary without randomness is extremely vulnerable and should never be used
in production, and similar concerns apply to many other modifications one

3

might wish to make to support fuzzing. To drive this home, libfuzzer offi-
cially suggests that such modifications be gated behind the long build macro
FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION [5].

However, although OpenSSL’s fuzzing documentation suggests that this
build macro disables randomness in two tests, we found that it does not actually
appear to affect randomness at all; instead, randomness is explicitly disabled in
the two relevant fuzz tests that require determinism.

3.5 libfuzzer

libfuzzer is part of clang, a compiler suite that is in turn part of the LLVM
project. It works by linking a custom main function against fuzz targets that
are simply functions declared with the following exact signature and name [5]:

1 int LLVMFuzzerTestOneInput(const uint8_t *data , size_t size) {

2 // do something with the data buffer

3 return 0;

4 }

To fuzz a simple target with a modern version of clang, it suffices to compile
it with the -fsanitize=fuzzer option; this adds all the necessary instrumenta-
tion and links a custom libfuzzer main function against the fuzz target function.
clang also ships with many sanitizers that can detect runtime behavior that
could cause security issues, which are typically also enabled during fuzzing.

However, in a library such as OpenSSL, attempting to do this directly
will fail because libfuzzer’s main function will conflict with OpenSSL’s own
main function, used for the openssl binary. Modern clang also accepts a
-fsanitize=fuzzer-no-link option that will only add fuzz instrumentation
without linking, but of course the fuzzer main method needs to be linked even-
tually. Currently, the OpenSSL build process handles this in a somewhat round-
about way with a --with-fuzzer-lib configuration option that takes a path
to the libfuzzer library file, which was necessary before libfuzzer was shipped
with clang.

While these technical details with building/compilation seem like technical
minutiae, their complexity has consequences. For about a month while we were
working on this project, the build of OpenSSL on oss-fuzz (described below) was
failing due to a linking issue with the fuzzing library and the OpenSSL makefile
[1]. OpenSSL maintainers eventually resolved the issue with pull request #8892
[24].

3.6 AFL

American fuzzy lop is an another major security fuzzing engine we used. AFL
must be installed separately from clang, and ships with several binaries includ-
ing afl-clang and afl-clang-fast. These binaries can be used as drop-in
replacements for clang during compilation; the resulting program will be ready
for fuzzing using the afl-fuzz program.

4

One reason that AFL runs quickly is due to its persistent mode [16]. Most
general-purpose fuzzers create a new process for each new input, but creating
a new process is quite slow. While an approach known as the forkserver op-
timization exists, where the fuzzer saves some time calling fork() instead of
execve() on each iteration, this is still much slower than a basic for loop in C.

AFL introduces an __AFL_LOOP() macro that essentially works the same as a
for loop. While there is still crash handling, stall detection, and instrumentation
being handled by AFL under the hood, this approach still ends up being faster
than making a fork() or execve() call on every new iteration.

3.7 Other Fuzzers

The list of fuzzers is by no means exhaustive. Some other fuzzers include
honggfuzz [8], radamsa [9], and zzuf [10].

3.8 OSS-Fuzz

OSS-Fuzz by Google is a platform that continuously fuzzes open-source software,
supporting the two fuzzers primarily discussed above. The code is available
at https://github.com/google/oss-fuzz. OpenSSL is one of the dozens of
open-source projects being continuously fuzzed on OSS-Fuzz. Because Google
has so many computing resources, we decided that it would be unlikely for us
to find any issues by running the same fuzzing processes on our own machines.
On the other hand, as mentioned above, we did observe from the public build
logs [13] that for some amount of time, the OpenSSL build on OSS-Fuzz was
not building.

A different area of potential work can be seen from the public coverage
reports [7]. (They are referenced as public in the OSS-Fuzz FAQ [15]. However,
we could not find anywhere they were publicly indexed, and only managed
to find them through finding links to other OSS-Fuzz coverage reports and
modifying the URL.)

It can be seen that the fuzz coverage of OpenSSL is rather low, just around
38%. Although full fuzzer coverage is not necessarily realistic or desirable, since
some functions are difficult to incorporate into a reliable fuzz target, we think
this percentage suggests that there is a lot of room for improvement.

However, the actual status and results of fuzzing are maintained on a sepa-
rate bugtracker [14], and permission-gated to only project maintainers. This is
important because it gives maintainers a chance to fix any vulnerabilities un-
covered by fuzzing before they are made public, reducing the chance that the
vulnerabilities are maliciously exploited. Unfortunately, it also means we cannot
use Google’s fuzzing results to cross-check or guide our own fuzzing attempts.

5

https://github.com/google/oss-fuzz

4 Our Contributions

4.1 Documentation

While attempting to fuzz OpenSSL, we quickly discovered that the existing
documentation for fuzzing OpenSSL was out of date. Following the instructions
for compiling OpenSSL with libfuzzer didn’t work with the current version of
clang, so we had to read a lot of documentation and do some experimenta-
tion to figure out how to build the new binary. While our first successful at-
tempts involved monkey-patching the autogenerated OpenSSL makefile to use
-fsanitize=fuzzer in some places and -fsanitize=fuzzer-no-link in oth-
ers, it took several days before we figured out how to compile the fuzz targets
leveraging both OpenSSL’s configuration scripts as well as modern clang flags.
(We later found that OSS-Fuzz is also attempting to migrate to use modern
clang and its prebuilt fuzzer libraries and running into similar issues with the
two fuzzing flags [25].) What we ended up doing was significantly informed by
observing the build commands issued to build OpenSSL in the OSS-Fuzz docker
image, which were constructed through a complex combination of code in the
OpenSSL build files and various OSS-Fuzz infrastructural scripts.

After getting a working build with libfuzzer, we submitted a pull request
to update the fuzzer readme on OpenSSL to reflect the new steps. The pull
request was approved on May 8th [23].

We had relatively more success with AFL, as we only encountered a few
hiccups regarding in the installation of afl-clang-fast. After emailing the
afl-users Google Group, we got help and our compilation errors were resolved
and afl-fuzz ran without issue.

4.2 Vulnerable Inputs

While running the pre-existing libfuzzer fuzzers, we found several slow inputs.
In theory, slow inputs could reflect a vulnerability to denial-of-service attacks
(via overwhelming an OpenSSL server or client with inputs that it needs a long
time to process) or side-channel timing attacks (via measuring how long an
OpenSSL server or client takes to respond to a certain input to leak a secret).
In practice, we believe that the slow inputs we found simply reflect the fact that
it takes more time to process large inputs, and that there are no actual security
vulnerabilities. Also, the generation of these large inputs can be disabled with
proper fuzzer flags and may be set up correctly on OSS-Fuzz. Nevertheless, the
presence of slow inputs may at the very least reduce the efficiency and likelihood
of using fuzzing to discovering other legitimate bugs and vulnerabilities.

When fuzzing with AFL, we never ended up encountering any program
crashes or hangs.

6

4.3 Coverage

While looking at OSS-Fuzz’s documentation, we found the Google’s coverage
report for OpenSSL fuzzing [7].

We noticed that there were plenty of code paths and function calls that had
low coverage, so we decided to write a few fuzz targets ourselves.

We wrote new fuzz targets for the Diffie-Hellman key exchange, the gcd

function for BigNumbers, and the hex2bn and dec2bn deserialization functions
for BigNumbers. When we ran our own tests, we found higher coverage rates for
our targeted functions than OSS-Fuzz’s previous results. The source code for
these fuzz targets is available in the appendix.

The last 3 functions were pretty straightforward, but testing the functions
for Diffie-Hellman required a bit more work. We needed to go through the entire
key exchange procedure with only one machine, and there was not a dedicated
API for generating private keys that depended on input, so we had to use fairly
low-level API functions and manually inject BigNumbers parsed from the input
into the key exchange.

5 Further Work

There is a lot more work that could be done in fuzzing OpenSSL. There are
several files with very little to no coverage that may potentially be vulnerable.
For example, the RSA module has gotten relatively low coverage in the last
OSS-Fuzz report, with under 35% coverage. The X.509 certificate module has
also very low coverage, with less than 30% of its lines covered. More fuzz targets
can be written to increase fuzzing coverage in these files.

Furthermore, instead of simply relying on blackbox fuzzing, we could use
additional techniques to further test the system for robustness.

A common whitebox fuzzing technique is symbolic execution, which replaces
the semantics of the program with symbolic ones, and ensures that all possible
execution paths are traversed. However, a library as large as OpenSSL has too
many constraints, making it infeasible to symbolically execute in a reasonable
amount of time.

A technique introduced around 2015 called underconstrained symbolic exe-
cution remedies this problem. It relies on checking individual functions instead
of whole programs for correctness. Recently, the security company Trail of Bits
released Sandshrew, a underconstrained symbolic execution tool explicitly for
use in cryptographic analysis [22]. This could be used for more robust testing
on OpenSSL.

6 Conclusion

With the amount of computing power that Google is contributing towards
fuzzing OpenSSL through OSS-Fuzz, it was not surprising that we could not
find any new crashes or vulnerabilities in OpenSSL. Nonetheless, we were able

7

to contribute to OpenSSL by updating outdated documentation and writing
new fuzz targets to run. We hope that fuzzing in OpenSSL and in all security-
sensitive software continues to improve, and that it will be able to discover
vulnerabilities more quickly.

References

[1] Issue 14075, oss-fuzz, “openssl: Build failure”. https://bugs.chromium.
org/p/oss-fuzz/issues/detail?id=14075

[2] Paul Mutton, “Half a million widely trusted web-
sites vulnerable to Heartbleed bug.” Netcraft.com.
https://news.netcraft.com/archives/2014/04/08/

half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.

html

[3] OpenSSL Vulnerabilities https://www.openssl.org/news/

vulnerabilities.html

[4] https://github.com/openssl/openssl/tree/master/fuzz/corpora

[5] http://llvm.org/docs/LibFuzzer.html

[6] OSS-Fuzz by Google https://github.com/google/oss-fuzz

[7] https://storage.googleapis.com/oss-fuzz-coverage/openssl/

reports/20190512/linux/report.html. (Note that reports are published
daily and the date in the URL can be manually changed.)

[8] honggfuzz http://honggfuzz.com

[9] radamsa https://gitlab.com/akihe/radamsa

[10] zzuf https://caca.zoy.org/wiki/zzuf

[11] https://google.github.io/clusterfuzz/setting-up-fuzzing/

heartbleed-example/

[12] Hanno Böck, “How Heartbleed could’ve been found.” 2015. https://blog.
hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html

[13] https://oss-fuzz-build-logs.storage.googleapis.com/index.html

[14] https://bugs.chromium.org/p/oss-fuzz/issues/list

[15] https://github.com/google/oss-fuzz/blob/master/docs/faq.md#

why-are-code-coverage-reports-public

[16] lcamtuf, “New in AFL: persistent mode.” https://lcamtuf.blogspot.

com/2015/06/new-in-afl-persistent-mode.html

8

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14075
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14075
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
https://github.com/openssl/openssl/tree/master/fuzz/corpora
http://llvm.org/docs/LibFuzzer.html
https://github.com/google/oss-fuzz
https://storage.googleapis.com/oss-fuzz-coverage/openssl/reports/20190512/linux/report.html
https://storage.googleapis.com/oss-fuzz-coverage/openssl/reports/20190512/linux/report.html
http://honggfuzz.com
https://gitlab.com/akihe/radamsa
https://caca.zoy.org/wiki/zzuf
https://google.github.io/clusterfuzz/setting-up-fuzzing/heartbleed-example/
https://google.github.io/clusterfuzz/setting-up-fuzzing/heartbleed-example/
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
https://oss-fuzz-build-logs.storage.googleapis.com/index.html
https://bugs.chromium.org/p/oss-fuzz/issues/list
https://github.com/google/oss-fuzz/blob/master/docs/faq.md#why-are-code-coverage-reports-public
https://github.com/google/oss-fuzz/blob/master/docs/faq.md#why-are-code-coverage-reports-public
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html

[17] https://google.github.io/clusterfuzz/

[18] AdressSanitizer http://clang.llvm.org/docs/AddressSanitizer.html

[19] LeakSanitizer http://clang.llvm.org/docs/LeakSanitizer.html

[20] MemorySanitizer http://clang.llvm.org/docs/MemorySanitizer.html

[21] UndefinedBehaviorSanitizer http://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html

[22] Alan Cao, “Performing Concolic Execution on Cryptographic Primi-
tives”, Trail of Bits Blog. https://blog.trailofbits.com/2019/04/01/
performing-concolic-execution-on-cryptographic-primitives/

[23] OpenSSL Pull Request #8891 https://github.com/openssl/openssl/

pull/8891

[24] OpenSSL Pull Request #8892 https://github.com/openssl/openssl/

pull/8892

[25] OSS-Fuzz Issue #2164 https://github.com/google/oss-fuzz/issues/

2164

A Fuzzer Targets

A.1 dh.c

1 #include <stdio.h>

2 #include <string.h>

3 #include <openssl/bn.h>

4 #include <openssl/err.h>

5 #include <openssl/dh.h>

6 #include "fuzzer.h"

7
8 int FuzzerInitialize(int *argc , char *** argv)

9 {

10 // OPENSSL_init_crypto (OPENSSL_INIT_LOAD_CRYPTO_STRINGS , NULL);

11 // ERR_get_state ();

12
13 return 1;

14 }

15
16 int FuzzerTestOneInput(const uint8_t *buf , size_t len)

17 {

18 BN_CTX *ctx = BN_CTX_new ();

19 size_t l1 = 0;

20 BIGNUM *b1 = BN_new ();

21 BIGNUM *b2 = BN_new ();

22
23 /* Extract two bignums from the input by dividing the input

into two parts ,

24 * using the values of the first byte to choose lengths.

9

https://google.github.io/clusterfuzz/
http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/LeakSanitizer.html
http://clang.llvm.org/docs/MemorySanitizer.html
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://blog.trailofbits.com/2019/04/01/performing-concolic-execution-on-cryptographic-primitives/
https://blog.trailofbits.com/2019/04/01/performing-concolic-execution-on-cryptographic-primitives/
https://github.com/openssl/openssl/pull/8891
https://github.com/openssl/openssl/pull/8891
https://github.com/openssl/openssl/pull/8892
https://github.com/openssl/openssl/pull/8892
https://github.com/google/oss-fuzz/issues/2164
https://github.com/google/oss-fuzz/issues/2164

25 */

26 if (len >= 1) {

27 len -= 1;

28 l1 = (buf[0] * len) / 255;

29 }

30
31 OPENSSL_assert(BN_bin2bn(buf , l1, b1) == b1);

32 OPENSSL_assert(BN_bin2bn(buf + l1 , len - l1 , b2) == b2);

33
34
35 DH *privkey1 = DH_get_2048_256 ();

36 DH *privkey2 = DH_get_2048_256 ();

37 int codes;

38 OPENSSL_assert (1 == DH_check(privkey1 , &codes));

39 OPENSSL_assert(codes == 0); // problems with the generated

parameters

40 OPENSSL_assert (1 == DH_check(privkey2 , &codes));

41 OPENSSL_assert(codes == 0); // problems with the generated

parameters

42
43 // Set private keys manually

44 BIGNUM *p1 = BN_new ();

45 BN_mod(p1, b1, DH_get0_q(privkey1), ctx);

46 BIGNUM *p2 = BN_new ();

47 BN_mod(p2, b2, DH_get0_q(privkey2), ctx);

48
49 // They have to be at least 2

50 if (! BN_is_zero(p1) && !BN_is_one(p1) &&

51 !BN_is_zero(p2) && !BN_is_one(p2)) {

52 DH_set0_key(privkey1 , NULL , b1); // note that this

transfers memory management to the DH keys

53 DH_set0_key(privkey2 , NULL , b2); // ditto

54 OPENSSL_assert (1 == DH_generate_key(privkey1));

55 OPENSSL_assert (1 == DH_generate_key(privkey2));

56 unsigned char *shared1 , *shared2;

57 size_t shared_size1 , shared_size2;

58
59 OPENSSL_assert(NULL != (shared1 =

OPENSSL_malloc(sizeof(unsigned char) *

(DH_size(privkey1)))));

60 OPENSSL_assert(NULL != (shared2 =

OPENSSL_malloc(sizeof(unsigned char) *

(DH_size(privkey2)))));

61 OPENSSL_assert (0 <= (shared_size1 =

DH_compute_key(shared1 , DH_get0_pub_key(privkey2),

privkey1)));

62 OPENSSL_assert (0 <= (shared_size2 =

DH_compute_key(shared2 , DH_get0_pub_key(privkey1),

privkey2)));

63 OPENSSL_assert(shared_size1 == shared_size2);

64 OPENSSL_assert(memcmp(shared1 , shared2 , shared_size1) ==

0);

65 OPENSSL_free(shared1);

66 OPENSSL_free(shared2);

67 } else {

68 BN_free(p1);

69 BN_free(p2);

10

70 }

71
72 BN_free(b1);

73 BN_free(b2);

74 DH_free(privkey1);

75 DH_free(privkey2);

76 BN_CTX_free(ctx);

77 ERR_clear_error ();

78
79 return 0;

80 }

81
82 void FuzzerCleanup(void)

83 {

84 }

A.2 gcd.c

1 #include <stdio.h>

2 #include <string.h>

3 #include <openssl/bn.h>

4 #include <openssl/err.h>

5 #include "fuzzer.h"

6
7
8 int FuzzerInitialize(int *argc , char *** argv)

9 {

10 // OPENSSL_init_crypto (OPENSSL_INIT_LOAD_CRYPTO_STRINGS , NULL);

11 // ERR_get_state ();

12
13 return 1;

14 }

15
16 int FuzzerTestOneInput(const uint8_t *buf , size_t len)

17 {

18 BN_CTX *ctx = BN_CTX_new ();

19 size_t l1 = 0;

20 BIGNUM *b1 = BN_new ();

21 BIGNUM *b2 = BN_new ();

22 BIGNUM *gcd = BN_new ();

23 BIGNUM *gcd_rel_prime = BN_new ();

24
25 // b1 = gcd * d1 , b2 = gcd * d2

26 BIGNUM *d1 = BN_new ();

27 BIGNUM *d2 = BN_new ();

28 // remainders

29 BIGNUM *r1 = BN_new ();

30 BIGNUM *r2 = BN_new ();

31
32
33
34 /* Extract two bignums from the input by dividing the input

into two parts ,

35 * using the values of the first byte to choose lengths.

36 */

37 if (len >= 1) {

38 len -= 1;

11

39 l1 = (buf[0] * len) / 255;

40 }

41
42 OPENSSL_assert(BN_bin2bn(buf , l1, b1) == b1);

43 OPENSSL_assert(BN_bin2bn(buf + l1 , len - l1 , b2) == b2);

44
45 // We want the GCD to be nonzero

46 if (! BN_is_zero(b1) && !BN_is_zero(b2)) {

47 BN_gcd(gcd , b1, b2, ctx);

48 BN_div(d1, r1, b1, gcd , ctx);

49 BN_div(d2, r2, b2, gcd , ctx);

50
51 OPENSSL_assert(BN_is_zero(r1));

52 OPENSSL_assert(BN_is_zero(r2));

53
54 BN_gcd(gcd_rel_prime , d1, d2 , ctx);

55 OPENSSL_assert(BN_is_one(gcd_rel_prime));

56 }

57
58 BN_CTX_free(ctx);

59 BN_free(b1);

60 BN_free(b2);

61 BN_free(gcd);

62 BN_free(gcd_rel_prime);

63 BN_free(d1);

64 BN_free(d2);

65 BN_free(r1);

66 BN_free(r2);

67 ERR_clear_error ();

68
69 return 0;

70 }

71
72 void FuzzerCleanup(void)

73 {

74 }

A.3 bnprint.c

1 #include <stdio.h>

2 #include <string.h>

3 #include <openssl/bn.h>

4 #include <openssl/err.h>

5 #include <openssl/dh.h>

6 #include "fuzzer.h"

7
8
9 int FuzzerInitialize(int *argc , char *** argv)

10 {

11 return 1;

12 }

13
14 int FuzzerTestOneInput(const uint8_t *buf , size_t len)

15 {

16 BN_CTX *ctx = BN_CTX_new ();

17 size_t l = 0;

18 BIGNUM *b1 = BN_new ();

12

19 BIGNUM *b2 = BN_new ();

20 BIGNUM *b3 = BN_new ();

21
22 if (len >= 1) {

23 len -= 1;

24 l = (buf[0] * len) / 255;

25 }

26
27 OPENSSL_assert(BN_bin2bn(buf , l, b1) == b1);

28 char* buf2 = BN_bn2hex(b1);

29 char* buf3 = BN_bn2dec(b1);

30 OPENSSL_assert(BN_hex2bn(b2 , buf2) >= 0);

31 OPENSSL_assert(BN_dec2bn(b3 , buf3) >= 0);

32
33 OPENSSL_free(buf2);

34 OPENSSL_free(buf3);

35 BN_free(b1);

36 BN_free(b2);

37 BN_free(b3);

38 BN_CTX_free(ctx);

39 ERR_clear_error ();

40
41 return 0;

42 }

43
44 void FuzzerCleanup(void)

45 {

46 }

13

	Introduction
	Background and Previous Work
	Fuzzing Overview
	Integrating Fuzzers with Targets
	Running Fuzzers
	Sanitizers
	Other Fuzzing Conditions
	libfuzzer
	AFL
	Other Fuzzers
	OSS-Fuzz

	Our Contributions
	Documentation
	Vulnerable Inputs
	Coverage

	Further Work
	Conclusion
	Fuzzer Targets
	dh.c
	gcd.c
	bnprint.c

