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Abstract
Fuzzing is used to find vulnerabilities in applications by sending garbled data as
input and then monitoring the application for crashes. Over the years, this sim-
ple technique has evolved to an advanced testing technique that has been used to
find serious vulnerabilities in a wide range of applications. This thesis sets out to
evaluate two state-of-the-art fuzzers and pinpoint their weaknesses. The thesis also
investigates anti-fuzzing: a technique that masks crashes from fuzzers. By not de-
tecting crashes, fuzzers become useless when it comes to detecting vulnerabilities in
software. The fuzzers are tested against a test suite of security vulnerability chal-
lenges from the DARPA Cyber Grand Challenge and then against the same test
suite when anti-fuzzing capabilities have been incorporated. Our results show that
it is relatively easy to implement and apply anti-fuzzing techniques that are able to
completely mask crashes and, by extension, vulnerabilities from fuzzers.
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1
Introduction

The concept of a fuzzer was invented in the late eighties by Barton Miller as a way
to perform automatic testing of common Unix utilities [1, 2]. As he described the
term: "I wanted a name that would evoke the feeling of random, unstructured data.
After trying out several ideas, I settled on the term fuzz.". Nowadays, fuzzing refers
to the systematic approach of sending garbled input to a target application in order
to record any anomalous behaviour. A conceptual view of the fuzzing process can
be seen in Figure 1.1. A fuzzer will generate data that is consumed by a target
application.

Since its introduction, fuzz testing has grown to be an important tool for dis-
covering security related bugs in software. There exist fuzzers designed to target
specific protocols, such as FTP, and other more general purpose fuzzers that are
not bound to a program or protocol. Many large companies, including Microsoft
and Google, have written their own fuzzers and regularly test their own software
with these fuzzers [3, 4]. However, fuzz testing is not limited to large companies.
Since the fuzzing process can be run for an unlimited time, having access to a large
number of CPU-cores will speed up the process of finding bugs, but that does not
mean that you need a super computer to fuzz a target application or protocol.

One might imagine a small company that releases a new application, but does
not have access to a large number of servers for running the fuzz testing on. This
company could level the playing field by introducing a technique in their application
that makes it harder for fuzzers to target it. They can then fuzz their own software
without the technique applied. This has financial advantages since it allows the

Fuzzer

Data

Target Application

Figure 1.1: Conceptual overview of fuzzing process
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1. Introduction

company to release their product earlier, knowing that any adversaries will have a
hard time finding vulnerabilities through the use of fuzzing. Additionally, such a
technique could reduce the risk of bad publicity due to potential security related
issues in the released software. We call that technique anti-fuzzing.

Anti-fuzzing is a concept that is similar to obfuscation. The target binary is
hardened against fuzzing, but like obfuscation, it is only meant to slow down an
adversary rather than stopping them. The NCC Group has released a white paper
that discusses anti-fuzzing in broad terms and talks about any potential impact it
may have [5], however, we have found no real research on the area.

This thesis consists of two majors parts: an evaluation of fuzzers and an evalu-
ation of anti-fuzzing. To achieve this, the thesis will first, in Chapter 2, cover the
basics of fuzzers and the fuzzing process. Thereafter, in Chapter 3, the evaluation
and comparison of two state-of-the-art fuzzers are made. In Chapters 4 and 5 we
will cover the theory of anti-fuzzing and perform an evaluation of anti-fuzzing by
showing how the fuzzers fare against targets with built in anti-fuzzing capabilities.
Finally, ethical considerations and a conclusion of our work are covered in Chapters 6
and 7, respectively.

1.1 Purpose and Goals

The purpose of this thesis is to raise awareness about issues surrounding fuzzing
and anti-fuzzing. Over the years, fuzzing has become easier to perform and little
knowledge is required to effectively fuzz a target. However, if the user running the
fuzzer is unaware of issues surrounding anti-fuzzing, he or she may take the results
at face-value which may lead to a false sense of security.

The project will consist of two parts: the first part aims to test fuzzing on selected
targets in a normal setup. The second part will consist of developing and evaluating
the anti-fuzzing techniques. The anti-fuzzing will be evaluated by applying the
techniques identified on the selected targets and repeat the fuzz test in the same
way as in part one. The results from part one and two will then be presented and
compared, with respect to the developed anti-fuzzing techniques.

1.2 Scope and Limitations

In order to make our research relevant and not too general, we have introduced a
few limitations on the scope of the thesis. These limitations mainly focus on the
fuzzers and applications selected.

To keep the research worthwhile and interesting, we have chosen to target current
state-of-the-art fuzzers. We also required them to be under active development,
defined as having had an update in the last two years. For the study, we have
chosen to only target publicly available fuzzers. Any non-free commercial fuzzers
will be out of scope. The reasoning behind this is threefold: (1) The source code
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1. Introduction

of the fuzzer is often not publicly available, therefore it is hard to determine and
discuss how they work in an unbiased manner, (2) many commercial products come
with license agreements that dictate how they may be used, and what information
can be released about any results. There may also be restrictions on how many
fuzzing instances that can be run simultaneously, and (3) commercial fuzzers cost
money.

The target applications will be limited to the *nix platform. The *nix plat-
form offers a wide range of open source applications compared to other platforms.
When using a fuzzer such as AFL [6], which relies on injected instrumentation to
work optimally, having access to source code is essential to making a fair compari-
son. Moreover, being able to read the source code allows for easier debugging and
understanding of the targets.

A fuzzer generates input that a target application consumes. A consequence of
this is that any target application must consume some kind of input for fuzzing
to be of any use. A target application may use input in different ways: (1) the
target could be a file format parser, (2) take input via standard input (stdin), or
(3) communicate using an interface, such as a network socket. Network applications
are out of scope for this thesis.
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2
Fuzzing

Evaluating the performance of fuzzers requires theoretical knowledge of the fuzzing
process. This chapter presents the two different categories of fuzzers, describes the
use of seed values, and finally goes into detail about what a fuzzing framework is.

2.1 Fuzzer Categories

A fuzzer is an application that generates input test cases for some target applica-
tion [2, 7]. This can either be done by altering normal, correct inputs or by gener-
ating completely new test cases. A fuzzing framework can then use these generated
test cases to try to induce crashing or deadlock states in the target application [1, 8].

A naive approach to this process is to randomly generate data as fast as possi-
ble. However, testing this data using the target application takes more time than
generating it. For example, starting several thousand processes per second will in-
cur overhead that slows the whole fuzzing process down. This means that, for the
fuzzing process to be effective, it must not generate test cases that are useless and
leads to work being done unnecessarily. Such test cases could be, for example, cases
where the target discards the input outright because it does not pass some validation
algorithm.

Symbolic execution is a software testing technique that is used to trace all pos-
sible executions paths and the input required to reach them [9]. This is essentially
what fuzzing tries to achieve as well, but through the use of trial-and-error. The
reason symbolic execution does not replace fuzz testing is that it is a resource-costly
technique and is currently not feasible for testing large applications, in part due to
the path explosion problem [10]. Concolic execution, a term combined from sym-
bolic and concrete execution, is a technique where instead of only using symbolic
values, an execution is also performed with concrete values in order to increase
performance. Current research on fuzzing has been focused on trying to combine
the strengths of symbolic/concolic execution in order to eradicate the weaknesses of
fuzzers [3, 11, 12, 13, 14].

Unlike static analysis tools, a fuzzer does not need access to the source code
of a target application in order to work. However, access to the source code may
indirectly grant a fuzzing framework observational capabilities. By, for instance,
providing a feedback loop which drives the coverage of the different fuzzed inputs.
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2. Fuzzing

Fuzzing is normally viewed as a penetration testing tool, but can also be used for
finding bugs and crashes that are not security related.

There exist two major categories of fuzzers: generational (sometimes called
grammar-based) and mutational [8]. The two following sections describe these cat-
egories in more detail.

2.1.1 Generational

A generational fuzzer is a fuzzer that instead of mutating existing data, generates
new data based on a template or a grammar specification. By definition, a genera-
tional fuzzer is also considered a smart fuzzer. The term smart fuzzer refers to the
fact that the fuzzer is context aware, and has in-depth knowledge about the target’s
input format and flow.

A generational fuzzer uses a template which defines the structure of the data to be
generated. The goal of a template is to accurately represent the data to be consumed
by the target in order for the fuzzer to generate input. In many cases, applications
use standards, (such as Requests for Comments, RFCs) or custom protocols, which
can be interpreted in order to create templates.

A template is a very detailed depiction of all possible inputs. For example,
in a protocol specification, each possible field is defined along with what type of
data it may contain. The expressiveness of the template is both a strength and a
weakness. Creating a template is a time consuming and precarious process making
it easy to make a mistake. How accurate a template represents the specification
will directly affect the results of the fuzzing. A template that does not comply with
the specification is less likely to achieve a high code coverage since less data will be
valid. Conversely, a high-quality template allows a fuzzer to generate valid data for
complex fields, such as checksums or challenge-response messages.

Even though many of the applications that are fuzzed make use of standardised
protocols or file formats, there does not exist any standardisation of templates. Each
generational fuzzer has a different method of implementing their templates. As a
result of this, templates can not easily be shared between generational fuzzers.

2.1.2 Mutational

A mutational fuzzer is, as the name implies, used on existing data. It takes a seed
value and applies different mutation strategies on it. This yields new mutated seeds
that can be tested against the target application. Depending on different factors, a
seed may be reused for further mutations or be discarded. Note that it is the fuzzing
framework that makes these decisions and not the fuzzer itself, tough in many cases
the framework is built into the fuzzer. These decisions are made in the feedback loop
(see Section 2.3). The feedback loop allows the framework to gain more information
about how the target behaved, based on a certain mutation, and can make a better
decision about whether or not a mutation was successful or not.
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2. Fuzzing

The use of a seed value means that the fuzzer does not need to know anything
about the structure or input requirements of the target. A mutational fuzzer is,
therefore, most often classified as dumb. The negative side of this is that many
mutations are unfruitful because the fuzzer does not know what the target expects.
A successful fuzzer generates or modifies data in such a way that the target will
accept the input, and not outright discard it. For example, consider the application
in Listing 1: a simple program that reads some value from standard input and checks
the given value against a stored magic value. A mutational fuzzer will struggle
with this program since the probability of creating a mutation where the input
corresponds to the magic value is low.

1 #define MAGIC_STR 0xedaeda
2 int main(int argc, char const* argv[]) {
3 char *input = readFromStdin();
4 int inputInt = atoi(input); // Convert string to int
5

6 if(inputInt == MAGIC_STR) {
7 doWork();
8 } else {
9 error("Invalid magic number!");

10 }
11 return 0;
12 }

Listing 1: A simple program that will not do any work unless given a magic number
as input

A feedback-driven fuzzer such as American Fuzzy Lop (AFL) will have more
success with this example, since if one mutation results in the doWork() branch,
AFL will save this test case and do the following mutations based on this test case.
The probability of reaching such a mutation is the same as any other mutational
fuzzer, however, any subsequent mutations will always have a way of reaching the
doWork() branch. To combat the problem of mutational fuzzers getting "stuck",
Stephens et al. [11] propose a modified version of AFL whereby concolic execution
is used to drive the fuzzer to new code compartments. In scenarios where the fuzzer
is stuck in one compartment, a concolic executor takes over and guides AFL to a new
compartment, if applicable. In the example of Listing 1, the concolic executor would
take over from AFL after a certain time where no new paths have been reached. This
produces the magic number that then allows AFL to reach further compartments in
the doWork() function.

2.1.2.1 Strategies

A mutational fuzzer employs several different strategies when mutating seeds. Dif-
ferent fuzzers may employ different strategies, and may perform them in different
ways (e.g. where to apply them). Little research has been performed on the muta-
tional strategies employed by fuzzers and the techniques have mainly derived from
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2. Fuzzing

intuitive reasoning and experiments during development [15]. For example, some
of the strategies have evolved to trigger commonly made programming errors, such
as off-by-one errors or integer overflow. Other strategies, such as the dictionary
strategy, have been developed to overcome some of the limitations of mutational
fuzzers.

Many of the strategies used by different fuzzers today are alike, and can be
summarised into the following categories: bit and byte flips, arithmetic operations,
interesting values, extending, trimming, and dictionary. It is important to note that
depending on the implementation, the strategies may produce different results.

Bit and byte flips One of the most simple and basic strategies. A fuzzer using
this strategy will choose a part of the seed to mutate, and flip one bit or one
whole byte. A single bit flip can, for example, affect the target’s branching in
a considerable way. Boolean values parsed from the input can be represented
by a single bit. Therefore a bit flip can change a true value to a false value.

Arithmetic operations This strategy involves the fuzzer reading, for example, 32
or 64 bits of the data being mutated, parsing it as a number, and then per-
forming arithmetic operations, such as addition, subtraction or multiplication
on it. Afterwards, the number is written back in the same place the fuzzer
read it from. Binary file formats and protocols generally represent numbers
in the same way as programming languages, 8-, 16-, 32- or 64-bits. Perform-
ing arithmetic operations on chunks of the seed may incur subtle bugs the
programmer had not thought to check for.

Interesting values A set of interesting values are defined in the fuzzer and then
used to replace data in the seed. The set of values generally contain extreme
values, such as minimum and maximum values, and values close to zero. Values
may be of different bit lengths and can be formatted in both little and big
endian.

Extending This strategy consists of extending a seed with more data. By allowing
seeds to grow more data will be parsed and the fuzzer will reach deeper within
the application, thus achieving a greater code coverage. In some cases the
target application might not able to handle the excess amount of data, making
it behave in an undefined way. The extending can be made in several ways, for
example randomly generating data which is added to the seed or by duplicating
parts of the seed.

Trimming This strategy involves trimming and removing data from a seed. This
strategy can have multiple benefits. The target application can misbehave
if it expects the seed to be a certain length. Alternatively, if a seed can be
shortened without affecting the behaviour of the target, then the overhead can
be reduced. A smaller seed which still executes the same path in the program
will cause less unnecessary mutations.
Trimming can also be used to find the smallest mutation of the seed that still
causes a crash. By removing excess data there will be less data to analyse
while debugging the cause of the crash.

8



2. Fuzzing

Dictionary To combat the limitations of mutational fuzzing, e.g. magic values
as previously shown in Listing 1, some fuzzers may implement a dictionary
strategy. This strategy borrows some concepts from generational fuzzing in
that the user can specify a dictionary of common word inputs that the target
application takes as input. This could, for example, be protocol keywords such
as "Set-Cookie" or "Username". The dictionary strategy could be very useful
in some scenarios, since the probability of getting "Username" by the use of
the other mutational strategies is low.
The fuzzer will then use the dictionary to add new words or change existing
words. For example, one could fuzz source code with the help of the dictionary.
If the fuzzers sees the word public, it could replace it with protected if both
of those words were defined in the dictionary, which may not be valid source
code in some circumstance. Without the dictionary, those words would hold
no special significance to the fuzzer. In that respect, this strategy is similar
to the interesting values-strategy. This is an effective strategy for overcoming
some of the limitations of mutational fuzzing.

2.2 Seeds

A seed is a user provided value that is used as a starting point for the fuzzing process.
Mutational fuzzers rely more on input seeds than generational fuzzers, but their use
is not limited to one or the other. A set of seeds to be used as input is called input
corpus.

Generational fuzzers can use seeds to set up defaults that should not change. Ex-
amples of this can be username and passwords fields when fuzzing network protocols.
Trying to guess credentials in addition to the normal fuzzing process is obviously
unnecessary.

The results achieved by a mutational fuzzer will heavily depend on the input seed
provided. The chosen seed will directly correlate with the amount of achievable code
coverage. This is due to the fact that the seed may only trigger some functionality
in the target. For example, consider an application that extracts metadata from
different media files, such as JPEG, PNG, WAV, etc. If a PNG image file is used
as a seed to this application, only the parts related to PNG files will be tested.
Different PNG files with different functionality may also trigger different parts of
the code. For example, one image may include transparency while others do not.
This is the reason why the use of multiple unique1 seeds may be advantageous if one
wants to increase code coverage.

A seed should preferably be small. In the case of a mutational fuzzer, the size
of the seed corresponds to how much data the fuzzer has to mutate. If possible,
one should try to minimise the seed to its smallest possible size that does not affect
the functionality it triggers. For example, fuzzing an image with 1920x1080 pixels

1Unique in the sense of the functionality that they trigger in the application.
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2. Fuzzing

will probably take more time than 10x10 pixels, even though the image triggers the
same functionality in the target application, only with a smaller set of image data.

2.3 Fuzzing Framework

A fuzzer is not very useful without a framework (also called harness) that feeds
the fuzzed output as input to a target application and observes its behaviour. The
framework can also extend the fuzzer with different metrics that help the fuzzer
decide if the current mutation or generation is beneficial [2, 6]. What is beneficial
(or not) depends on the framework and what observational power it has, i.e. what
it can learn from the executions of the target. The fuzzing framework can be a
standalone application, or it can be built into the fuzzer itself.

Observational power refers to what the fuzzer can observe of the target appli-
cation during or after execution. On the *nix platform and for locally running
applications, the framework can observe signals sent to the target, such as SIGSEGV,
SIGABRT, or SIGFPE; the (non-zero) return code; and timeouts whose length is spec-
ified in the framework. These are the basic observational powers that all fuzzing
frameworks will have access to.

Signals are used for inter-process communication to notify a process of different
events. The signals can be generated by the process itself, another process, or the
operating system kernel. Upon receiving a signal, the receiving process will be
interrupted by the operating system and its signal handler will be executed. If the
process previously has not defined a custom signal handler the default handler will
be used. Depending on what signal is received and the configuration of the process it
may ignore the signal; use its own signal handler; terminate execution; or terminate
and generate a core dump [16]. An application that terminated due to a received
signal will have a return code equal to the unique signal identification number.

2.3.1 Feedback Loop

A feedback loop allows the framework to make an informed decision if a seed is
useful. A fuzzing framework will monitor the target application in order to discover
if the generated or mutated seed led to a new and previously undiscovered path in
the program. Figure 2.1 visualises this concept, where feedback is provided from
the target application to the fuzzing framework which can then make informed
decisions about the usefulness of the generated or mutated data. Both generational
and mutational fuzzing frameworks make use of feedback loops.

Some fuzzing frameworks allow the user to write custom feedback loops, that
are used alongside the ones built into the framework. This expanded expressiveness
allows the user to provide custom feedback or trigger action(s) when some expected
behaviour in the target application occurs.
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2. Fuzzing

Seed or Template

Fuzzing Framework

Fuzzer

Data

Target Application

Feedback

Figure 2.1: Fuzzing process where a feedback loop is employed

2.3.2 Distributed Fuzzing

The execution speed of a fuzzer is important. Greater computational power enables
faster fuzzing of the target. One way of achieving a higher execution speed is to
distribute the workload. This can be done by running fuzzers on different servers
and syncing the work. The framework can help with this, as well as telling the
fuzzer to divide its technique in order to avoid doing the same work on two different
machines. This obviously depends on the fuzzer used, since some fuzzers use a
stochastic approach while others use a more deterministic approach to the mutations
or generations made.

2.3.3 Crash Identification

Identifying, bucketing, and minimising bugs is a major challenge when fuzzing. Once
an input that causes a crash has been identified, the framework needs to determine
if another input has caused the same crash. It also needs to do bucketing and sort
the crashes depending on what signal caused it. For instance, a SIGABRT is probably
not as interesting as a SIGSEGV.

For each crashing test case, not every bit field is relevant for the crash. It is
possible to try and revert the seed as much as possible towards the original. By
doing this you get the minimal case that still cause the same crash [17]. There also
exist research on other ways of identifying bugs, that for example compares program
state and stack pointers [18, 19]. Many fuzzing frameworks include tools for helping
with these tasks.
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3
Fuzzer Evaluation

This chapter details the evaluation process of the two selected fuzzers, AFL and
Honggfuzz. It presents the criteria for the selection of fuzzers, a detailed analysis
of both fuzzers’ capabilities, the target applications, and lastly the results of the
fuzzing process.

3.1 Criteria

In order to make the fuzzer evaluation interesting and up-to-date we settled on the
following criteria:

1. Open source and publicly available.
2. Mature and up-to-date.
3. State-of-the-art.
4. Target and run on the *nix platform.
5. Include, or have a built-in, fuzzing framework.
6. Have observational powers that takes into account more than the return code

and crashing signal of the target.

3.1.1 Rejected Fuzzers

There exist many different fuzzers, some purpose-built, some more general purpose.
Below are some common and interesting fuzzers listed which were considered but
not included for further study.
Radamsa is a multi-purpose mutation based fuzzer written in Scheme. Radamsa

is a fuzzer, without any built-in framework, that mutates data through stdin.
The data is mutated in a non-deterministic fashion with the option of pro-
viding a seed value to the random function. Due to the fact that Radamsa
does not include a fuzzing framework, the tester will have to take care of
possible error detection and crash handling themselves, but is nevertheless
useful in conjunction with other fuzzing frameworks. Radamsa has been used
to find security-related issues in Mozilla Firefox and Google Chrome, among
others [20].
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Sulley is a generational fuzzer with a built-in framework, written in Python [21] and
mainly targeted towards network protocols. However, Sulley can also target
file-formats and normal file consumer applications. Sulley does not have any
advanced observational powers and one must create a custom template for it
to work properly.

Peach is a generational and mutational fuzzing framework written in Python [22].
It uses so-called "Peach-pits" for template creation, that, while being very
expressive, takes much time to implement correctly. The community version
of Peach have not received an update for a long time and the commercial
version is neither open source nor publicly available.

Zzuf is a mutational fuzzer with limited fuzzing framework capabilities [23]. Zzuf
works by intercepting certain function calls and fuzzing the output that is sent
to the target application. Zzuf does not include any advanced observational
powers.

QuickFuzz is a Haskell-built fuzzer that uses an interesting approach to genera-
tional based fuzzing. Normally generational based fuzzers need someone to
manually specify the template used. What QuickFuzz does instead, is lever-
age Haskell’s type system as a grammar template using libraries from Hack-
age [24]. This approach has the advantage of not having to manually specify
the template, but with the disadvantage of losing expressiveness in the tem-
plate. QuickFuzz does not include any advanced observational powers and is
currently considered experimental.

3.2 American Fuzzy Lop (AFL)

AFL is a deterministic mutation-based fuzzer with an advanced fuzzing framework
built in which uses injected code instrumentation to detect branching in the compiled
binary. If a seed triggers new branches in the target application, AFL considers this
mutation interesting and will add it to the input corpus. This simple approach
means that AFL is very good at testing large portions of the source code. AFL is a
very successful fuzzer (in terms of security related bugs found) and has found bugs
in security critical systems such as OpenSSH and GnuTLS, among others [6].

3.2.1 Instrumentation

Injected instrumentation is a way for AFL to detect the branch coverage for each
test case. This allows it to make decisions about the usefulness of that particular
test case. The instrumentation is code that is injected at each branch point in the
target application. This code updates a memory map that is shared between the
target and AFL with information about the branch taken [15].

AFL’s use of instrumentation means that access to the source code is necessary
and that the target binary has to be compiled with a compiler wrapper. AFL ships
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with a wrapper around the two most common compilers on the UNIX-platform,
GCC and Clang. These wrappers are responsible for injecting the instrumentation
during the assembly phase of the compilation. There also exists a mode for fuzzing
target binaries where the source code is not available. This mode is, however, two
to five times slower than the standard injected instrumentation [25].

At the time of this writing, there exists an experimental LLVM mode for AFL
that uses compiler-level instrumentation instead of the assembly injection that is
normally performed. This allows for features that are intended to greatly speed up
the fuzzing process. One of these features is the deferred initialisation. By inserting
__AFL_INIT() in the source code, AFL’s forkserver is able to clone the process at
that point. This considerably reduces the overhead of creating new processes and
since the code snippet can be placed after the initialisation of expensive resources,
the speed can be increased further. However, care has to be taken when inserting
this snippet since by placing it wrongly, the binary may stop working as intended.

3.2.2 Crash detection

AFL uses a primitive crash detection technique. When the target application is
stopped for some reason, AFL will look at the return code and the signal that
caused the target to stop (if applicable). The crash will be bucketed with respect to
the signal that caused the crash.

In combination with the instrumentation of the target, AFL is able to determine
whether a crash is unique. If the path taken leading up to a crash is unique, the
crash is also labelled as unique. This means that there can be multiple test cases
classified as unique for the same bug. This is intentional since when the bug causing
the crash has been fixed, the crashing test cases can be used for regression testing,
thus testing all paths leading to the (hopefully) fixed bug.

3.3 Honggfuzz

Honggfuzz is a non-deterministic mutation-based fuzzer with a built-in framework
that employs the Linux kernel subsystem Perf in order to determine successful
mutations [26]. It does this by checking the code coverage induced by the seed. On
subsequent mutations, seeds are only added to the input corpus when a new mutation
has a larger coverage than the previous. Honggfuzz’s framework has support for
using an external fuzzer instead of the built-in one.

3.3.1 Crash detection

Process trace (ptrace) is used by Honggfuzz to observe the behaviour of the target
application. Ptrace is a debugging tool that allows a process to inspect and control
the execution of other processes. Ptrace attaches to a target application, referred
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to as a tracee, and allows a tracer, e.g. a fuzzer, to view registers and memory of the
tracee.

When a signal is sent to the tracee, ptrace will stop the execution, thus allowing
the tracer (Honggfuzz) to inspect the target application. Depending on the signal
sent, Honggfuzz can make the decision to either terminate the execution or continue
it. If the target application received a crashing signal (SIGSEGV, SIGABRT, SIGFPE,
etc), Honggfuzz will save the input and bucket it with respect to the current program
counter, the instruction that caused the crash, and the signal received. Information
such as the stack-pointer address is also saved.

3.3.2 The Perf subsystem

Many modern CPUs have dedicated built-in registers that monitor performance fac-
tors, so-called hardware performance counters [27]. Perf is a kernel-based subsystem
performance analysis tool for Linux that provides an interface to these counters [28].
Perf allows for statistical analysis on hardware level components but also software
components. At the hardware level, the performance counters observe events such as
the number of instructions and branches. The number of instructions or branches
executed are useful in fuzzing for determining if the path of execution changed
during two different executions of the target application. Since the counters are
implemented in hardware, the usage of Perf will have a low impact on performance
and is faster than code instrumentation [29].

It is important to note that Perf provides a bird’s-eye view of an execution and
not in-depth knowledge of the path taken within a program and results will vary
to a degree for each execution. Listing 2 provides a simple example how this can
become an issue, the same amount of work will be performed whether the first or
second branch is taken in the program. The statistical measurements will, therefore,
provide the same results for both branches, whilst an instrumented approach could
identify which of the different branches were actually taken during the execution.

1 chance = flipCoin()
2 if chance > 0.5 then
3 // First branch
4 print "A"
5 else
6 // Second branch
7 print "B"
8 exit(0)

Listing 2: Example where Perf cannot distinguish the branch taken during execu-
tion.
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3.4 Target Applications

American Fuzzy Lop and Honggfuzz were tested against a set of applications. We
chose to use a subset of the DARPA Cyber Grand Challenge (CGC) target suite [30].
The suite consists of over 100 programs (called challenges) written in C that takes
input through stdin. The challenges have been specifically designed to test auto-
mated security vulnerability finding tools. Each of the challenges has one or more
vulnerabilities of varying difficulty and type. All vulnerabilities are defined and
described in the documentation of each program. Since the target suite has been
used in the CGC competition, and thus has been extensively tested, it is unlikely to
contain unknown bugs or vulnerabilities.

A custom-made operating system was built for the CGC competition to en-
sure higher reproducibility of bugs and easier implementation of automated testing
tools [31]. The kernel used in the operating system has a reduced set of only 7
system calls. As a side effect, the target suite per default is not POSIX compliant,
and will not work on other platforms without modifying the source code. To en-
able compatibility with the selected fuzzers, and keep changes of the challenges to
a minimum, we built a wrapper that translates the custom system calls to POSIX
standard allowing the target applications to run on a normal Linux system. Fur-
thermore, the platform does not utilise the standard C library (libc), hence, many
standard functions in C are not available and have been reimplemented for each
individual challenge that needs them, by the authors. Due to the use of a global
namespace in C, the CGC reimplemented libc functions were removed and replaced
with the original ones from the standard C library. Examples of this include the
functions strlen(), toupper() and atoi(), etc.

The results of this fuzzer evaluation are used as a baseline for the anti-fuzzing
algorithms tests presented in Chapter 4 and 5.

3.4.1 Cyber Grand Challenges

Due to time restrictions, we choose not to convert all CGC challenges, but instead
focus on the sample set. The sample set consists of 17 challenges that are of different
difficulty and are a good representation of the whole set of challenges.

Some of the challenges were removed from the fuzzer evaluation. The reasoning
for removing the challenges varies, such as them not being applicable on the fuzzers
selected for evaluation or no longer being vulnerable after the change to POSIX
standard.

Below we describe and rate the example targets that we chose to use in our
evaluation of AFL and Honggfuzz. The seeds that were provided to the fuzzers
when performing the tests can be found in Appendix A.1.

We rated each challenge included in the evaluation from easy to hard based on
the difficulty we thought the fuzzers would have to find the exposed vulnerabilities.
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CADET00001

CADET00001 is a palindrome checker. Upon starting the program, the user is
prompted to input a text. The program will then validate if the supplied input is a
valid palindrome. The program will repeatedly query the user for more input until
an EOF is received or the program is terminated.
Vulnerability The program uses a buffer for storing the input provided by the

user, which is 128 bytes long. Therefore, the application is vulnerable to a
stack-based buffer overflow attack if the provided input is larger than 128
bytes.

Difficulty (Easy) A fuzzer would have to produce an input value larger than 128
bytes in order to find the vulnerability. Due to the simplistic nature of this
program, it was rated as being easy.

CADET00003 (Removed)

CADET00003 contains the exact same functionality as CADET00001.
Reason for Removal The majority of the code of CADET00003 is the same code

as CADET00001, with the exception of the name of a single #define. Due to
the fact that it is essentially a duplicate of another challenge it was removed
from the set of targets. Running this challenge would cause duplicate results.

CROMU00007 (Removed)

CROMU00007 is a payroll system in which the user can register employees, their
salaries and working hours. Once information has been registered with the system,
it is possible to make queries on how much employees have earned.
Reason for Removal The crash was not reproducible after the migration from

the CGC platform.

EAGLE00004 (Removed)

EAGLE00004 is a simple calculator-like program with very limited functionality. It
consists of three separate programs which are to be connected through pipes. Pro-
gram one will send information to program two, which in turn will send information
to program three.
Reason for Removal Since the target consists of 3 different programs that use

inter-process communication, they are not applicable on the fuzzers selected
without major modifications to the source code. To keep the result as unbiased
as possible the target was removed.
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EAGLE00005

EAGLE00005 is an interactive hangman game. To be able to play the game the
player must first enter a password, "HANGEMHIGH!", and then select a 4 letter
seed which determines the secret word for the game. The user is then prompted to
enter one letter at a time until he completes the word or runs out of guesses. If the
user completes the game he will be able to enter a name into the list of highscores
otherwise the game will exit.
Vulnerability A stack-based overflow vulnerability is located in the highscore list

functionality. When the user enters his name to the highscore it is possible to
cause a buffer to overflow.

Difficulty (Medium) In many ways EAGLE00005 is similar to CADET00001,
they both contain a simple buffer overflow vulnerability. However, to access
the vulnerability in EAGLE00005, the game must first be completed. The
game itself is not trivial but far from impossible. Therefore, this target was
rated as being of medium difficulty.

KPRCA00001

KPRCA00001 represents a simple protocol. The user must initiate the authentica-
tion process by calling HELLO. The service will respond with a message in the format
OK <code>, where <code> is a randomly generated one-time password of length 8
characters containing both uppercase letters and numbers. This password is then
to be repeated by the user with the command AUTH <code> back to the service in
order to authenticate. Once authenticated the user can set data and issue calls to
different parts of the service.
Vulnerability The program contains a stack-based overflow when calling a specific

command to send data to /root64. To trigger the vulnerability, the user must
do a series of steps: authenticate, set the mode to encode, set data to a string
larger than 64 bytes, and call /root64.

Difficulty (Hard) The program was classified as hard because of the authentica-
tion process. It is improbable for a fuzzer to guess the correct <code>, and
since the <code> is randomly generated for each execution it cannot be pro-
vided by the user as a seed.

KPRCA00003

KPRCA00003 is an image compressor. The service takes a bitmap with the maxi-
mum size of 256x256 pixels as input and outputs a 128KB image.
Vulnerability In order to make the program crash, a bitmap supplied needs to be

close to, but not larger than, 256x256 pixels and requested to be converted
to an encoding quality of near 100%. This will result in the output file being
larger than 128KB and therefore overflowing the output buffer.
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Difficulty (Hard) A fuzzer must first create a valid bitmap and then fit the rest
of the requirements for the program to crash. The combination of creating a
valid bitmap and triggering the vulnerability is difficult to produce and thus,
this target is rated as being hard.

KPRCA00015

KPRCA00015 implements an RFID-protocol for wireless transactions. The program
can for example issue new cards, perform purchases, perform refunds, display card
balance, and display transaction history.
Vulnerability A vulnerability is located in the refund functionality. To issue a

crash the user must first create a card and authenticate himself with that card,
make transactions and finally issue a refund which is vulnerable. To trigger
the vulnerability, (an Untrusted Pointer Dereference1) the reference to the
transaction must adopt certain values that allow it to bypass the verification
process used in the refund command.

Difficulty (Hard) To trigger the vulnerability requires the fuzzer to go through a
series of steps and perform an authentication process. Furthermore, there are
verification and validation processes used within the program that make it even
more difficult and lowers the probability of a fuzzer to reach the vulnerable
code. We estimate the vulnerability to be hard for a fuzzer to trigger.

LUNGE00002

LUNGE00002 provides a lookup service with support for dynamic skip searching,
prefix tree search, and naive compression.
Vulnerability The program contains an out-of-bounds memory corruption vulner-

ability that is triggered when a specially crafted entry is added to the lookup
service and a search is performed. When performing the search the newly
added entry will cause the program to try and locate a delimiter outside its
buffer consequently leading to memory corruption.

Difficulty (Medium) The program takes simple commands, such as ch_sec and
make_sec for changing and making sections. Without proper seeding, it would
be hard for a fuzzer to find these unique strings. However, with the commands
and the delimiter supplied in the seed or through the use of a dictionary a fuzzer
would have an easier time. To make the program crash a fuzzer would have
to use the commands and delimiter combined with random data in a manner
that creates a badly formatted entry and then try to access it.

LUNGE00005 (Removed)

LUNGE00005 consists of 6 small programs, each providing a different functionality;
1https://cwe.mitre.org/data/definitions/822.html
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command and control, contains, does-not-contain, word-count, compression, and
decompression. By connecting the programs and sending information it is possible
to trigger an overflow vulnerability in the decompression program. However, to
achieve this the programs must be run in a certain order and with specific input.
Reason for Removal Since LUNGE00005 makes use of inter-process communica-

tion, it is not applicable to the fuzzers chosen for evaluation.

NRFIN00003 (Removed)

NRFIN00003 is a HTTP-like service that allows for a user to manage his internet
connection. The user may execute a command to upgrade his subscription in order
to get access to the faster speeds. However, to do so the user must have enough
credits to afford it.
Reason for Removal The vulnerability was not reproducible after converting the

application from the CGC platform.

NRFIN00010

NRFIN00010 is a transaction storage and processing environment for RFID card
payments. Within the system, transactions are performed in two or three of the
following steps; Initiation, Authentication, Operation, and Finalisation. The pro-
gram supports functions such as purchases, refunds, displaying listings of transaction
history, balance inquiries and more.
Vulnerability NRFIN00010 contains three null pointer dereference vulnerabilities.

The vulnerabilities are very similar and are caused by transactions not being
atomic. For example, when performing a refund the reference to a purchase
is removed from a transaction during the Operation step. If another com-
mand, e.g. listing of transaction history, is issued before the finalisation step
is performed, a null pointer dereference occur.

Difficulty (Hard) There is a wide range of commands that can be executed in this
program and they require input to be formatted in a specific manner. Gen-
erating the commands for the input would probably be hard and performing
several commands in the correct order even more difficult.

NRFIN00013

NRFIN00013 is a calculator intended to apply mathematical operations on lists of
numbers. The calculator can perform numerous tasks such as evaluate additions,
average, max, min, sort and much more. In order to use the calculator, the user
must first enter a nonce, a randomly generated number only used once, which is
outputted upon starting the program.
Vulnerability The program contains more than 15 vulnerabilities and 6 of them

may result in a crash, such as SIGSEGV, SIGFPE or SIGALRM. Many of the
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vulnerabilities are possible due to improper input validation.
Difficulty (Hard) The use of a nonce in the beginning of this program makes it

hard for a fuzzer to get deep within the program. Bypassing the initial step is
unlikely due to the fact that random values are being generated.

TNETS00002

TNETS00002 is a program that allows a user to have virtual pets. Pets can be
created, deleted and perform simple commands.
Vulnerability TNETS00002 contains a heap-based buffer overflow. If the user

renames a pet after it is created, the new name gets appended to the old one.
If the name is changed several times this will cause a buffer overflow.

Difficulty (Hard) In order to trigger a crash, the fuzzer must first create a pet,
rename it with a long name, several times and then issue a command to the
pet. Each action must also be performed with a sequence number. Due to the
many steps with advanced input this program was rated as hard.

YAN0100001

YAN0100001 is a game similar to Battleship. Each player places their ship and then
take turn to sink the other player’s ship.
Vulnerability When each command is executed it is stored in a 512 byte buffer.

If a command entered is longer than 512 bytes a buffer overflow will occur.
Difficulty (Easy) To find the vulnerability a fuzzer would have to produce a value

large enough to overflow the buffer, therefore, the challenge was rated as easy.

YAN0100002

YAN0100002 is a calculator for the trajectory of a tennis ball. The user is prompted
to input the initial velocity in both X and Y direction, and initial count (when in
time to start to evaluate the position of the ball).
Vulnerability Due to several insecure type conversions and usage of floats, the

program will misbehave under certain conditions. If the initial count is set to
a large value, some evaluations will be performed incorrectly which may lead
to several vulnerabilities, and finally, an out-of-bounds array write. In total
the source code contains three types of vulnerabilities: Incorrect Calculations2,
Incorrect Conversions between Types3 and Out of Bounds Write4.

Difficulty (Medium) For the program to crash several values has to be set. How-
ever, as explained in Section 2.1.2.1, many fuzzers make use of Interesting

2http://cwe.mitre.org/data/definitions/682.html
3http://cwe.mitre.org/data/definitions/681.html
4http://cwe.mitre.org/data/definitions/787.html
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values that are likely to cause crashes, including extreme values. Therefore
increasing the chance of a bug being triggered.

YAN0100003

YAN0100003 is a simple character counter. The program reads a file and then
returns the number of special characters, numbers, spaces, non-printable characters,
lower, and uppercase letters there are in the file.
Vulnerability The program contains an out-of-bounds read because of a 32-bit

unsigned integer operation is made on an 8-bit unsigned integer. If the input
contains a carefully selected number of spaces the usage of the operation may
lead to a segmentation fault due to the adjacent memory being a pointer.

Difficulty (Easy) Like the other targets rated as easy, this one requires the fuzzer
to produce a large amount of data for it to crash. The vulnerability is of a
simple nature, and if the fuzzer manages to produce input with enough spaces
the program will crash.

3.4.2 MediaInfo

A "real-world" program was also selected for testing to achieve a complete view of the
fuzzers’ performance. MediaInfo is a program that displays metadata information
about files supplied to it [32]. This is information such as width and height if an
image is supplied or bitrate, length etc if it is a video. MediaInfo has support for a
large number of different file formats, making it an ideal fuzzer target.

MediaInfo was initially released 2002 and since then it has grown in size to more
than 100 000 lines of codes. The project is mainly built using C++ which may
make it susceptible to several types of attacks. Because of the support for multiple
different file-formats, the parser will inherently be complex, resulting in an enormous
amount of paths that may be taken during execution of the program.

3.5 Evaluation Technique

Ultimately, the goal of a fuzzer is to find vulnerabilities. One way vulnerabilities may
reveal themselves is through crashes. Therefore crashes found with respect to time is
a vital measurement, but factors such as poor crash identification and bucketing may
lead to duplicate bugs which interfere with the accuracy of the result. To ensure an
accurate measurement, the bugs identified were verified crashing and verified unique
to the best of our ability.

Each target was fuzzed for 24 hours with both Honggfuzz and AFL. Honggfuzz
used 16 threads while AFL used 16 processes, each locked to a separate CPU core.
AFL was run in its parallel mode, meaning that the master process was run normally,
whilst the slaves skipped the deterministic steps.
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3.5.1 Testing Platform

All tests were performed on a dedicated server running the latest, at the time of this
writing, long term support server version of Ubuntu, 14.04.04 LTS. The server has
8 cores and 96GiB ram. The full specification of the testing platform can be seen in
Appendix A.2.

3.6 Result

This section details the results of over 900 hours of fuzzing and some 84 000 cumu-
latively reported crashes.

3.6.1 Cyber Grand Challenges

Each target was seeded with suitable data, the full specification of seeds can be seen
in Appendix A.1.

Out of the twelve CGC targets fuzzed, crashes were detected in five of them.
An overview of the targets that exhibited crashes can be seen in Table 3.1. Both
Honggfuzz and AFL managed to find crashes in the challenges CADET00001 and
YAN0100001. These two challenges are very simple buffer overflow attacks, where
large input directly causes a crash. Furthermore, AFL was also able to find crashes
in EAGLE00005, NRFIN00010, and YAN0100003. We rated these challenges as
being of easy to medium difficulty.

An interesting note is that both fuzzers were unable to find any vulnerabilities
in the programs that were rated hard. These programs contained protection mech-
anisms, such as an initial challenge-response step, that mutational fuzzer will have
trouble with. Re-running these targets with a dictionary supplied to the fuzzers
would possibly have improved the probability of finding crashes (We leave this as
possible future work)

We used a wrapper script around Gnu Debugger5, GDB, that when fed a location
of crashing inputs and a target, will compare the stack trace of each crashing input
and prune those that have the same backtrace. The full script can be found in
Appendix A.4. Out of the 83 848 reported crashes by both fuzzers, 11 crashes
were left after running the script. Table 3.2 shows the full results after culling the
crashing inputs. This set of test cases is more suitable for human evaluation in order
to determine, for instance, exploitability.

Figure 3.1 shows crashes reported by Honggfuzz and AFL over a 24 hour period.
We can see that AFL found the majority of all reported crashes within the first
hour, while Honggfuzz continuously reported crashes over the whole 24 hour period.
AFL’s behaviour is consistent with what is specified in the README file: "If a

5https://www.gnu.org/software/gdb/
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Target AFL Honggfuzz
CADET00001 3 3

EAGLE00005 3 7

NRFIN00010 3 7

YAN0100001 3 3

YAN0100003 3 7

KPRCA00001 7 7

KPRCA00003 7 7

KPRCA00015 7 7

NRFIN00003 7 7

NRFIN00013 7 7

TNETS00002 7 7

YAN0100002 7 7

Table 3.1: Table showing which of the targets emitted one or more crashing states
for each of the selected fuzzers.

Target AFL
(Reported)

AFL
(Unique)

Honggfuzz
(Reported)

Honggfuzz
(Unique)

CADET00001 38 757 3 1 229 1
EAGLE00005 40 893 2 - -
NRFIN00010 64 1 - -
YAN0100001 1 092 2 1 685 1
YAN0100003 128 1 - -

Table 3.2: Table showing crashes reported by each fuzzer as well as the number of
crashes after running the crash pruning script from Appendix A.4.
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single bug can be reached in multiple ways, there will be some count inflation early
in the process, but this should quickly taper off." [25].

Figure 3.1: Crashes reported by AFL and Honggfuzz on YAN0100001.

3.6.1.1 Execution speed

Figures 3.2 and 3.3 show the execution speed over time during a portion of the
fuzzing of the target CADET00001. As can be seen, AFL reached an average execu-
tion speed of roughly 48 000 executions per second whilst Honggfuzz only achieved
around 1 100. The exact reason for the big difference in execution speed is uniden-
tified, but several factors could play a role. Honggfuzz uses ptrace which needs to
attach to a process before execution; AFL instruments the code before execution;
and the scalability of the fuzzer when using several cores.

3.6.2 MediaInfo

MediaInfo was fuzzed for 7 days with AFL and Honggfuzz, for a total of 14 days.
The seeds consisted of 24 different file formats, such as JPEG, PNG, OGG, etc. A
full list of the seeds can be seen in Appendix A.2.

3.6.2.1 Execution Speed

The overall executions per second are low for both fuzzers, at around 25 execs/sec.
We tried various solutions for trying to speed up the process, such as deferred
initialisation, stripping symbols in the binary in order to reduce the binary size and
removing all but the essential parts of the source code for the CLI, but it seems
that MediaInfo is just slow and somewhat poorly optimised. The fuzzers are not
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Figure 3.2: Graph showing the number executions per second for AFL on
CADET00001.

AFL
(Reported)

AFL
(Unique)

Honggfuzz
(Reported)

Honggfuzz
(Unique)

9 624 20 8 2

Table 3.3: Table showing how many times AFL and Honggfuzz crashed MediaInfo
as well as how many unique crashes were left after pruning.

the bottleneck with regards to execution speed. In order to fuzz test MediaInfo in
a reasonable amount of time, an execution speed over at least 100 executions per
second would have been preferable.

3.6.2.2 Crashes

The number of crashes reported by AFL and Honggfuzz can be seen in Table 3.3.
It is important to note that the crashes reported by a fuzzer are not unique crashes,
even though the fuzzers have reported so. As discussed in Section 3.2.2 and 3.3.1,
Honggfuzz and AFL have different means of determining unique crashes and there-
fore also different definitions of what a unique crash is.

During the analysis of the generated crashes reported by AFL, it was discov-
ered that AFL had reported several false-positives. The number of false-positives
generated over time can be seen in Figure 3.4. A common factor among these false-
positives was that they all were killed through the SIGABRT signal. Although the
exact cause of these false-positives has not been examined, it is likely that they are
caused due to the artificial limits put on the target application by AFL. Honggfuzz,
on the other hand, did not produce any false-positives.

27



3. Fuzzer Evaluation

Figure 3.3: Graph showing the number executions per second for Honggfuzz on
CADET00001.

3.6.2.3 Resource Utilisation

During the testing of MediaInfo, the limitations of the testing platform was investi-
gated. Figure 3.5 shows the CPU and memory of AFL and Honggfuzz during a 24
hour fuzzing process of MediaInfo. AFL utilised all the power of the CPU whilst
Honggfuzz had an average of 44% CPU used.

It was discovered that Honggfuzz seems to have memory leakage issues. During
the 24 hours of fuzzing Honggfuzz continuously kept increasing its memory usage
and afterwards the memory was not released. These issues was apparent while
fuzzing the other targets as well; the memory was only released upon restarting the
testing platform.
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Figure 3.4: Graph showing the number of false positives generated per hour by
AFL on MediaInfo.

Figure 3.5: Graph showing the CPU and Memory usage of AFL and Honggfuzz
when fuzzing MediaInfo for 24 hours.

29



3. Fuzzer Evaluation

30



4
Anti-Fuzzing

The process of hindering or delaying a fuzzer from effectively fuzzing a specific target
is called Anti-Fuzzing. To date, little to no research has been done on the subject. In
this chapter, the rationale behind anti-fuzzing is explained, the objective outlined,
and the approach we used is detailed.

4.1 Rationale

One could imagine a use case for anti-fuzzing as follows: a company has developed
a new application that they want to release as quickly as possible. This could
mean that they will not have time to perform a proper security evaluation of their
application before release (fuzzing a target could take months in some extreme
cases). The aforementioned company could instead develop and apply an anti-
fuzzing algorithm to their newly released application. This would mean that any
adversaries trying to fuzz the application would be delayed or maybe even completely
hindered. All the while the company is doing internal fuzzing on their application,
without the anti-fuzzing mechanics applied. Consequently, the software company
will have a significant advantage over any external testers.

Anti-fuzzing is possibly a controversial subject. Our rationale for researching
anti-fuzzing is to find possible improvements that can be applied to fuzzers in order
to detect and warn the tester of anomalous behaviour. Another reason is to research
what kind of anti-fuzzing measures which could be applied to a target application,
and how much effort it is, to cripple or slow down state-of-the-art fuzzers.

Finding vulnerabilities in a target application can be a good thing or a bad
thing, depending on who finds them and what their intentions are. Developing an
anti-fuzzing algorithm will hinder testers from fuzzing, no matter their motivations.

4.2 Objective

The objective of an anti-fuzzing technique is to prevent or delay the detection of
crashes. The objective can be achieved by targeting the observational powers of a
fuzzer. Generally speaking, a fuzzer has two types of observational power: crash
detection, the means of detecting when the target crashes; and metrics, the means
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of generating feedback and information to the framework.
Depending on what observational powers a fuzzer has and how they are imple-

mented, different approaches need to be taken in order to fool it. Honggfuzz, for
example, uses the Perf subsystem (described in 3.3.2) as a metric for determining the
number of branches taken in a target, while AFL uses its injected instrumentation
to do more or less the same thing.

4.3 Approaches

A program that has had anti-fuzzing techniques applied should, from a user perspec-
tive, have unchanged behaviour. However, when the same application is run through
a fuzzer, it is allowed to behave differently depending on what techniques has been
applied. The techniques applied can be broken down into two major categories: ac-
tive techniques that modify the behaviour or metrics only when the target is being
actively fuzzed; and, passive techniques that are "always on" and have the same
behaviour regardless of the target application being executed normally or through
a fuzzer.

4.3.1 Active

An active anti-fuzzing technique only applies upon detecting that the target ap-
plication is being fuzzed. While the target is running normally, the anti-fuzzing
techniques lie dormant and unused. An active anti-fuzzing approach works in a
fashion similar to anti-virus software. Each "virus" (fuzzer) needs to be finger-
printed beforehand in order to be detectable. There does not exist any catch-all
solution for detecting all fuzzers. For example, a simple way of implementing an
active anti-fuzzing technique would be to look at all running processes in the system.
If a known fuzzer is running, then the program could assume that it is being fuzzed,
and execute some measure designed to, for example, falsify any metrics that the
fuzzer is subscribing to. This may obviously produce false positives and would be
an unreliable approach.

Considering that the active anti-fuzzing approach requires the target application
to actively detect it is being fuzzed, there will always exist solutions where the de-
tection algorithm is bypassed. In the previous example, where the target application
compared running processes against known fuzzers, the tester can circumvent the
check as easily as renaming the fuzzer process. To counter this, one might imag-
ine that the target application can do a hash of each running process and compare
against a known set of hashes. This approach is obviously extremely costly and not
very scalable since it would require the target to know about each and every version
of all fuzzers it wants to target. Countering this approach is again, very easy. A
minor modification will produce a different (unknown) hash.

A different approach for target applications to detect that they are being fuzzed
is to try to detect signature techniques. A fuzzer may affect the running target
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application in some subtle way that is detectable. For example, in the case of
ptrace, a tracee may be able to detect it is being traced. However, if a fuzzer does
not affect the target application, detection will be more difficult.

Assuming that the fuzzing detection technique is reliable, i.e. will detect all
fuzzers and produce no false-positives, an active anti-fuzzing approach has the ben-
efit of not affecting normal end users. The anti-fuzzing mechanism will only be
activated once fuzzing occurs and thus, from a user perspective, it will still have
the same behaviour. This may also improve the ability for a tester to analyse the
program since it will behave differently when the tester runs the program compared
to when it is being run by the fuzzer.

4.3.2 Passive

A passive anti-fuzzing technique will always be performed. It may target the ob-
servational powers of a fuzzer or aim to lower the performance by reducing the
maximum number of executions per second. As described in section 2.1, a high exe-
cution speed is crucial when fuzzing. From a user perspective, a pause of a fraction
of a second will hardly be noticeable, but for a fuzzer trying to execute a target as
fast as possible the impact of the performance will be significant.

The negative aspect of a passive technique is of course that it will also affect nor-
mal users. For example, if crashes are masked or hidden, then if a user accidentally
triggers a crash the behaviour of the application will be unexpected and possibly
frustrating.

4.4 Anti-Fuzzing Techniques

During our research, we identified four different attack-vectors against fuzzers. Note
that since we only target mutational fuzzers, some of these techniques may differ for
generational fuzzers.
Execution Speed By intentionally decreasing the performance of the target ap-

plication, the fuzzer will not be able to reach a high execution speed. This can
be done by accessing limited resources or making the application heavier, i.e.
utilising more CPU or Memory. This method will only delay finding any po-
tential crashes and not hinder them completely. Given enough time, a fuzzer
will find them.

Masking Crashes The application may also choose to handle crashes internally,
thus not revealing to the fuzzer the fact that it has crashed. This can be
implemented through custom signal handlers.

Detection If the target application is able to detect the fuzzer it can choose to
act differently. A possibility is to simply exit the application directly when a
fuzzer is detected.

The Fuzzing Framework Most advanced fuzzers come with a framework con-
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taining a feedback loop. The feedback is generated from observation of the
target application during or after a fuzzing run. With this in mind, a target
application may use this knowledge to its advantage. For example, a target
application may be designed to exploit limitations of the framework or ma-
nipulate the metrics shown in the user interface, and thus not only fooling
the fuzzer, but also fooling the user of the fuzzer. A target application may
also exploit how the framework behaves in order to starve the computer of
resources. For example, by making each and every generated test case inter-
esting, the whole fuzzing process is slowed down and eventually all available
inodes will be exhausted.

An application may choose to implement one or several anti-fuzzing mechanisms
and combine them in any order to get the desired result. For example, an application
may try to detect fuzzers and only if detected it will reduce the performance of the
application, thus not affecting end users in any way.

To delay the fuzzing process as much as possible it is preferable if the techniques
implemented are difficult to detect. Consider the case where the binary hides all
crashes from the fuzzer, if a fuzz tester does not discover the technique, the whole
fuzzing process will be performed in vain. Each implementation of any anti-fuzzing
technique will leave traces. What side effects a technique has will determine how
easy it is to detect by an adversary. Therefore, to be aware of the toolbox that can
be used by the adversary, such as strace, strings and general process information
from /proc/ is important when implementing the anti-fuzzing techniques.

An alternative approach is to make the binary resistant against reverse engineer-
ing. This forces the adversary to shift focus to trying to defeat the reverse engineer-
ing protection mechanisms or modify the fuzzer so it circumvents the anti-fuzzing
techniques. Either way, this raises the bar for the adversary making it substantially
more difficult to correctly fuzz a target.
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This chapter presents the results and evaluation of our anti-fuzz testing.

5.1 Applicability

Applying an anti-fuzzing technique to a project will require additional source code.
Hiding anti-fuzzing techniques in open-source projects is likely hard, and could easily
be detected and removed. However, in closed source products, it is not possible for
an adversary to do code review and thus anti-fuzzing techniques are more difficult
to detect. For our evaluation, we had access to the source code of all target appli-
cations and could, therefore, gain advantages not available to an adversary. Such
an advantage is the instrumentation mode of AFL which would not be available
without access to the source code.

Utilising anti-fuzzing comes with a risk. If discovered, the techniques might
be countered or removed. Moreover, it may be hard to update the anti-fuzzing
techniques applied to a binary after it is released. Anti-fuzzing is therefore not
suitable as a long-term solution for hiding vulnerabilities and should be viewed as
a stop-gap solution when little time has been available for internal fuzzing of the
product.

5.2 General Approaches

A general approach to anti-fuzzing is to switch out the fuzzer-supplied input to
a known safe input when the application detects it is being fuzzed. A pseudo-
code example of this can be seen in Listing 3. This has the advantage of running
the application normally even when the target is being fuzzed, but without the
possibility of crashing due to the user input. Metrics will be largely unaffected and
from the observer’s perspective, everything will look normal. Of course, always using
the same input will, depending on the fuzzing framework in use, affect metrics. AFL,
for example, will never report any new unique paths reached. Switching the input
to a known safe input will shift the focus of anti-fuzzing from using specific ways
to fool a fuzzer to detecting the fuzzing process. Failing to detect the fuzzer will in
that case effectively disable the anti-fuzzing technique. Instead of finding different
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ways of fooling a fuzzer, this approach only requires the application to detect it is
being fuzzed.

1 int main(argv)
2 if(beingFuzzed?()){
3 // Replace input with a randomly or deterministically selected safe input.
4 input = getSafeInput()
5 } else {
6 input = getInput(argv)
7 }
8

9 return runProgram(input)
10 }

Listing 3: A simple wrapper of a program. Upon detection of a fuzzer any input
will be replaced with a random safe input.

5.3 AFL

AFL uses a fork-server in order to increase performance by not having to make
an excessive amount of execve(...) calls [33]. The fork-server is injected into the
target application by AFL’s compiler and is executed before the main(...) function.
Upon receiving the go-ahead from AFL, the fork server will fork itself: the child will
run the normal target application code; whereas the parent has the responsibility to
send status information to AFL when the child has exited. Upon the termination
of the child process, the fork server will wait for the next go-ahead from AFL and
the cycle will continue.

AFL does not use any advanced crash detection mechanisms, as described in
Section 3.2.2. When the target has exited for some reason and the fork-server has
reported the return values, the value is then used to determine whether a crash has
occurred. If the return code is non-zero, it will use macros defined in libc to decode
more information about what happened to the target. This approach can be seen
in Listing 4. WIFSIGNALED is a macro that will return true if a signal that was not
handled were used to kill the process and WTERMSIG is a macro that will return the
signal identification number of the signal that terminated the process in question.

When the technique for detecting crashes is known it becomes easier to hide
them. Since AFL uses a somewhat primitive technique for detecting crashes, the
technique for masking them becomes somewhat primitive as well. We found two
ways of masking crashes from AFL: the first is for the target application to fork
() and run the actual program in the child. Any signal sent to the child is not
propagated up and detected by AFL; the second technique is to use signal handlers
to intercept interesting signals such as SIGSEGV.
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5.3.1 Masking Signals

The first technique was successful at masking crashes from AFL and since the pro-
gram is executed normally, the metrics are largely unaffected. From the fuzzer’s
perspective, it looks like the program is being fuzzed normally, since it is; the crashes
are just not seen by AFL. However, due to some overhead when forking, executions
per second is somewhat lowered using this method. It also seems that at least some
crashes are interpreted as hangs. This trend is visible in Figure 5.1. The reason
for AFL interpreting some crashes as hangs are unknown, but we theorise that it
is due to AFL having a modest timeout value before considering a test case as a
hang. When a signal is generated and sent to the target application, this process
takes longer than AFL’s defined timeout value.

1 if (WIFSIGNALED(status) && !stop_soon) {
2 kill_signal = WTERMSIG(status);
3 return FAULT_CRASH;
4 }

Listing 4: How AFL detects crashes in target applications

1 int main(int argc, char const* argv[]) {
2 pid_t child = fork();
3 if(child < 0) {
4 printf("Fork failed.\n");
5 return -1;
6 } else if(child == 0) {
7 return realMain(argc, argv);
8 } else {
9 int status;

10 waitpid(child, &status, 0);
11

12 if(WIFEXITED(status)){
13 // If ok exit, return with status.
14 return WEXITSTATUS(status);
15 }
16 // Pretend like everything is okay, exit quietly.
17 return 0;
18 }
19 }

Listing 5: Wrapper of an application, if the target crashed it will replace the return
code with a zero.

The second technique we tried was signal handlers. By catching signals sent to
the process, the target can choose what it wants the fuzzer framework to see. The
process can ignore the signals and exit cleanly upon reception of a crashing signal
or do something else entirely. Only signal 9, SIGKILL cannot be intercepted by a
target application. We tried this method and discovered that some crashes were still
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Figure 5.1: Graph generated by AFL, showing the number of hangs when fuzzing
YAN010001 using AFL with the fork technique applied.

detected by AFL. It turned out that the instrumented code contained a bug that
was sometimes triggered by mutated input from AFL. The issue was specific to one
of the compilers shipped with AFL and switching to another compiler fixed that
issue. Note that these crashing test cases did not crash when used in conjunction
with the non-instrumented binary. The reason why the signal handler was ignored
for the instrumented code is unknown.

The disadvantage of using signal handlers is that it is easy to detect for an
adversary (if they are looking). There exist tools that can print all system calls that
a target application makes. This will print the signal handlers in plain text which
makes it obvious that further investigation is required by an adversary. Another
way is to look in /proc/<pid>/status: this file lists all signals that are ignored,
blocked or handled by the program with PID <pid>.

5.3.2 Active Identification

The instrumentation injected into a target application will have a shared memory
region where branch counts are updated. In order for the target application to be
able to find this shared memory, AFL will communicate its ID number through an
environmental variable. This means that a target application can read this environ-
mental variable and then access the shared memory at run-time. This approach can
also be used for identifying whether the application is being fuzzed by AFL since
it is the responsibility of AFL to setup the shared memory. A proof-of-concept for
actively identifying AFL can be seen in Listing 6.

Since the target application has access to the shared memory, it is theoretically
possible to actively change the path metrics that AFL uses. The target application
can make it seem that more paths have been taken than is actually true, or the
reverse.

5.4 Honggfuzz

As described in Section 3.3.1 Honggfuzz makes use of ptrace to observe the target
application. This enables Honggfuzz to halt the target directly when signals are sent
from the operating system and thus prevent it from hiding signals. The technique
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1 int runningUnderAFL() {
2 char env[13];
3 // Hack for supporting both QEMU and regular instrumented mode
4 snprintf(env, sizeof(env), "%s%s%s", "__AFL", "_SHM", "_ID");
5 char *shm_str = getenv(env);
6 if(shm_str) {
7 int shm_id = atoi(shm_str); // string to int
8 void* shmem = shmat(shm_id, NULL, 0);
9 // Check if we have correctly attached to a shared memory region

10 if(shmem != (void*)-1) {
11 printf("Running in afl-fuzz\n");
12 return 1;
13 }
14 }
15 return 0;
16 }

Listing 6: Proof-of-concept code for active detection of AFL. This code will return
true if running under AFL, else false

where signal handlers are used to mask crashes, as discussed in Section 5.3, will not
work when ptrace is used. In order to mask crashes, a target observed by ptrace
must therefore never cause a signal to be generated in the first place.

To counter Honggfuzz, an active approach was used to detect if ptrace have at-
tached to the target process. As Listing 7 shows, the function ptrace(PTRACE_TRACEME
, ...) allows a target to determine if a process is being traced by ptrace. The
system call is actually used by a tracee to tell a tracer to trace the tracee, but since
ptrace only allows one tracer at any given time, the system call will fail if a process
has already been attached and the conditional statement in line 4 in Listing 7 will
be true. Note that this technique does not identify Honggfuzz per se, but detects
ptrace. This means that any other program that makes use of ptrace will also be
fooled, such as strace.

1 int realMain();
2 int fakeMain();
3 int main(int argc, char const* argv[]) {
4 if(ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
5 // Ptrace have attached to the process, do alternative branching
6 return fakeMain();
7 }
8 return realMain();
9 }

Listing 7: A simple wrapper of a target. Upon detection of ptrace Honggfuzz is
assumed to be in use and the alternative, fakeMain() branch is executed.

The active technique, presented in Listing 7, can be further enhanced by applying
the general technique discussed in 5.2. Instead of using fakeMain(), you could use
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realMain() but with the input switched to a safe variant. This approach would
be advantageous since it would emulate the target application as much as possible
without having to worry about it crashing, thus, any collected metrics would look
legitimate.

5.5 Outcome

Two anti-fuzzing algorithms were implemented in the targets, one for AFL and one
for Honggfuzz. The targets that crashed during the fuzzing evaluation were re-
tested with anti-fuzzing capabilities built-in. For AFL the forking approach was
used despite the knowledge that some crashes were being interpreted as hangs. For
Honggfuzz the active approach presented in Section 5.4 was used.

None of the fuzzers were able to detect any crashes in the targets (see Table 5.1).

Target (with Anti-Fuzzing) AFL Honggfuzz
CADET00001 7 7

EAGLE00005 7 7

NRFIN00010 7 7

YAN0100001 7 7

YAN0100003 7 7

Table 5.1: Table showing which of the targets with anti-fuzzing capabilities emitted
one or more crashing states for each of the selected fuzzers

If we look at other metrics such as paths explored during a normal fuzzing run,
we can see in Figure 5.2 that the number of total paths explored is double that of the
paths explored when fuzzing with anti-fuzzing techniques, as seen in Figure 5.3. The
number is higher during the normal fuzzing run, but for anti-fuzzing it is not so low
as to make an adversary suspicious. We can also see that the pending favourites are
the same in both cases. Pending favourites denote the number of favoured entries
still waiting to be fuzzed [25].

Figure 5.2: Graph generated by AFL, showing the number of paths explored when
fuzzing EAGLE00005 using AFL
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Figure 5.3: Graph generated by AFL, showing the number of paths explored when
fuzzing EAGLE00005 using AFL with anti-fuzzing techniques applied.
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6
Ethical considerations

A major part of this thesis work is about deceiving fuzzers. The ability to make it
more difficult for “outside” parties to find bugs in the application that is employing
the anti-fuzzing techniques. Applying these techniques will not fix the bugs or
vulnerabilities, only make them more difficult to detect when fuzzing. This could,
for example, be useful for a company that has a closed source application and want
to minimise the ability for outsiders to fuzz the application, essentially "security
through obscurity". This has ethical aspects since that same company may want to
hide malicious code that is discoverable through fuzzing or may not want to employ
fuzzing themselves because of time and cost restraints.

An anti-fuzzing technique is not a long-term solution and makes it harder for
white-hats, security researchers with good intentions, to find exploitable bugs in
software. A malicious adversary may find an exploit through fuzzing, or some other
means that good intentioned researchers did not find, thus leaving users vulnerable
for a longer time. Therefore, one should not rely on anti-fuzzing as a security
measurement. However, from a white-hat perspective, it is important to be aware
that anti-fuzzing may be employed to mask bugs.
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7
Conclusion

In the first part of this thesis, we did an evaluation of two state-of-the-art fuzzers:
Honggfuzz and American Fuzzy Lop (AFL). These fuzzers were tested against a
real world application, MediaInfo, and a test suite of programs built for evaluating
automated vulnerability discovering tools. The results show that AFL was able to
outperform Honggfuzz by finding crashes in five target applications in the test suite
while Honggfuzz only found crashes in two of the targets when fuzzing for the same
amount of time. For MediaInfo, AFL was able to detect 20 unique crashes and
Honggfuzz was able to detect two crashes. Even though a vulnerability analysis was
not performed on the crashes discovered, the results show that fuzzing is a valuable
tool for finding bugs and crashes. Any exploitable crashes must be found manually,
but fuzzing makes finding these crashes considerably easier.

For the second part of this thesis, we set out to research the subject of anti-
fuzzing: a concept wherein the target applications applies techniques to prevent a
fuzzer from working effectively. These techniques can be used to slow down the
whole fuzzing process making it too costly, or they can be used for masking or
hiding crashes entirely. Our research shows that it is possible to implement anti-
fuzzing techniques in an application to prevent both AFL and Honggfuzz from find-
ing crashes. Anti-fuzzing can be used to discreetly hide or cover up vulnerabilities
in applications and without awareness of anti-fuzzing a fuzz tester may spend a
considerable amount of time on a fuzzing process that cannot produce any results.

Even though you can do something, does not mean you should. This holds true
for anti-fuzzing techniques since the reason for using it is to hide maliciously added
vulnerabilities or if you suspect there are vulnerabilities and you have not had enough
time to test the software. Anti-fuzzing is security by obscurity since any technique
employed is circumventable and thus is only effective at delaying fuzzing. As soon
as a technique is discovered and bypassed then new techniques must be invented
and a cat and mouse game is created.

7.1 Possible improvements

There are possible improvements that can be made to both Honggfuzz and AFL
that mitigates the techniques we evaluated in Chapter 5, however, many of these
come with negative performance impacts that may be a deal breaker. For example,
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the fuzzing framework could look at which signals are intercepted by a target appli-
cation or it could compare which system calls are executed when the fuzzer runs the
application versus when a user runs it. The latter approach would require manual
work by the user and is perhaps not fool proof, but may allow the fuzzer to warn the
user of potential anti-fuzzing. However, since anti-fuzzing is not a large problem at
the time of writing, we believe that adoption of such methods will be resisted due
to the drawbacks outweighing the potential benefits. One might imagine a fuzzer
implementing anti-anti-fuzzing techniques, then performance would probably take a
hit and in some sense the anti-fuzzing will have worked due to the fuzzers not being
as effective as they could be.
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A
Appendix 1

A.1 CGC Seeds

Target Seed
CADET00001 <newline>
EAGLE00005 HANGEMHIGH!

KPRCA00001 HELLO
AUTH

KPRCA00003 <newline>
KPRCA00015 <newline>
NRFIN00003 <newline>
NRFIN00010 <newline>
NRFIN00013 <newline>

TNETS00002
-1583597902 create cat

-1583597903 create hotdog
-1583597902 name

YAN0100001 <newline>

YAN0100002

0
0
16
c
c
c
p

YAN0100003 <newline>

Table A.1: List of the seeds provided to the CGC Challenges
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A. Appendix 1

A.2 MediaInfo seeds

The following is the list of seeds used when fuzzing MediaInfo. The seeds can be
found in the fuzzdata repository from Mozilla [34].

– 008b8bb75b8a487dc5aac86c9abb06fb.png

– 194531363df5b73f59c4c0517422f917.jpg

– 1.jp2

– 448636.ogv

– 463696.bmp

– 55abb3cc464305dd554171c3d44cb61f.gif

– audio-quad.wav

– barsandtone.flv

– bear_mpeg4asp_mp3.avi

– black100x100-aspect3to2.webm

– bubblewrap.swf

– bunny_oh2.264

– detodos.mp3

– example4.midi

– favicon.ico

– mpeg4-amr_nb.3gp

– pdf.pdf

– romney.zip

– short-cenc.mp4

– Sorenson.mov

– spacestorm-1000Hz-100ms.ogg

– test27.mp2

– test33.mp1

– webp.webp
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A.3 Hardware specification for test bed

Operating System
Operating System Ubuntu 14.04.4 LTS
Kernel Linux 4.2.0-35-generic (x86_64)

CPU 1
Model Intel Xeon E5620
Clock speed 2.4 GHz
Cores 4
Hyper-threading Yes

CPU 2
Model Intel Xeon E5620
Clock speed 2.4 GHz
Cores 4
Hyper-threading Yes

RAM
Memory Type DDR3
Size 98304 MB (12 x 8 GB)
Speed 1066 MHz

Hard drive
Model Western Digital WD5003AZEX
Size 500GB
Rotation Speed 7200 rpm

Table A.2: Specification of the hardware on the testing platform
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A.4 Asan Triage

The following is a script that compares backtraces of a set of crashing inputs. We
also used a slightly modified version of this script when fuzzing the CGC targes
due to them expecting input through stdin. The script require the targets to be
compiled with address sanitizer support for best results. Example invocation: ./
asan-triage.py my_folder_with_crashes "./prog -args @@"

The source code of the script used can be found here:

https://gist.github.com/gaa-cifasis/3d880a85250de2c64b7b/
ce5990e6270339f6949b285e89aeec2c7b1eb685.

IV

https://gist.github.com/gaa-cifasis/3d880a85250de2c64b7b/ce5990e6270339f6949b285e89aeec2c7b1eb685
https://gist.github.com/gaa-cifasis/3d880a85250de2c64b7b/ce5990e6270339f6949b285e89aeec2c7b1eb685

	Introduction
	Purpose and Goals
	Scope and Limitations

	Fuzzing
	Fuzzer Categories
	Generational
	Mutational

	Seeds
	Fuzzing Framework
	Feedback Loop
	Distributed Fuzzing
	Crash Identification


	Fuzzer Evaluation
	Criteria
	Rejected Fuzzers

	American Fuzzy Lop (AFL)
	Instrumentation
	Crash detection

	Honggfuzz
	Crash detection
	The Perf subsystem

	Target Applications
	Cyber Grand Challenges
	MediaInfo

	Evaluation Technique
	Testing Platform

	Result
	Cyber Grand Challenges
	MediaInfo


	Anti-Fuzzing
	Rationale
	Objective
	Approaches
	Active
	Passive

	Anti-Fuzzing Techniques

	Anti-Fuzzing Evaluation
	Applicability
	General Approaches
	AFL
	Masking Signals
	Active Identification

	Honggfuzz
	Outcome

	Ethical considerations
	Conclusion
	Possible improvements

	Appendix 1
	CGC Seeds
	MediaInfo seeds
	Hardware specification for test bed
	Asan Triage


