
Magma: A Ground-Truth Fuzzing Benchmark
Ahmad Hazimeh

EPFL
Mathias Payer

EPFL

ABSTRACT
High scalability and low running costs have made fuzz testing
the de-facto standard for discovering software bugs. Fuzzing tech-
niques are constantly being improved in a race to build the ultimate
bug-finding tool. However, while fuzzing excels at finding bugs,
comparing fuzzer performance is challenging due to the lack of
metrics and benchmarks. Crash count, the most common perfor-
mance metric, is inaccurate due to imperfections in de-duplication
methods and heuristics. Moreover, the lack of a unified set of targets
results in ad hoc evaluations that inhibit fair comparison.

We tackle these problems by developing Magma, a ground-truth
fuzzer evaluation framework enabling uniform evaluations and
comparison. By introducing real bugs into real software, Magma
allows for a realistic evaluation of fuzzers against a broad set of
targets. By instrumenting the injected bugs, Magma also enables
the collection of bug-centric performance metrics independent of
the fuzzer. Magma is an open benchmark consisting of seven tar-
gets that perform a variety of input manipulations and complex
computations, presenting a challenge to state-of-the-art fuzzers.

We evaluate six popular mutation-based grey-box fuzzers (AFL,
AFLFast, AFL++, FairFuzz, MOpt-AFL, and honggfuzz) against
Magma over 26,000 CPU-hours. Based on the number of bugs
reached, triggered, and detected, we draw conclusions about the
fuzzers’ exploration and detection capabilities. This provides insight
into fuzzer comparisons, highlighting the importance of ground
truth in performing more accurate and meaningful evaluations.

1 INTRODUCTION
Fuzz testing [29] is a form of brute-force bug discovery. It is the
process of feeding a system large numbers of generated inputs
in rapid succession, and monitoring the output for faults. It is an
inherently sound but incomplete process (given finite resources) for
finding bugs in software. State-of-the-art fuzzers rely on “crashes”
to mark faulty program behavior. Such crashes are often triggered
by hardware checks, OS signals, or sanitizers to signal a security
policy violation. The existence of a crash is generally symptomatic
of a bug (soundness), but the lack of a crash does not necessarily
mean the program is bug-free (incompleteness). In the context
of software testing, fuzzing has been used to find thousands of
bugs in open-source [2] and commercial off-the-shelf [4, 5, 38]
software. The success of the American Fuzzy Lop (AFL) [55] fuzzer—
the leading coverage-guided grey-box fuzzer—has been hailed by
security professionals and academic researchers alike. AFL has
contributed to finding bugs in over 160 software products [56].

Research on fuzz testing has since been given new life, with
tens of papers detailing new techniques to improve performance
and increase the chance of finding bugs in a reasonable time-
frame [7, 8, 10, 33, 39, 46, 54]. In order to highlight improvements, a

Technical Report, ,
2020.

fuzzer is evaluated against a set of target programs. These target pro-
grams can be sourced from a benchmark suite—such as the Cyber
Grand Challenge [9], LAVA-M [12], the Juliet Test Suite [30], and
Google’s Fuzzer Test Suite [17], oss-fuzz [2], and FuzzBench [16]—
or from a set of real-world programs [34]. Performance metrics—
including coverage profiles, crash counts, and bug counts—are then
collected during the evaluation. Unfortunately, while such metrics
can provide insight into a fuzzer’s performance, they are often
insufficient to compare different fuzzers. Moreover, the lack of a
unified set of target programs makes for unfounded comparisons.

Most fuzzer evaluations consider crash count a reasonable metric
for assessing fuzzer performance. However, crash count is often
inflated [25], even after attempts at de-duplication (e.g., via coverage
profiles or stack hashes), highlighting the need for more accurate
forms of root-cause identification. Moreover, evaluations are often
inconsistent with respect to campaign run times, timeouts, seed files,
and target programs [25], prohibiting cross-paper comparisons.

Thus, to enable precise fuzzer evaluation and comparison, a uni-
fied set of target programs and metrics should be developed and
used as a fuzzing benchmark. The target programs should be realis-
tic and exercise diverse behavior, and the collected metrics should
accurately measure the fuzzer’s ability to achieve its main objective:
finding bugs. To understand the rationale behind fuzzing bench-
mark design, it is important to dissect and classify the evaluated
aspects. A good fuzzing strategy must balance two aspects: program
state exploration and fault detection and reporting.

For example, the LAVA-M [12] test suite aims to evaluate the
effectiveness of the program exploration aspect by injecting bugs in
different execution paths. However, it only injects a single, simple
bug type: an out-of-bounds access triggered by a magic value in
the input. This bug type does not represent the statefulness and
complexity of bugs encountered in real programs. The Cyber Grand
Challenge (CGC) [9] sample set provides a wide variety of bugs,
suitable for testing the fault detection capabilities of a fuzzer, but
the relatively small size and simplicity of these synthetic programs
does not enable thorough evaluation of the fuzzer’s exploration
aspect. BugBench [28] and Google Fuzzer Test Suite (FTS) [17]
both present real programs with real bugs, making them potential
candidates for testing both aspects, but the sparsity of bugs in each
program and the lack of an automatic method for triaging crashes
hinder adoption and make them unsuitable for evaluating fuzzers.
Google FuzzBench [16] is a fuzzer evaluation platform which relies
solely on coverage profiles as a performance metric. The intuition
behind this approach is that fuzzers which exercise larger code
paths are more likely to discover bugs. However, a previous case-
study [25] has shown that there is a weak correlation between
coverage-deduplicated crashes and ground-truth bugs, implying
that higher coverage does not necessarily indicate better fuzzer
effectiveness. Finally, open-source programs and libraries [34] (e.g.,
GNU binutils [13]) are also often used as fuzz targets. However, the
lack of ground-truth knowledge about encountered crashes makes

Technical Report, , Ahmad Hazimeh and Mathias Payer

it difficult to provide an accurate quantitative evaluation, and the
inconsistencies in used versions makes comparisons futile.

Considering the lengthy nature of the fuzzing process (from a few
hours up to several weeks), a benchmark target must also make the
best use of the limited resources by collecting diverse information
about a fuzzer’s performance. This is possible by injecting the target
with a number of bugs large enough to collectmetrics alongmultiple
dimensions, without sacrificing the fuzzer’s performance. Thus, the
cost of running the benchmark is another important concern.

Finally, ground truth is the availability of information that allows
accurate mapping of observed effects back to their root cause. For
crashes and other faults, access to ground truth allows the iden-
tification of the specific bug that caused the observed fault. This
is one of the key reasons behind LAVA-M’s popularity: whenever
an injected bug is triggered, an identifying message is printed to
stdout. This allows crashes to be de-duplicated; multiple crashes
can be mapped back to a single bug, and the fuzzer’s performance
can be measured by the number of bugs it manages to discover.

Based on the previous observations, we distill the following
requirements for an effective fuzzing benchmark:

• Few targets with many bugs;
• Real targets with real bugs;
• Diverse targets to test different exploration aspects; and
• Easy access to ground truth.

Based on these observations, we design Magma, a ground-truth
fuzzer benchmark suite based on real programs with real bugs.
Magma is a set of real-world open-source libraries and applications.
For each target, we manually collect bug reports and inspect the
fix commits. We then re-insert defective code snippets into the
latest version of the code base, along with bug oracles to detect
and report if the bugs are reached or triggered. Here, we present
the rationale behind Magma, the challenges encountered during its
creation, implementation details, and some preliminary results that
show the effectiveness of Magma as a fuzzing benchmark.

In summary, this paper makes the following contributions:
• Derivation of a set of desired benchmark properties that
should exist when evaluating binary fuzzers;

• Design of Magma, a ground-truth binary fuzzing benchmark
suite based on real programs with real instrumented bugs
that satisfy the benchmark properties above;

• Development of an open-source corpus of target programs
to be used in future fuzzer evaluations;

• A proof-of-concept evaluation of our proposed benchmark
suite against six well-known binary fuzzers.

2 BACKGROUND
While in an ideal world, we would have precise specification and
test cases for each project, in reality, the number of tests is small and
the specification lacking. Testing is thus the process of empirically
evaluating code to find flaws in the implementation.

2.1 Fuzz Testing
Fuzz testing is the process by which a target program is evaluated
for flaws by feeding it automatically-generated inputs and concretely
running it on the host system, with the intention of triggering a
fault. The process of input generation often relies both on input

structure and on program structure. Grammar-based fuzzers (e.g.,
Superion [50], Peachfuzz [32], and QuickFuzz [18]) leverage the
specified structure of the input to intelligently craft (parts of) the
input, based on data width and type, and on the relationships be-
tween the different input fields. Mutational fuzzers (e.g., AFL [55],
Angora [10], and MemFuzz [11]) leverage pre-programmed mu-
tation techniques to iteratively modify the input. Orthogonal to
the awareness of input structure, white-box fuzzing [14, 15, 37]
leverages program analysis to infer knowledge about the program
structure. Black-box fuzzing [3, 52] blindly generates inputs and
looks for crashes. Grey-box fuzzing [10, 27, 55] leverages program
instrumentation instead of program analysis to collect runtime
information. Knowledge of the program structure enables guided
input generation in a manner more likely to trigger a crash.

A fuzzing campaign is an instance of the fuzz testing process on a
target, based on a specified set of configuration parameters, such as
seed files, timeouts, and target programs. Fuzzing campaigns output
a set of interesting input files that trigger a crash or some other
security-critical or undesirable behavior (e.g., resource exhaustion).

Fuzzers are thus programs that perform fuzz testing through
fuzzing campaigns. The process of fuzz testing is not constrained
by the provided input configurations, such as seed files and tar-
get programs. Some proposed fuzzing methods pre-process the
provided seeds and select or generate a set of seeds with which
to bootstrap the fuzzing process [40, 49]. Other methods analyze
the provided target programs and modify them or generate new
programs to use as execution drivers for fuzzing the target code-
base [23, 33]. Hence, to maintain generality, a fuzzing benchmark
must not assume a fixed set of seed files, target programs, or other
possible configurations, but should only provide those as starting
points when evaluating a fuzzer.

When designing a fuzzing benchmark, it is essential to consider
different types of fuzzers and their use cases, in order to clearly
define the scope of the benchmark and to permit fair comparisons
between equivalent classes of fuzzers.

2.2 Fuzzer Evaluation
The rapid emergence of new and improved fuzzing techniques
means that fuzzers are constantly compared against one another, in
order to empirically show that the latest fuzzer supersedes previous
state-of-the-art fuzzers. Unfortunately, these evaluations have so
far been ad hoc and haphazard. For example, Klees et al. found that,
of the 32 fuzzer publications that they examined, all lacked some
important aspect in regards to the evidence presented to support
their claims of fuzzer improvement [25]. Notably, their study high-
lights a set of criteria which should be uniformly adopted across
all evaluations. This set of criteria includes: the number of trials
(campaigns), seed selection, trial duration (timeout), performance
metrics (coverage, crashes, or others), and target programs. This
study further demonstrates the need for a ground-truth fuzzing
benchmark suite. Such a suite serves as a solution both for replacing
heuristic performance metrics and for using a unified set of targets.

2.3 Crashes as a Performance Metric
Most, if not all, state-of-the-art fuzzers implement fault detection as
a simple crash listener. If the target program crashes, the operating

Magma: A Ground-Truth Fuzzing Benchmark Technical Report, ,

system informs the fuzzer. A crash, on Linux systems, is a program
termination due to some instruction-level security violation. Divi-
sions by zero and unmapped or unprivileged page accesses are two
examples of architectural security violations.

However, not every bug manifests as an architectural violation:
out-of-bound memory accesses within mapped and accessible page
boundaries, use-after-free, data races, and resource starvation may
not necessarily cause a crash. Fuzzers commonly leverage sanitizers
to increase the likelihood of detecting such faults. A sanitizer in-
struments the target program such that additional run-time checks
are performed (e.g., object bounds, type, validity, ownership) to
ensure that detected faults are reported, similarly terminating the
program with a non-zero exit code. Due to its simplicity, crash
count is the most widely-used performance metric for comparing
fuzzers. However, it has been shown to yield highly-inflated results,
even when combined with de-duplication methods (e.g., coverage
profiles and stack hashes) [25].

A high-level approach to evaluating two fuzzers is to compare
the number of bugs found by each: if fuzzer A finds more bugs
than fuzzer B, then A is superior to B. Unfortunately, there is no
single formal definition for a bug. Defining a bug in its proper
context is best achieved by formally modeling program behavior.
However, modeling programs is a difficult and time-consuming
task. As such, bug detection techniques tend to create a blacklist of
faulty behavior, mislabeling or overlooking some classes of bugs
in the process. This often leads to incomplete detection of bugs
and root-cause misidentification, which results in a duplication of
crashes and an inflation in the performance metrics.

3 DESIRED BENCHMARK PROPERTIES
A benchmark suite is an all-in-one framework which allows for a
representative and fair evaluation of a system under test. It outputs
normalized performance metrics which allow for a comparison be-
tween different systems. To achieve fairness and representativeness,
a benchmark needs to be compatible with all systems under test and
diverse enough to test the features of all systems equally, without
showing bias to one particular feature. A benchmark should also
define its scope, which comprises the set of systems the benchmark
is designed to test.

In the context of fuzz testing, a benchmark should satisfy the
following properties:

Diversity (P1) The benchmark has a wide variety of bugs and
programs to mimic real software testing scenarios.

Accuracy (P2) The benchmark yields consistent metrics that ac-
curately evaluate the fuzzer’s performance.

Usability (P3) The benchmark is accessible and has no significant
barriers for adoption.

3.1 Diversity (P1)
A fuzzing benchmark is a set of targets that are representative
of a larger population. Fuzzers are tools for finding bugs in real
programs; therefore the goal of a benchmark is to test a fuzzer
against features most often encountered in real programs. To this
end, a benchmark must include a diverse set of bugs and programs.
This implies a diversity of bugs with respect to:

Type spatial and temporal memory safety, type confusion, arith-
metic, resource starvation, concurrency;

Distribution “depth”, fan-in (number of paths which execute the
bug), spread (ratio of buggy/total path count);

Complexity number of input bytes involved in triggering a bug,
range of input values which triggers the bug, and transfor-
mations performed on the input.

It also implies the diversity of programs with respect to:

Application domains file and media processing, network proto-
cols, document parsing, cryptography primitives, or data
encoding;

Operations checksum calculations, parsing, indirection, transfor-
mation, state management, or validation;

Input structure binary/text, data grammars, or data size.

Satisfying this diversity property requires having injected bugs
that closely represent real bugs encountered in in-the-wild pro-
duction environments. However, real programs are the only source
of real bugs. Therefore, a benchmark designed to evaluate fuzzers
should include such programs with a large variety of real bugs, thus
ensuring diversity and avoiding bias. Whereas finding real bugs is
desirable, performance metrics based on an unknown set of bugs
(with an unknown distribution) makes it impossible to compare
fuzzers as we neither know how many bugs there are nor how
“easy” they are to trigger. Instead, performance should be measured
on a known set of bugs for which ground truth is available.

3.2 Accuracy (P2)
Existing ground-truth benchmarks do not provide a straightfor-
ward mapping between crashes and their root cause. For example,
the CGC sample set provides crashing test cases for all included
bugs, but it does not provide a method for de-duplicating crashes to
map them back to unique bugs. Similarly, the Google FTS provides
crashing test cases where possible, in addition to a script to triage
crashes and map them back to unique bugs. This is achieved by
parsing the sanitizer’s crash report or by specifying a line of code at
which to terminate the program. However, this approach is limited
and does not allow for the detection of complex bugs—e.g., where
simply executing a line of code is not sufficient to trigger the bug.
In contrast, LAVA-M specifies which bug triggers a crash, but the
fuzzer can only access this information by piping stdout to its
own buffers. Unless a fuzzer is tailored to collect LAVA-M metrics,
it cannot perform real-time monitoring of its progress. Thus, col-
lection of metrics must be done by replaying the test cases in a
post-processing step. Google’s FuzzBench relies solely on coverage
profiles (rather than fault-based metrics) to evaluate and compare
fuzzers. FuzzBench dismisses the need for ground truth, which we
believe sacrificies the significance of the results: more coverage
does not necessarily imply higher effectiveness.

Crash count, the current widely-used performancemetric, suffers
from high variability, double-counting, and inconsistent results
across multiple trials. The ultimate performance metric for a fuzzer
is a measure of unique bugs found. Such a metric enables accurate
evaluation of the fuzzer’s performance and allows for meaningful

Technical Report, , Ahmad Hazimeh and Mathias Payer

comparisons among fuzzers. Thus, leveraging ground truth allows
for accurate mapping between reported crashes and unique bugs.

To this effect, a fuzzing benchmark should provide easy access
to ground truth metrics describing how many bugs the fuzzer can
reach, trigger, and detect.

3.3 Usability (P3)
Fuzzers have evolved from simple black-box random-input gen-
eration to full-fledged data- and control-flow analysis tools. Each
fuzzer might introduce its own instrumentation into a target bi-
nary (e.g., AFL [55]), launch the program in a specific execution
engine (e.g., QSYM [54], Driller [46]), or feed its input through a
specific channel (e.g., libFuzzer [27]). Fuzzers come in many differ-
ent forms, so a benchmark suite designed to evaluate them must
have a portable implementation that does not exclude some class of
fuzzers within the scope of the benchmark. Running a benchmark
should also be a manageable and straightforward process: it should
not require constant user intervention, and it should finish within
a reasonable time frame. The inherent randomness of most fuzzers
increases campaign times, as multiple trials are required to get
statistically-meaningful results.

Some targets within existing ground-truth benchmarks—e.g.,
CGC [9] and Google Fuzzer Test Suite (FTS) [17]—contain multiple
vulnerabilities, so it is not sufficient to only run the fuzzer until the
first crash is encountered. Additionally, these benchmarks do not
specify a method by which crashes are mapped to bugs. Therefore,
the fuzzer must run until all bugs are triggered. The imperfections
of de-duplication techniques mean that it is often not enough to
simply match the number of crashes to the number of bugs. Thus,
additional time must be spent triaging crashes to obtain ground
truth about bugs. Finally, an ideal benchmark suite should also
include a reporting component which collects and aggregates test
results to present to the user.

These requirements make the benchmark usable by fuzzer devel-
opers without introducing insurmountable or impractical barriers.
To achieve this property, a benchmark should thus provide a small
set of targets with a large number of discoverable bugs, and it should
provide a framework which can measure and report fuzzer progress
and performance.

4 MAGMA: APPROACH
To tackle the aforementioned problems, we present Magma, a
ground-truth fuzzing benchmark suite that satisfies the previously-
discussed benchmark properties. Magma is a collection of targets
with widespread use in real-world environments. The initial set of
targets has been carefully selected for their diverse computation
operations and the variety of security-critical bugs that have been
reported throughout their lifetime.

The idea behind Magma is to publish a ground-truth corpus
of targets for uniform fuzzer evaluations. By porting bugs from
previous revisions of real programs to the latest version—hereafter
referred to as forward-porting—we satisfy the bug diversity and
complexity property (P1). Additionally, by inserting minimal in-
strumentation at bug sites, we establish ground-truth knowledge of
bugs—allowing for reproducible evaluations and comparisons—thus
satisfying the accuracy property (P2). Finally, by reducing the steps

and requirements to run the benchmark we fulfill the usability prop-
erty (P3) that permits fuzzer developers to seamlessly integrate the
benchmark into their development cycle.

4.1 Workflow
For each target, we manually inspect bug and vulnerability reports
(CVEs) to assess the type of bug, the proof-of-vulnerability (PoV),
and the corresponding fix patches. Following this, we re-introduce
the bug into the latest version of the code through forward-porting.
We insert minimal source-code instrumentation—coined “canary”—
to collect statistics about a fuzzer’s ability to reach and trigger the
bug. A bug is reached when the faulty line of code is executed,
and triggered when the fault condition is satisfied. Finally, Magma
also ships with a monitoring utility which runs in parallel with the
fuzzer to collect real-time statistics.

We then launch fuzz campaigns, and the monitoring utility col-
lects information about bugs reached and triggered during the
campaign. At the end of a campaign, we evaluate the fuzzer’s find-
ings against the benchmark to determine which bugs the fuzzer
detected: i.e., which bugs the fuzzer could identify as manifesting
faulty behavior. Using the number of bugs reached, triggered, and
detected, as well as timestamps when each such event occurred
for every bug, we obtain a set of invariant metrics that we use to
evaluate fuzzers and enable accurate comparisons among them.

These metrics allow evaluation of the exploration and detection
aspects of a fuzzer. The instrumentation can only yield usable in-
formation when the fuzzer exercises the instrumented code paths,
thus allowing the collection of the reached metric. The data-flow
generated by the fuzzer then registers the triggered metric when it
satisfies the bug trigger conditions. Finally, the fuzzer’s fault detec-
tion techniques flag a bug as a fault or crash, enabling the collection
of the detected metric in a post-processing step.

Magma provides a fatal canariesmode, where, if a canary’s condi-
tion is satisfied, the program is terminated (similar to LAVA-M). As
soon as the condition is satisfied, the canary emits a SIGSEGV signal,
crashing the process. The fuzzer then saves this “crashing input”
in its findings directory for post-processing. Fatal canaries are a
form of ideal sanitization, in which triggering a bug immediately
results in a crash, regardless of the nature of the bug. Fatal canaries
allow developers to evaluate their fuzzers under ideal sanitization
assumptions without incurring extra sanitization overhead. This
mode increases the number of executions during an evaluation,
reducing the cost of evaluating a fuzzer with Magma.

4.2 Reached, Triggered, and Detected
It is important to distinguish between reaching and triggering a bug.
A reached bug refers to a bug whose oracle was called, implying
that the executed path reaches the context of the bug, without
necessarily triggering a fault. A triggered bug, on the other hand,
refers to a bug that was reached, and whose triggering condition was
satisfied, indicating that a fault occurred. Whereas triggering a bug
implies that the program has transitioned into a faulty state, the
symptoms of the fault may not be directly observable at the oracle
injection site. When a bug is triggered, the oracle only indicates
that the conditions for a fault have been satisfied, but this does not
imply that the fault was encountered or detected by the fuzzer.

Magma: A Ground-Truth Fuzzing Benchmark Technical Report, ,

Another distinction is the difference between triggering and de-
tecting a bug. Whereas most security-critical bugs manifest as a
low-level security policy violation for which state-of-the-art sani-
tizers are well-suited—e.g., memory corruption, data races, invalid
arithmetic—some classes of bugs are not easily observable. Resource
exhaustion bugs are often detected after the fault has manifested,
either through a timeout or an out-of-memory indication. Even
more obscure are semantic bugs whose malfunctions cannot be
observed without some specification or reference. Different fuzzing
techniques have been developed to target such evasive bugs, such
as SlowFuzz [36] and NEZHA [35]. Such advancements in fuzzer
technologies could benefit from an evaluation which accounts for
detection rate as another dimension for comparison.

4.3 Boolean Bugs
A software bug is a state transition from a valid state of the pro-
gram to some undefined, but reachable, state [24]. This transition
is only taken when the current state of the program and its inputs
satisfy some boolean condition. The program state is comprised
of variables, memory, and register content, and even the program
counter (PC). As such, the transition condition can be evaluated at
runtime before the state transition is undertaken, given that the
evaluation procedure does not alter the current program state.

Although it is likely infeasible to perform in-line calculation of
the condition without altering the PC, software bugs are rarely, if
ever, dependent on individual values of the PC, but rather on basic
blocks or lines-of-code. This assumption allows us to insert bug
canaries at the source-code level, within the context of the original
bug. Based on information obtained from the bug fix, we formulate
a boolean expression representing the condition for the undefined
transition and evaluate it at runtime as an oracle for identifying
triggered bugs.

In practice, the components of the boolean expressions injected
are often program variables readily available within the scope of the
code block where the bug exists. In rare cases, we insert program
variables to simplify the evaluation of the expression and to avoid
performing redundant calculations.

4.4 Forward-Porting
In contrast to the process of back-porting fixes from newer software
versions to previous releases, we coin the term forward-porting for
re-purposing bugs from previous releases and injecting them into
later versions of the code.

Historical fuzzing benchmarks, like the Google FTS and Bug-
Bench, rely on fixed versions of public code bases with known and
identified bugs. However, this approach restricts the benchmark
to those previous versions with limited sets of bugs. The forward-
porting approach allows the benchmark to use a code base with its
entire history of bugs as a target for evaluating fuzzers.

An alternative approach to forward-porting bugs would be back-
porting canaries. Given a library libfoo with a previous release A
and the latest stable release B, the history of bugs fixed from A to B
can be used to identify the bugs present in A, formulate oracles, and
inject canaries in an old version of libfoo. However, when we use
A as the code base for our target, we could potentially miss some
bugs in the back-porting process. This increases the possibility that

the instrumented version of A has bugs for which no ground-truth
is being collected. In contrast, when we follow the forward-porting
approach, B is used as a code base, ensuring that all known bugs are
fixed, and the bugs we re-introduce will have ground-truth oracles.
It is still possible that with the new fixes and features added to B,
more bugs could have been re-introduced, but the forward-porting
approach allows the benchmark to constantly evolve with each
published bug fix.

One key difference between these two processes is that, while
back-porting builds on top of code that exists both in the latest
and previous versions, forward-porting makes no such assumption.
Future code changes that follow a bug fix could be drastic enough
to make the bug obsolete or its trigger conditions unsatisfiable.
Without verification, forward-porting is thus prone to injecting
bugs which cannot be triggered. To minimize the cost of manually
verifying injected bugs, we leverage fuzzing to generate PoVs by
evaluating them against Magma.Whenever a PoV for a bug is found,
it serves as a witness that the bug is triggerable and we add the bug
to the list of verified bugs which participate in evaluating the per-
formance of other fuzzers. Note that adding triggerable bugs to the
benchmark skews the benchmark towards bugs that can be found
through fuzz testing. This is OK because any newly discovered PoV
will update the benchmark, balancing the distribution fairly.

To forward-port a bug, we first identify, from the reported bug-
fix, which code changes we must revert to re-introduce the flaw.
Bug-fix commits can contain multiple fixes to one or more bugs, so
it is necessary to disambiguate so as not to inadvertently introduce
un-intended bugs into the code. Other bug-fixes may also be spread
over multiple commits, as the original fix might not have covered
all edge cases. Manual effort remains an important aspect of the
forward-porting process and we currently rely on it for the injec-
tion of all bugs in Magma. In a following step, we identify what
program state is involved in evaluating the trigger condition, and
we introduce additional program variables to access that state, if
necessary. Finally, we determine the condition expression which
evaluates the program state and the constraints on it to serve as an
oracle for identifying a triggered bug. We then identify a point in
the program where we inject a canary before the bug can manifest
faulty behavior.

4.5 Benchmark-Tuned Fuzzers
Since Magma is not a dynamically-generated benchmark, there is
a risk of fuzzers over-fitting to its injected bugs. This issue exists
among other performance benchmarks, as the developers of the
systems-under-test tweak their systems to fare better on a specific
benchmark instead of real workloads. One way to counter this is-
sue is to dynamically synthesize the benchmark and ensure the
evaluated system is not aware of the synthesis parameters. This
comes at the risk of generating workloads different from real-world
scenarios, rendering the evaluation biased or incomplete. While
program generation and synthesis is a long-studied topic [6, 19, 23],
it remains hard to scale and the generated programs are often not
faithful to real development styles and patterns. An alternative is to
provide a static benchmark that resembles real workloads, and con-
tinuously update it and introduce new features to evaluate different
aspect of the system. This is the approach followed by Magma,

Technical Report, , Ahmad Hazimeh and Mathias Payer

as well as benchmarks in other domains, such as the widely-used
SPEC benchmark suite [45]. The underlying assumption of these
benchmarks is that if the evaluated system performs well on the
sample workloads provided, then it will perform similarly well on
real workloads, as the benchmark is designed to be representative
of such settings.

Magma’s forward-porting process also allows the targets to be
updated. For every injected bug, we maintain only the code changes
needed to re-introduce the faulty code and in-line instrumentation.
It is then possible to apply updates to the target, which could intro-
duce new bugs or features. This allows us to update Magma as its
targets change and evolve. In case the latest code changes conflict
with an injected bug, the following course of action would be to
either ignore those changes, or to remove the conflicting bug, as it
would become obsolete with later releases of the target.

These measures ensure that Magma remains representative of
real complex targets and suitable for evaluating fuzzers.

5 DESIGN DECISIONS
To maintain the portability and usability of the benchmark, as well
as the integrity and significance of collected performance metrics,
we must address the following challenges.

5.1 Bug Chain

Consider the contrived example in Listing 1.When tmp.len == 0,
the condition for bug 17 on line 10 is not satisfied, and bug 9 is
captured on line 13 and triggered on line 14, resulting in a divide-
by-zero crash. When tmp.len > 16, bug 17 is captured on line
9 and triggered on line 10; tmp.len is overwritten in the struct
by a non-zero value, and bug 9 is not triggered. However, when
tmp.len == 16, bug 17 is triggered, overwriting tmp.len in the
struct with the null terminator and setting its value to 0 (in the case
of a Little-Endian system). This leads to triggering bug 9, despite
the test case not explicitly specifying a zero-length str.

When a fuzzer generates an input that triggers a bug that goes
undetected, and execution continues past the triggered bug, the
program transitions into an undefined state. Any information col-
lected about program state from this point forward is not reliable.

1 void libfoo_baz(char *str) {
2 struct {
3 char buf [16];
4 size_t len;
5 } tmp;
6 tmp.len = strlen(str);
7
8 // possible OOB write in strcpy ()
9 magma_log (17, tmp.len >= sizeof(tmp.buf));
10 strcpy(tmp.buf , str);
11
12 // Possible div -by-zero if tmp.len == 0
13 magma_log(9, tmp.len == 0);
14 int repeat = 64 / tmp.len;
15 int padlen = 64 % tmp.len;
16 }

Listing 1: The bug chain problem can result in execution
traces which do not exist in the context of normal program
behavior.

To address this issue, we allow the fuzzer to run the entire execu-
tion trace, but only collect bug oracle statistics before and until the
first bug is triggered. Oracles are not meant to signify that a bug
has been executed; they only indicate whether the conditions to
execute the bug have been satisfied.

5.2 Leaky Oracles
The introduction of oracles into the targets might interfere with a
fuzzer’s exploration aspect and allow it to over-fit. For example, if
oracles were implemented as if-statements, fuzzers that maximize
branch coverage could detect the oracle’s branch and find an input
to execute it.

Splitting the targets into instrumented and un-instrumented
binaries is one possible solution to leaking oracle information. The
fuzzer’s input would be fed into both binaries, but the fuzzer would
only collect instrumentation it needs from the un-instrumented
(with respect to bug canaries) binary. The instrumented (canary)
binaries collect data from the oracles and report it to an external
crash monitoring utility. This approach, however, introduces other
challenges in regards to duplicating the execution trace between
two binaries (e.g., replicating the environment, piping standard
I/O streams, passing identical launch parameters, and maintaining
synchronization between executions), which can greatly complicate
the implementation and introduce runtime overheads.

Alternatively, we employ always-evaluate memory writes, e.g.,
bugs[b] = (int)condition. Although this approach may intro-
duce memory access patterns that could be detected by taint track-
ing or other data-flow analysis techniques, statistical tests can be
used to infer whether the fuzzer over-fits to the canaries. By running
campaigns again with un-instrumented binaries, we can verify if
the results vary significantly. In Section 6.2, we explore the state-of-
the-art in data-flow-oriented fuzzers and discuss why over-fitting
is currently a non-issue.

5.3 Proofs of Vulnerability
In order to increase confidence in the injected bugs, a proof-of-
vulnerability (PoV) input must be supplied for every bug, to verify
that it can be triggered. The process of manually crafting PoVs,
however, is arduous and requires domain-specific knowledge, both
about the input format and the program or library, potentially
bringing the bug-injection process to a grinding halt.

To tackle this issue, we inject bugs into the targets without first
supplying PoVs, then we launch multiple fuzz campaigns against
the targets and collect inputs that trigger each bug. Bugs which are
not triggered, even after multiple trials, are thenmanually inspected
to verify path reachability and satisfiability of trigger conditions.
When available, we also extract PoVs from public bug reports.

5.4 Unknown Bugs
Using real-world programs, it is highly likely that bugs exist for
which no oracles have been added. A fuzzer might trigger one
of these bugs and detect a fault. Due to the imperfections in de-
duplication techniques, these crashes are not counted as a definite
performance metric, but are instead used to improve the benchmark
itself. By manually studying the execution trace, it is possible to
determine the root cause and add the new bug to the benchmark.

Magma: A Ground-Truth Fuzzing Benchmark Technical Report, ,

5.5 Compatibility
Fuzzers are not limited to a specific execution engine under which
to analyze and explore the target. Some fuzzers (e.g., Driller [46]
and T-Fuzz [33]) leverage symbolic execution (using an engine such
as angr [43]) to explore new paths. This could introduce incon-
sistencies in the environment—depending on how the symbolic
execution engine models it—and incompatibilities with the bench-
mark’s instrumentation.

However, the defining trait of fuzzers, in contrast with other
types of bug-finding tools, is the fact that they execute the target
concretely on the host system. Unlike the CGC which was launched
to evaluate all bug-finding tools, Magma is a fuzzing benchmark,
and is primarily suited for evaluating fuzzers. This includes white-
box fuzzers which perform symbolic execution to guide input gen-
eration, as long as the target is finally executed on the host system,
to allow for collecting instrumentation results. We make the fol-
lowing assumption about the tools evaluated with Magma: fuzzers
must execute the target programs in the context of an OS process,
with unrestricted access to OS’s facilities (system calls, dynamic
libraries, file system). This allows the accompanying monitor to
extract canary statistics using the operating system’s services at
relatively low overhead and low complexity.

6 IMPLEMENTATION
6.1 Bug Injection
In the context of open-source projects, we approximate a bug by the
lines of code affected by a fix in response to a CVE or bug report, and
a boolean expression representing its triggering condition. The fix
commit(s) often patch the code at the first point in the program flow
where enough information is available to determine if the input is
invalid. For every such bug fix, we revert the commit and insert an
oracle that: (1) reports when that line of code is reached, and (2)
reports when the input satisfies the conditions for faulty behavior
(triggers the bug). Unlike LAVA-M, bug trigger conditions need
not necessarily be a check for a magic value in the input: they are
often checks on state variables and transformations of (parts of) the
input, which represents the complexity of real bugs. To demonstrate
such complexity, Listing 2 highlights a bug in libpng where the
row_factor variable—calculated from input values—is used as the
denominator in an integer division, leading to a divide-by-zero
crash under the right conditions. Triggering this bug requires very
specific values for the width, channels, bit depth, and interlaced
input fields to yield a zero row factor through integer overflow.

6.2 Instrumentation
For every injected bug, we add an oracle before the defective line
of code leading to undefined or unexpected behavior. To simplify
the implementation of the benchmark and make it less restrictive,
we inject the instrumentation into the same binaries that are run
by the fuzzer. An injected oracle first evaluates a boolean expres-
sion representing the bug’s triggering condition: this often involves
a binary comparison operator. Compilers (e.g., gcc, clang) gener-
ally translate a value-taken binary comparison operator as a cmp
followed by a set instruction, embedding the calculation directly

1 void png_check_chunk_length(ptr_t png_ptr , uint32_t
length) {

2 size_t row_factor =
3 png_ptr ->width // uint32_t
4 * png_ptr ->channels // uint32_t
5 * (png_ptr ->bit_depth > 8? 2: 1)
6 + 1
7 + (png_ptr ->interlaced? 6: 0);
8
9 if (png_ptr ->height > UINT_32_MAX/row_factor)
10 idat_limit = UINT_31_MAX;
11 }

Listing 2: Divide-by-zero bug in libpng. The input bytes
undergo non-trivial transformations to trigger the bug.

1 void libfoo_bar () {
2 // uint32_t a, b, c;
3 magma_log (42, (a == 0) | (b == 0));
4 // possible divide -by-zero
5 uint32_t x = c / (a * b);
6 }
7 void magma_log(int id, bool condition) {
8 extern struct magma_bug *bugs; // = mmap (...)
9 extern bool faulty; // = false initially
10 bugs[id]. reached += 1 & (faulty ^ 1);
11 bugs[id]. triggered += condition & (faulty ^ 1);
12 faulty = faulty | condition;
13 }

Listing 3: Magma bug instrumentation.

into the execution path. The canary then writes the result of the
evaluation at a fixed location in memory, where Magma’s instru-
mentation is maintained. While this does increase the odds that
data-flow or memory access patterns are recognizable, this is un-
likely given the current state of the art. Notably, MemFuzz [11]
ignores memory accesses where the address does not depend on
program input. Orthogonally, VUzzer [39] instruments cmp instruc-
tions to determine, through dynamic taint tracking, which input
bytes are compared to which values. While this may give VUzzer an
unfair insight into the canaries, it does not yield any results since
the bugs’ trigger conditions are more complex than a simple one-
to-one comparison between an input byte and an immediate value.
Statistical significance tests can still be performed, by comparing
performance against instrumented and un-instrumented binaries,
to determine if a fuzzer has indeed over-fit to the canaries.

Listing 3 shows the canary’s implementation and how an ora-
cle is injected at a bug’s location. We implement the canaries as
always-evaluated memory accesses, as in lines 10 and 11, to re-
duce the chance that coverage-based exploration triggers bugs by
solving constraints on branch conditions or prioritizing undiscov-
ered branches. The faulty flag, on line 12, is set to 1 whenever
the first bug is encountered in an execution. This addresses the
bug chain problem by disabling future canaries to avoid recording
corrupted states. In order to extract canary statistics from the run-
ning programs, we use a memory-mapped file (line 8). An external
monitoring utility then reads that file to extract the data. It is worth
noting that, on Unix systems, a file can also be memory-backed
(e.g., tmpfs), such that access latency is very low, and the overhead
of executing the instrumentation becomes negligible.

Technical Report, , Ahmad Hazimeh and Mathias Payer

Table 1: The targets, driver programs, and bugs incorporated
into Magma. The base versions are the latest at the time of
writing.

Target Drivers Base version File type Bugs

libpng read_fuzzer, readpng 1.6.38 PNG 7
libtiff read_rgba_fuzzer, tiffcp 4.1.0 TIFF 14
libxml2 read_memory_fuzzer, xmllint 2.9.10 XML 19
poppler pdf_fuzzer, pdfimages, pdftoppm 0.88.0 PDF 22
openssl asn1parse, bignum, x509, server, client 3.0.0 Binary Blobs 21
sqlite3 sqlite3_fuzz 3.32.0 SQL Queries 20
php json, exif, unserialize, parser 8.0.0−dev Various 18

To inject an oracle, we insert a call to magma_log() at the bug’s
location, just before the buggy code is executed (line 5). Com-
pound trigger conditions—i.e., those including the logical and and
or operators—often generate implicit branches at compile-time,
due to short-circuit compiler behavior. To mitigate the effects of
leaking ground-truth information through coverage, we provide
custom x86-64 assembly blocks to evaluate the && and || opera-
tors in a single basic block, without short-circuit behavior. In case
the compilation target is not x86-64, we fall back to using C’s bit-
wise operators, & and |, which are more brittle and susceptible to
safety-agnostic compiler passes [44].

6.3 Reporting
Magma also ships with a monitoring utility to collect canary statis-
tics in real time by constantly polling the shared file. This allows
the visualization of the fuzzer’s progress and its evolution over
time, without complicating the instrumentation.

The monitor collects data about reached and triggered canaries,
which mainly evaluate the program exploration aspect of the fuzzer.
To study the fault detection capabilities of the fuzzer, we inspect its
output, in a post-processing step, to identify which bugs it detected.
This is easily done by replaying the crashing test cases produced by
the fuzzer against the benchmark canaries to determine which bugs
were triggered and hence detected. It is also possible that, since the
benchmark’s target programs are not synthetic, there might be new
crashing test cases not corresponding to any injected bug. In such
scenarios, the new bug is triaged and added to the benchmark for
other fuzzers to find.

7 TARGET SELECTION
Fulfilling the diversity property requires including targets from
different application domains, with different input structures, and
which perform a variety of operations and transformations. The
targets should also have a long history of diverse bugs. To that end,
we select the following initial set of targets for inclusion in Magma,
summarized in Table 1 and classified in Table 2.

libpng. A PNG image processing library. It presents a signif-
icant attack surface due to its widespread use in many applica-
tions [41]. CVEDetails.com shows that, among the reported vulner-
abilities, denial of service is the most common, followed by buffer
overflows, and code execution. Libpng relies on structured input
(PNG [21] file format) with several hard checks (ASCII chunk types,
checksums, enum field values). It implements parser mechanics and

Table 2: Evaluated features present in Magma. Fuzzers have
to overcome these challenges in real-world targets.

Magic Values Recursive Parsing Compression Checksums Global State

libpng ✓ ✗ ✓ ✓ ✗

libtiff ✓ ✗ ✓ ✗ ✗

libxml2 ✓ ✓ ✗ ✗ ✗

poppler ✓ ✓ ✓ ✓ ✗

openssl ✓ ✗ ✓ ✓ ✓

sqlite3 ✓ ✓ ✗ ✗ ✓

php ✓ ✓ ✗ ✗ ✗

(de)compression functions, which are common operations often
prone to bugs.

libtiff. A TIFF image processing library. Not unlike libpng, libtiff
is extensively relied on by end-user applications, e.g., media view-
ers [51]. The TIFF [1] file format does not include checksums or
ASCII tag types, but it introduces indirection (offsets into the file
itself) and linked lists of directories. These additions further com-
plicate the implementation of libtiff’s parsers and state machines
and give rise to more complex bugs.

libxml2. AnXML document parsing library. XML [53] is a highly-
structured and human-readable mark-up language. It is used even
more extensively than the first two libraries, mainly as a text-based
data exchange format, and it introduces a very different type of
structured input. CVEDetails.com displays a vulnerability type
distribution for libxml2 similar to the other libraries, but the verbose
human-readable XML format presents new challenges for fuzzers
to generate inputs that could pass any syntax validation checks.

poppler. A PDF document parsing library. PDF [20] is a widely-
used document file format, often with in-browser viewing support.
It is also a very highly-structured file format, which makes it a good
target for fuzzers. Its vast exposure and large attack surface makes
it an ideal target to test against due to its high security impact.

openssl. An SSL/TLS network protocol handler. OpenSSL [31]
introduces new forms of operations, such as cryptographic transfor-
mations, big number arithmetic, and state management, to name a
few. These operations are well-suited for evaluation against realistic
workloads, as they represent a large population of real applications.

sqlite. A SQL database engine. SQL [22] is a powerful language
for querying and managing relational databases. The addition of
sqlite into Magma enhances the benchmark with more complex op-
erations involving the parsing and processing of query statements,
as well as maintaining an in-memory representation of a database.
Custom memory allocators, various data structures, selectors and
filters, and regular expressions are features and components com-
prising the sqlite code base, to name a few.

php. A general-purpose scripting language. PHP [47] is a script-
ing language highly-suited for web development and used by over
75% of public websites [48]. The preprocessor engine incorporates
a parser and intermediate compiler for the PHP code, as well as
an interpreter for the generated byte-code. Programming language
processors present new exploration fields for fuzzers due to the
intricacies of the involved language grammars, making them a
suitable target for characterizing finer-grain fuzzer capabilities.

Magma: A Ground-Truth Fuzzing Benchmark Technical Report, ,

7.1 Injected Bugs
Magma’s forward-porting process relies mostly on human effort.
While we strive to inject as many bugs in the included targets as
possible, resources remain limited until the mainstream adoption
of Magma allows contributions from the community. We list the
121 injected bugs in Table A1.

We do not prioritize one type of bug over another. Instead, we
prioritize more recent bugs, since the code changes are less likely
to be drastic, and the bug more likely to be port-able. Note that a
shot-gun approach at bug injection is not wise: with too many bugs
injected, the fuzzer may spend most of its time replaying crashes
and resetting state instead of exploring more of the program. Addi-
tionally, the more injected bugs there are, the higher the chance of
interaction between them, which could render some bug conditions
unsatisfiable due to the bug chain problem.

7.2 Drivers and Seeds
Whereas a target represents the code base into which we inject
bugs and canaries, a driver is the executable program used for eval-
uating a fuzzer by providing an accessible interface into the target.
FuzzGen [23] and T-Fuzz [33] are two fuzzers that exercise custom
driver programs—either by generating new ones or modifying exist-
ing ones—to achieve more coverage. As more exotic fuzzers emerge,
it is important to consider target programs as another configuration
parameter to fuzz campaigns. Seed files are another such example,
where certain fuzzing techniques opt to generate new seeds [49] or
modify existing seeds [40] to improve fuzzer performance.

As part of Magma, we include driver programs and seed sets
provided by the developers of the fuzz targets. Developers have the
required domain knowledge towrite driver programs representative
of real applications that use these targets and exercise high coverage.
This intuition is inspired by Google’s OSS-Fuzz project [2] which
includes a large set of real targets and execution drivers written by
experts in their domains.

8 EXPERIMENTS AND RESULTS
8.1 Methodology
In order to establish the versatility of our metrics and benchmark
suite, we evaluated several fuzzers. We chose a set of sixmutational
grey-box fuzzer fuzzers whose source code was available, namely:
AFL, AFLFast, AFL++, FairFuzz, MOpt-AFL, and honggfuzz.

For each fuzzer/target combination, we launched ten identi-
cal fuzzing campaigns, using seed files included in the Magma
source package, and monitored their progress for 24 hours. In total,
this amounted to 26,000 CPU-hours of fuzzing. We configured the
Magma monitoring utility to poll canary information every five
seconds.

Since all evaluated fuzzers implement fault detection as a simple
crash or hang listener, it is possible to leverage the fatal canaries
mode to evaluate the two fuzzer aspects individually: (1) program
exploration; and (2) fault detection. To determine which bugs are
reached and triggered, we compiled and fuzzed the Magma binaries
with fatal canaries.

To determine which bugs are detected by the fuzzers’ crash lis-
teners, we recompiled the benchmark binaries with sanitization

to produce hardened binaries. We then execute the hardened bi-
naries with the crashing test cases reported by the fuzzers in the
first phase; if the target hangs or exceeds its memory limit, or if
the sanitizers report a crash, then the fuzzer can detect it. The de-
fault timeout for a hanging input is 50 milliseconds, and the default
memory limit is 50 MiB—the same as AFL’s defaults. We used Ad-
dressSanitizer [42] for fault detection. While sanitization incurs a
performance overhead that affects execution speeds and timeouts,
and thus the fuzzer’s ability to detect some faults, we choose the
minimum default thresholds. This ensures that, in the worst case,
the evaluation does not undermine the fuzzer’s capabilities. Instead,
it assumes the fuzzer is configured with strict fault detection param-
eters and can thus flag more bugs as detected. Although this may
introduce false-positive detections in the post-processing step—i.e.,
we flag a bug as detected, whereas in fact the fuzzer might not have
detected it—it skews results in favor of the evaluated fuzzers as
they detect more bugs. On one hand, this method of evaluation
measures the capabilities of sanitizers to detect violations. On the
other hand, it highlights what bugs fuzzers can realistically detect
when fuzzing without ground truth.

Using fatal canaries to evaluate reached and triggered bugs is only
applicable to fuzzers whose fault detection relies solely on hangs or
crashes; if a fuzzer implements a different method for identifying
erroneous states (e.g., semantic bug-finding tools à la NEZHA [35]),
then their method must be used when evaluating the fuzzer’s fault
detection capability. It is important not to introduce bias into the
evaluation: if a fuzzer like NEZHA is compared against one like
AFL, then AFL-fuzzed targets must not be compiled with fatal
canaries. This is because fatal canaries stop the target’s execution
prematurely upon finding a bug, thus potentially providing AFL
with an unfair performance advantage. Benchmark parameters
must be identical for all evaluated fuzzers to ensure fairness.

In our evaluation of the six fuzzers, all experiments were run
on three machines, each with an Intel® Xeon® Gold 5218 CPU and
64 GB of RAM, running Ubuntu 18.04 LTS 64-bit. The targets were
compiled for x86-64.

8.2 Expected Time-to-Bug
Tomeasure fuzzer performance, we record the time it needs to reach
and to trigger a bug, across ten identical runs. The intuition behind
this metric is that, in practice, compute resources are limited, and
fuzz campaigns are consequently run for a specific duration before
being reset (due to diminishing returns). As such, the faster a fuzzer
can find a bug, the better its performance.

Due to the highly-stochastic nature of fuzzing, performance
can vary widely between identical runs. It is even possible that
a fuzzer occasionally fails to find some bugs within the alloted
time, leading to missing measurements. Therefore, it is invalid
to measure the fuzzer’s performance based only on its recorded
measurements. Instead, missing measurements must factor into the
fuzzer’s performance with respect to a particular bug.

Consider a fuzzer whose performance is evaluated against a
target for finding a bug. The fuzz campaign runs for a fixed duration,
T . The campaign is repeated N times, to account for the effects of
randomness. InM out of the N times, the fuzzer manages to find

Technical Report, , Ahmad Hazimeh and Mathias Payer

Table 3: The mean number of bugs found by each fuzzer
across ten campaigns. The standard deviation is also given.
The best performing fuzzer(s) (per target) is highlighted in
green.

Target honggfuzz afl moptafl aflfast afl++ fairfuzz

libpng 3.6 ± 0.52 1.6 ± 0.70 1.0 ± 0.00 1.3 ± 0.48 1.2 ± 0.42 1.5 ± 0.53
libtiff 4.7 ± 0.67 4.8 ± 0.42 4.4 ± 0.52 4.2 ± 0.42 3.4 ± 0.52 4.8 ± 1.23
libxml2 5.0 ± 0.47 2.9 ± 0.32 3.0 ± 0.00 3.0 ± 0.00 3.0 ± 0.00 2.6 ± 0.52
openssl 2.8 ± 0.63 2.9 ± 0.57 3.0 ± 0.00 2.6 ± 0.52 3.0 ± 0.67 2.0 ± 0.47
php 2.8 ± 0.42 3.0 ± 0.00 3.0 ± 0.00 3.0 ± 0.00 3.0 ± 0.00 1.6 ± 0.70
poppler 3.8 ± 0.92 3.0 ± 0.00 3.0 ± 0.00 3.0 ± 0.00 3.0 ± 0.00 2.9 ± 0.32
sqlite3 3.2 ± 0.63 0.8 ± 0.92 1.2 ± 1.14 1.2 ± 0.79 1.6 ± 0.84 1.5 ± 0.53

the bug and produces a time-to-bug measure, ti , where 1 ≤ i ≤ M .
In the remaining N −M runs, no measurement is recorded.

We model the time-to-bug as a random variable X with an Expo-
nential distribution, Exp(λ), where λ > 0 is the rate parameter of the
distribution. The expected value E(X) = 1

λ specifies the expected
time it takes the fuzzer to find the bug. The exponential distribution
is typically used to measure waiting time between independent
events in a Poisson point process. It has the memoryless property,
which states that the waiting time until an event does not depend
on howmuch time had already elapsed. This model fits the behavior
of black-box fuzzers, where fuzzer performance does not depend
on any accumulated state since the start of a campaign. Although
coverage-guided fuzzers, including those we evaluated, maintain
and build up state throughout each run, we use this model as an
over-approximation for expected time-to-bug values.

Let {ti }Mi=1 be the recorded time-to-bug values when the fuzzer
manages to find the bug within the allotted time T . Using the least-
squares method, we fit an exponential distribution over the results
of each identical set of campaigns by minimizing the cost function:

L(λ̂) =
M∑
i=1

(ti −
1
λ̂
)2+(N−M)(

T

λt
−

1
λ̂
)2, where λt = ln(

N

N −M
)

λt
T is the rate parameter of an exponential distribution whose

cumulative density until the cut-off (area under curve for X ≤ T)
is equal to M

N , which represents the fraction of times the fuzzer
managed to find the bug within the duration T .

This allows us to find an approximate of λ, namely λ̂. We are
interested in calculating E(X), the expected time-to-bug, which can
be expressed as:

E(X) :=
1
λ̂
=

M × t̄ + (N −M) × T
λt

N

where t̄ is the arithmetic mean of the recorded measurements.
While this measure may not be exact, it provides intuition about

the expected fuzzer performance for each bug, and insight into the
complexity of different bugs found across all campaigns.

8.3 Analysis of Results
Table 3, Figure 1, and Table 4 present the results of our fuzzing
campaigns. We refer to Table A2 and Table A3 for additional results.

Table 4: Expected time-to-trigger-bug for each fuzzer, in
seconds, minutes, or hours. Shaded cells indicate that the
bug was never detected by the fuzzer, while a “−” indicates
that the event was never encountered throughout the evalu-
ation. TheAggregate column gives the expected time-to-bug
across all campaigns by all fuzzers for that bug. This is used
as a metric to sort bugs by “difficulty”.

Bug ID hfuzz afl moptafl aflfast afl++ fairfuzz Aggregate

AAH003 11s 10s 10s 10s 10s 10s 10s
AAH037 10s 15s 16s 15s 38s 15s 18s
AAH041 10s 15s 16s 15s 38s 15s 18s
JCH207 1m 2m 2m 1m 1m 1m 1m
AAH056 14m 13m 11m 11m 10m 8m 11m
AAH015 14s 34m 30m 10m 42m 10m 21m
MAE016 10s 3m 4m 4m 5m 2h 25m
AAH032 2m 1h 26m 34m 36m 10h 1h
AAH020 2h 2h 2h 55m 2h 49m 1h
AAH055 2m 25m 4h 2h 1h 4h 1h
MAE008 7h 1m 1m 1m 1m 17h 2h
MAE014 4h 5m 8m 8m 9m 205h 2h
AAH052 14m 3h 2h 9h 2m 13h 4h
AAH022 34m 7h 4h 4h 4h 12h 5h
JCH215 40m 20h 9h 10h 7h 8h 7h
AAH017 205h 19h 12h 9h 88h 5h 13h
JCH201 − 16h 12h 12h 14h 14h 14h
JCH232 1h 86h 48h 22h 30h 8h 17h
MAE115 34h 19h 18h 53h 16h 205h 22h
AAH008 3h 24h − 49h 89h 20h 29h
AAH014 − 4h 47h − − 23h 58h
AAH007 57s − − − − − 109h
AAH045 1h − − − − − 109h
AAH013 4h − − − − − 110h
AAH026 6h − − − − − 110h
JCH226 9h − − − − − 126h
AAH024 7h − − − − − 146h
JCH228 50h 206h 86h − 87h − 146h
AAH010 17h − − − − 88h 146h
AAH001 18h 206h − − − − 172h
MAE104 − 205h − 47h 86h − 205h
AAH016 − − − 86h − 86h 324h
AAH053 35h − − − − − 325h
AAH009 − − 205h − 87h − 444h
JCH212 52h − − − − − 445h
AAH050 90h − − − − − 685h
AAH025 205h − − − − − 1404h
AAH048 206h − − − − − 1404h

8.3.1 Bug Count and Statistical Significance. Table 3 shows the
mean number of bugs found per fuzzer (across ten 24 hour cam-
paigns). These values are susceptible to outliers, limiting the con-
clusions that we can draw about fuzzer performance. We therefore
conducted a statistical significance analysis of the collected sample-
set pairs to calculate p-values using the Mann-Whitney U-test. P-
values provide a measure of how different a pair of sample sets are,
and how significant these differences are. Because our results are
collected from independent populations (i.e., different fuzzers), we
make no assumptions about their distributions. Hence, we apply the
Mann-Whitney U-test to measure statistical significance. Figure 1
shows the results of this analysis.

The test shows that AFL, AFLFast, AFL++, and MOpt-AFL per-
formed similarly against most targets, despite some minor differ-
ences in mean bug counts shown in Table 3. The calculated p-values
show that, in most cases, those small fluctuations in mean bug

Magma: A Ground-Truth Fuzzing Benchmark Technical Report, ,

Figure 1: Significance of evaluations of fuzzer pairs using p-values from the Mann-Whitney U-Test. We use p < 0.05 as a
threshold for significance. Values greater than the threshold are shaded red. Darker shading indicates a lower p-value, or
higher statistical significance. White cells indicate that the pair of sample sets are identical.

counts are not significant, and the results are thus not sufficiently
conclusive. One oddity is the performance of AFL++ against libtiff.
Table 3 reveals an overall lower mean bug count for AFL++ com-
pared to all other fuzzers, and Figure 1 shows that this difference is
significant. While Table 4 shows that AFL++ triggered five libtiff
bugs across the ten campaigns, its performance was inconsistent,
resulting in a low mean bug count.We therefore conclude that the
performance of all AFL-based fuzzers with default configurations
against Magma is, to a large degree, equivalent.

FairFuzz [26] also displayed significant performance regression
against libxml2, openssl, and php. Despite the evaluation of FairFuzz
in the original paper showing that it achieved the highest coverage
against xmllint, that improvement was not reflected in our results.

Finally, honggfuzz performed significantly better than all other
fuzzers in four out of seven targets, possibly owing to its wrapping
of memory-comparison functions.

8.3.2 Time-to-bug. A summary of individual bugs is presented in
Table 4. Of the 46 verified Magma bugs, the evaluated fuzzers trig-
gered 38 in total, and no single fuzzer triggered more than 33 bugs.
The bugs in Table 4 are presented in increasing discovery difficulty,
where expected time-to-bug ranges from seconds to hundreds of
hours. This suggests that the evaluated set of fuzzers still have a
long way to go in improving program exploration.

We argue to dismiss time-to-bug measurements as “flukes” of
randomness if the ratio M

N is small (e.g., if the bug is only found once
across ten campaigns). The expected time-to-bug metric converges
towards T × N for large N . For N = 10, this value is 207 hours,
which explains the recurrence of 205 and 206 hour values in Table 4;
such bugs were only found by chance, not because of the fuzzer’s
capabilities.

Table 4 highlights a common set of “simple” bugs which all
fuzzers find consistently within 24 hours. These bugs serve as a
baseline for detecting performance regression: if a new fuzzer fails
to discover these bugs, then its policy or implementation should be
revisited.

Again, it is clear that honggfuzz outperforms all other fuzzers,
finding 11 additional bugs not triggered by other fuzzers. In addition
to its finer-grained instrumentation, honggfuzz natively supports
persistent fuzzing. Our experiments showed that honggfuzz’s exe-
cution rate was at least three times higher than that of AFL-based
fuzzers using persistent drivers. This undoubtedly contributed to
honggfuzz’s strong performance.

Table A3 presents the results of evaluating these fuzzers for
seven days against a subset of the bugs in Magma, displaying a
similar pattern.

8.3.3 Seed Coverage. Our evaluation used seeds provided by the
developers of the Magma targets. These seeds may exercise differ-
ent code paths that intersect with Magma’s injected bugs, making
it easier for coverage-guided fuzzers to find and trigger these bugs.
Although we do not use a specific seed selection policy, we provide
the same set of seeds across all campaigns to allow for fair eval-
uations. This is evident in our results, as all seed-coverage bugs
are “reached” by the fuzzers around the same time (see Table A2).
Most bugs not included in seed coverage show significantly increas-
ing time-to-bug measurements, which highlight different fuzzer
specialties and begin to show performance improvements brought
upon by the evaluated fuzzers.

8.3.4 Achilles’ Heel of Mutational Fuzzing. Bug AAH001 (CVE-
2018-13785, shown in Listing 2), is a divide-by-zero bug in libpng.
It is triggered when the input is a non-interlaced 8-bit RGB image,
whose width is exactly 0x55555555. This “magic value” is not en-
coded anywhere in the target, and is easily calculated by solving the
constraints for row_factor == 0. However, random mutational
fuzzing struggles to discover these types of bugs. This is because the
fuzzer has a large input space from which to sample from, making
it unlikely to pick the exact byte sequence (here, 0x55555555). This
manifests in our results as a high expected time-to-bug: the only
fuzzer to trigger this bug was AFL, and it was only able to do so
once (in ten trials).

8.3.5 Magic Value Identification. AAH007 is a dangling pointer
bug in libpng, and illustrates how some fuzzer features improve
bug-finding ability. To trigger this bug, it is sufficient for a fuzzer to
provide a valid input with an eXIF chunk (which is then not marked
for release upon object destruction, leading to the dangling pointer).
Unlike the AFL-based fuzzers, honggfuzz is able to consistently
trigger this bug relatively early in each campaign. We posit that
this is due to honggfuzz replacing the strcmp function with an
instrumented wrapper that incrementally satisfies string magic-
value checks.

8.3.6 Semantic Bug Detection. AAH003 (CVE-2015-8472) is a data
inconsistency in libpng’s API, where two references to the same
piece of information (color-map size) can yield different values.
Such a semantic bug does not produce observable behavior that

Technical Report, , Ahmad Hazimeh and Mathias Payer

violates a known security policy, and it cannot be detected by state-
of-the-art sanitizers without a specification of expected behavior.
This is evident in our results, as all fuzzers manage to reach this bug
very early in each campaign, but it consistently remains undetected.

Semantic bugs are not always be benign. Privilege-escalation and
command injection are two of the most security-critical logic bugs
that are still found in modern systems, but they remain difficult
to detect with standard sanitization techniques. This observation
highlights the shortcomings of current fault detection mechanisms
and the need for more fault-oriented bug-finding techniques (e.g.,
NEZHA [35]).

8.4 Discussion
8.4.1 Existing Benchmarks. Magma allows us to make precise mea-
surements for our selected performance metric: time-to-bug. This
enables accurate comparisons between fuzzers across several di-
mensions: bugs reached, triggered, and detected. Previous work on
ground-truth benchmarks, namely LAVA-M, yields only a boolean
result for each injected bug: triggered or not triggered. Inference of
time-to-bug is not straightforward, as it relies on querying the file
system for the creation date of the crashing test cases—a feature
not necessary supported by all file systems. LAVA-M also provides
no measure for bugs reached, and it treats all triggered bugs as
crashes. It is thus not suitable to evaluate a fuzzer’s fault detection
abilities. Google’s FuzzBench [16] only measures edges covered as
a performance metric, dismissing fault-based metrics such as crash
counts or bug counts. Edge coverage, however, is an approximation
of control-flow path coverage, and relying on it as the only metric
for performance could result in biased evaluations, as our results
highlighted for FairFuzz.

8.4.2 Ground Truth and Confidence. Ground truth enables us to
map a fault to its root cause and facilitates accurate crash de-
duplication. Source code canaries and our monitor simplify access
to ground truth information. In this sense, Magma provides ground-
truth knowledge for the 121 injected bugs. Orthogonally, a bug’s
PoV is a witness that it can be triggered. If a fuzzer does not trigger
a bug with an existing PoV then we can state that this fuzzer fails to
trigger that bug; we cannot give conclusions for bugs where no PoV
exists. Of the 121 bugs, 46 have known PoVs which are included
in Magma; only these bugs can be accounted for in measuring a
fuzzer’s performance with high confidence. Bugs without a PoV
may still be useful: any fuzzer evaluated against Magma could find a
PoV, increasing the benchmark’s utility in the process. Adoption of
the benchmark will reduce the number of bugs without witnesses.

8.4.3 Beyond Crashes. Although Magma’s instrumentation does
not collect information about detected bugs—simply because de-
tection is a characteristic function of the fuzzer and not the bug
itself—Magma enables the measurement of this metric through a
post-processing step, supported by the fatal canaries mode where
applicable. Bugs are not restricted to crash-triggering faults. Some
bugs result in resource starvation (out-of-control loops or mallocs,
worst-case execution), privilege escalation, or undesirable outputs.
Fuzzer developers acknowledge the need for bug metrics other than
crashes: AFL has a hang timeout, and SlowFuzz searches for inputs
that trigger worst-case behavior. The exclusion of non-crashing

bugs from the evaluation leads to an under-approximation of real
bugs. Their inclusion, however, enables better bug detection tools.
Evaluating fuzzers based on bugs reached, triggered, and detected
allows us to classify fuzzers and compare the advantages/disadvan-
tages of different approaches along multiple dimensions—e.g., bugs
reached allows an evaluation of the path exploration aspect, bugs
triggered and detected allows a distinctive analysis of a fuzzer’s
constraint generation and solving component. It also allows us
to identify which types of bugs continue to evade state-of-the-art
sanitization techniques, and in what proportions.

8.4.4 Magma as a Lasting Benchmark. Magma leverages libraries
with a long history of security bugs to build an extensible frame-
work with a monitoring utility which collects ground truth mea-
surements. Like most benchmarks, the wide adoption of Magma
defines its utility. Benchmarks provide a common basis through
which systems are evaluated and compared. For instance, the com-
munity continues to use LAVA-M to evaluate and compare fuzzers,
although most of its bugs have been found and they are of a single
synthetic type. Magma aims to provide an evaluation benchmark
that incorporates realistic bugs in real software.

Automation is the next step in making Magma more compre-
hensive. However, the presented manual approach was necessary
to assess the bug landscape, i.e., understanding bug types, their
locations, their distribution, and challenges for finding them.

9 CONCLUSION
We designed Magma, an open ground-truth fuzzing benchmark
suite that enables accurate and consistent fuzzer evaluation and per-
formance comparison. Magma provides real targets with real bugs,
along with ground-truth bug instrumentation which allows for real-
time measurements of a fuzzer’s performance through Magma’s
monitoring utility. To achieve this, we inspected vulnerability re-
ports and identified fix commits, allowing us to forward-port bugs
from old to the latest versions of real software. After carefully se-
lecting targets with a wide variety of uses and applications, and
a known history of security-critical bugs, we forward-ported 121
reported bugs and injected instrumentation that serves as ground-
truth knowledge. Hence, we created Magma to be a diverse, accurate,
and usable fuzzing benchmark.

Magma’s simple design and implementation allows it to be easily
improved, updated, and extended, making it ideal for open-source
collaborative development and contribution. Current weaknesses
will be addressed by increasing adoption: the more fuzzers are
evaluated—ideally by the authors of the fuzzers—the better the
metrics are defined and the more accurate the results are. Through
repeated evaluations, the reachability and satisfiability of bugs can
then be satisfied or disproved through discovered PoVs (or lack
thereof). Additionally, Magma is extensible to support approximate
bug complexity/depth metrics. Such metrics provide further insight
about injected bugs, paving the way for establishing unified perfor-
mance measures that allow direct comparisons between fuzzers.

We evaluated Magma against six popular, publicly-accessible,
mutation-based grey-box fuzzers (AFL, AFLFast, AFL++, FairFuzz,
MOpt-AFL, and honggfuzz). The results showed that ground-truth
enables accurate measurements of fuzzer performance. Our evalua-
tion provides tangible insight on comparing existing fuzzers, why

Magma: A Ground-Truth Fuzzing Benchmark Technical Report, ,

crash counts are often misleading, and how randomness affects
fuzzer performance. It also brought to light the shortcomings of
some existing fault detection methods employed by fuzzers.

Despite best practices, evaluating fuzz testing remains challeng-
ing. With the adoption of ground-truth benchmarks like Magma,
fuzzer evaluation will become reproducible, allowing researchers
to showcase the true contributions of new fuzzing approaches.

REFERENCES
[1] Adobe Systems. [n.d.]. TIFF Specification Version 6.0. https://www.itu.int/itudoc/

itu-t/com16/tiff-fx/docs/tiff6.pdf. Accessed: 2019-09-06.
[2] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Meredith

Whittaker. 2016. Announcing OSS-Fuzz: Continuous fuzzing for open source
software. https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-
continuous-fuzzing.html. Accessed: 2019-09-09.

[3] Branden Archer and Darkkey. [n.d.]. radamsa: A Black-box mutational fuzzer.
https://gitlab.com/akihe/radamsa. Accessed: 2019-09-09.

[4] Brad Arkin. 2009. Adobe Reader and Acrobat Security Initiative. http://blogs.
adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html. Accessed:
2019-09-09.

[5] Abhishek Arya and Cris Neckar. 2012. Fuzzing for security. https://blog.
chromium.org/2012/04/fuzzing-for-security.html. Accessed: 2019-09-09.

[6] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo Ivancic, Tim King, Markus
Kusano, Caroline Lemieux, László Szekeres, and Wei Wang. 2019. FUDGE: Fuzz
Driver Generation at Scale. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering.

[7] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (Dallas, Texas, USA) (CCS ’17).
ACM, New York, NY, USA, 2329–2344. https://doi.org/10.1145/3133956.3134020

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing As Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS ’16).
ACM, New York, NY, USA, 1032–1043. https://doi.org/10.1145/2976749.2978428

[9] Brian Caswell. [n.d.]. Cyber Grand Challenge Corpus. http://www.lungetech.
com/cgc-corpus/.

[10] P. Chen and H. Chen. 2018. Angora: Efficient Fuzzing by Principled Search. In
2018 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los
Alamitos, CA, USA, 711–725. https://doi.org/10.1109/SP.2018.00046

[11] N. Coppik, O. Schwahn, and N. Suri. 2019. MemFuzz: Using Memory Accesses to
Guide Fuzzing. In 2019 12th IEEE Conference on Software Testing, Validation and
Verification (ICST). 48–58. https://doi.org/10.1109/ICST.2019.00015

[12] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,
and R. Whelan. 2016. LAVA: Large-Scale Automated Vulnerability Addition. In
2016 IEEE Symposium on Security and Privacy (SP). 110–121. https://doi.org/10.
1109/SP.2016.15

[13] Free Software Foundation, Inc. [n.d.]. GNU Binutils. https://www.gnu.org/
software/binutils/. Accessed: 2019-09-02.

[14] Vijay Ganesh, Tim Leek, and Martin C. Rinard. 2009. Taint-based directed
whitebox fuzzing. In 31st International Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Proceedings. IEEE, 474–484. https:
//doi.org/10.1109/ICSE.2009.5070546

[15] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based
whitebox fuzzing. In Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation, Tucson, AZ, USA, June 7-13,
2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM, 206–215. https:
//doi.org/10.1145/1375581.1375607

[16] Google. [n.d.]. FuzzBench. https://google.github.io/fuzzbench/. Accessed:
2020-05-02.

[17] Google. [n.d.]. Fuzzer Test Suite. https://github.com/google/fuzzer-test-suite.
Accessed: 2019-09-06.

[18] Gustavo Grieco, Martín Ceresa, and Pablo Buiras. 2016. QuickFuzz: an automatic
random fuzzer for common file formats. In Proceedings of the 9th International
Symposium on Haskell, Haskell 2016, Nara, Japan, September 22-23, 2016, Geoffrey
Mainland (Ed.). ACM, 13–20. https://doi.org/10.1145/2976002.2976017

[19] Sumit Gulwani. 2010. Dimensions in Program Synthesis. In Proceedings of the
12th International ACM SIGPLAN Symposium on Principles and Practice of Declar-
ative Programming (Hagenberg, Austria) (PPDP ’10). Association for Computing
Machinery, New York, NY, USA, 13–24. https://doi.org/10.1145/1836089.1836091

[20] International Organization for Standardization. [n.d.]. Portable Document Format
2.0. https://www.iso.org/standard/63534.html. Accessed 2019-09-03.

[21] Internet Engineering Task Force (IETF). [n.d.]. PNG (Portable Network Graphics)
Specification Version 1.0 (RFC 2083). https://tools.ietf.org/html/rfc2083. Accessed:

2019-09-06.
[22] ISO/IEC Information Technology Task Force (ITTF). [n.d.]. SQL/Framework.

https://www.iso.org/standard/63555.html. Accessed: 2019-04-30.
[23] Kyriakos K. Ispoglou. 2020. FuzzGen: Automatic Fuzzer Generation. In Proceedings

of the USENIX Conference on Security Symposium.
[24] A. S. Kalaji, R. M. Hierons, and S. Swift. 2009. Generating Feasible Transition Paths

for Testing from an Extended Finite State Machine (EFSM). In 2009 International
Conference on Software Testing Verification and Validation. 230–239. https://doi.
org/10.1109/ICST.2009.29

[25] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). ACM, New
York, NY, USA, 2123–2138. https://doi.org/10.1145/3243734.3243804

[26] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, Marianne Huchard, Christian Kästner, and Gordon
Fraser (Eds.). ACM, 475–485. https://doi.org/10.1145/3238147.3238176

[27] LLVM Foundation. [n.d.]. libFuzzer. https://llvm.org/docs/LibFuzzer.html. Ac-
cessed: 2019-09-06.

[28] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005.
Bugbench: Benchmarks for evaluating bug detection tools. In In Workshop on the
Evaluation of Software Defect Detection Tools.

[29] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (1990), 32–44. https:
//doi.org/10.1145/96267.96279

[30] National Institute of Standards and Technology. [n.d.]. Juliet Test Suite. https:
//samate.nist.gov/SARD/testsuite.php. Accessed: 2019-09-03.

[31] OpenSSL Software Foundation. [n.d.]. OpenSSL. https://www.openssl.org/.
Accessed: 2020-04-30.

[32] Peach Tech. [n.d.]. Peach Fuzzer Platform. https://www.peach.tech/products/
peach-fuzzer/peach-platform/. Accessed: 2019-09-09.

[33] H. Peng, Y. Shoshitaishvili, and M. Payer. 2018. T-Fuzz: Fuzzing by Program
Transformation. In 2018 IEEE Symposium on Security and Privacy (SP). 697–710.
https://doi.org/10.1109/SP.2018.00056

[34] Hao Chen Peng Chen. [n.d.]. Fuzzing Benchmark - Real world programs. https:
//github.com/AngoraFuzzer/FuzzingRealProgramBenchStatistics. Accessed: 2019-
09-09.

[35] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana. 2017. NEZHA: Efficient
Domain-Independent Differential Testing. In 2017 IEEE Symposium on Security
and Privacy (SP). 615–632. https://doi.org/10.1109/SP.2017.27

[36] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). ACM, New York,
NY, USA, 2155–2168. https://doi.org/10.1145/3133956.3134073

[37] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2016. Model-based
whitebox fuzzing for program binaries. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM,
543–553. https://doi.org/10.1145/2970276.2970316

[38] Tim Rains. 2012. Security Development Lifecycle: A Living Process.
https://www.microsoft.com/security/blog/2012/02/01/security-development-
lifecycle-a-living-process/. Accessed: 2019-09-09.

[39] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet Society.
http://dx.doi.org/10.14722/ndss.2017.23404

[40] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In Proceedings of the 23rd USENIX Security Symposium, San Diego,
CA, USA, August 20-22, 2014., Kevin Fu and Jaeyeon Jung (Eds.). USENIX Associa-
tion, 861–875. https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/rebert

[41] Greg Roelofs. [n.d.]. Applications with PNG Support. http://www.libpng.org/
pub/png/pngapps.html. Accessed: 2019-09-13.

[42] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX
Annual Technical Conference, Boston, MA, USA, June 13-15, 2012, Gernot Heiser
and Wilson C. Hsieh (Eds.). USENIX Association, 309–318. https://www.usenix.
org/conference/atc12/technical-sessions/presentation/serebryany

[43] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[44] Daan Sprenkels. [n.d.]. LLVM provides no side-channel resistance. https://
dsprenkels.com/cmov-conversion.html. Accessed: 2020-02-13.

https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf
https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://gitlab.com/akihe/radamsa
http://blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html
http://blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/2976749.2978428
http://www.lungetech.com/cgc-corpus/
http://www.lungetech.com/cgc-corpus/
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/ICST.2019.00015
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1375581.1375607
https://google.github.io/fuzzbench/
https://github.com/google/fuzzer-test-suite
https://doi.org/10.1145/2976002.2976017
https://doi.org/10.1145/1836089.1836091
https://tools.ietf.org/html/rfc2083
https://www.iso.org/standard/63555.html
https://doi.org/10.1109/ICST.2009.29
https://doi.org/10.1109/ICST.2009.29
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3238147.3238176
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://www.openssl.org/
https://www.peach.tech/products/peach-fuzzer/peach-platform/
https://www.peach.tech/products/peach-fuzzer/peach-platform/
https://doi.org/10.1109/SP.2018.00056
https://github.com/AngoraFuzzer/FuzzingRealProgramBenchStatistics
https://github.com/AngoraFuzzer/FuzzingRealProgramBenchStatistics
https://doi.org/10.1109/SP.2017.27
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/2970276.2970316
https://www.microsoft.com/security/blog/2012/02/01/security-development-lifecycle-a-living-process/
https://www.microsoft.com/security/blog/2012/02/01/security-development-lifecycle-a-living-process/
http://dx.doi.org/10.14722/ndss.2017.23404
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
http://www.libpng.org/pub/png/pngapps.html
http://www.libpng.org/pub/png/pngapps.html
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://dsprenkels.com/cmov-conversion.html
https://dsprenkels.com/cmov-conversion.html

Technical Report, , Ahmad Hazimeh and Mathias Payer

[45] Standard Performance Evaluation Corporation. [n.d.]. SPEC Benchmark Suite.
https://www.spec.org/. Accessed: 2020-02-12.

[46] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
23rd Annual Network and Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016. The Internet Society. http:
//dx.doi.org/10.14722/ndss.2016.23368

[47] The PHP Group. [n.d.]. PHP: Hypertext Preprocessor. https://www.php.net/.
Accessed: 2019-04-30.

[48] W3Techs. [n.d.]. Usage statistics of server-side programming languages for
websites. https://w3techs.com/technologies/overview/programming_language.
Accessed: 2020-05-02.

[49] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing. In 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 579–594.
https://doi.org/10.1109/SP.2017.23

[50] JunjieWang, BihuanChen, LeiWei, and Yang Liu. 2019. Superion: grammar-aware
greybox fuzzing. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee,
Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 724–735. https://doi.org/10.
1109/ICSE.2019.00081

[51] Frank Warmerdam, Andrey Kiselev, Mike Welles, and Dwight Kelly. [n.d.]. TIFF
Tools Overview. http://www.libtiff.org/tools.html. Accessed: 2019-09-13.

[52] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.
Scheduling black-box mutational fuzzing. In 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM, 511–522.
https://doi.org/10.1145/2508859.2516736

[53] World Wide Web Consortium (W3C). [n.d.]. XML Specification Version 1.0.
https://www.w3.org/TR/xml. Accessed: 2019-09-06.

[54] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the 27th USENIX Conference on Security Symposium (Baltimore, MD, USA)
(SEC’18). USENIX Association, Berkeley, CA, USA, 745–761. http://dl.acm.org/
citation.cfm?id=3277203.3277260

[55] Michal Zalewski. [n.d.]. American Fuzzy Lop (AFL) Technical Whitepaper. http:
//lcamtuf.coredump.cx/afl/technical_details.txt. Accessed: 2019-09-06.

[56] Michal Zalewski. [n.d.]. List of AFL-discovered bugs. http://lcamtuf.coredump.
cx/afl/#bugs.

https://www.spec.org/
http://dx.doi.org/10.14722/ndss.2016.23368
http://dx.doi.org/10.14722/ndss.2016.23368
https://www.php.net/
https://w3techs.com/technologies/overview/programming_language
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1109/ICSE.2019.00081
http://www.libtiff.org/tools.html
https://doi.org/10.1145/2508859.2516736
https://www.w3.org/TR/xml
http://dl.acm.org/citation.cfm?id=3277203.3277260
http://dl.acm.org/citation.cfm?id=3277203.3277260
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs

Magma: A Ground-Truth Fuzzing Benchmark Technical Report, ,

A BUGS AND REPORTS
Table A1: The bugs injected into Magma, and the original
bug reports.

Bug ID Report Type PoV

lib
pn

g

AAH001 CVE-2018-13785 Integer overflow, divide by zero ✓

AAH002 CVE-2019-7317 Use-after-free ✓

AAH003 CVE-2015-8472 API inconsistency ✓

AAH004 CVE-2015-0973 Integer overflow ✗

AAH005 CVE-2014-9495 Integer overflow, Buffer overflow ✓

AAH007 (Unspecified) Memory leak ✓

AAH008 CVE-2013-6954 0-pointer dereference ✓

lib
tiff

AAH009 CVE-2016-9535 Heap buffer overflow ✓

AAH010 CVE-2016-5314 Heap buffer overflow ✓

AAH011 CVE-2016-10266 Divide by zero ✗

AAH012 CVE-2016-10267 Divide by zero ✗

AAH013 CVE-2016-10269 OOB read ✓

AAH014 CVE-2016-10269 OOB read ✓

AAH015 CVE-2016-10270 OOB read ✓

AAH016 CVE-2015-8784 Heap buffer overflow ✓

AAH017 CVE-2019-7663 0-pointer dereference ✓

AAH018 CVE-2018-8905 Heap buffer underflow ✓

AAH019 CVE-2018-7456 OOB read ✗

AAH020 CVE-2016-3658 Heap buffer overflow ✓

AAH021 CVE-2018-18557 OOB write ✗

AAH022 CVE-2017-11613 Resource Exhaustion ✓

lib
xm

l2

AAH024 CVE-2017-9047 Stack buffer overflow ✓

AAH025 CVE-2017-0663 Type confusion ✓

AAH026 CVE-2017-7375 Xml external entity ✓

AAH027 CVE-2018-14567 Resource exhaustion ✗

AAH028 CVE-2017-5130 Integer overflow, heap corruption ✗

AAH029 CVE-2017-9048 Stack buffer overflow ✗

AAH030 CVE-2017-8872 OOB read ✗

AAH031 ISSUE #58 (gitlab) OOB read ✗

AAH032 CVE-2015-8317 OOB read ✓

AAH033 CVE-2016-4449 XML external entity ✗

AAH034 CVE-2016-1834 Heap buffer overflow ✗

AAH035 CVE-2016-1836 Use-after-free ✗

AAH036 CVE-2016-1837 Use-after-free ✗

AAH037 CVE-2016-1838 Heap buffer overread ✓

AAH038 CVE-2016-1839 Heap buffer overread ✗

AAH039 BUG 758518 Heap buffer overread ✗

AAH040 CVE-2016-1840 Heap buffer overflow ✗

AAH041 CVE-2016-1762 Heap buffer overread ✓

po
pp

le
r

AAH042 CVE-2019-14494 Divide-by-zero ✓

AAH043 CVE-2019-9959 Resource exhaustion (memory) ✓

AAH045 CVE-2017-9865 Stack buffer overflow ✓

AAH046 CVE-2019-10873 0-pointer dereference ✓

AAH047 CVE-2019-12293 Heap buffer overread ✓

AAH048 CVE-2019-10872 Heap buffer overflow ✓

AAH049 CVE-2019-9200 Heap buffer underwrite ✓

AAH050 Bug #106061 Divide-by-zero ✓

AAH051 ossfuzz/8499 Integer overflow ✓

AAH052 Bug #101366 0-pointer dereference ✓

JCH201 CVE-2019-7310 Heap buffer overflow ✓

JCH202 CVE-2018-21009 Integer overflow ✗

JCH203 CVE-2018-20650 Type confusion ✗

JCH204 CVE-2018-20481 0-pointer dereference ✗

JCH206 CVE-2018-19058 Type confusion ✗

JCH207 CVE-2018-13988 OOB read ✓

JCH208 CVE-2019-12360 Stack buffer overflow ✗

JCH209 CVE-2018-10768 0-pointer dereference ✗

JCH210 CVE-2017-9776 Integer overflow ✗

JCH211 CVE-2017-18267 Resource exhausion (CPU) ✗

JCH212 CVE-2017-14617 Divide-by-zero ✓

JCH214 CVE-2019-12493 Stack buffer overread ✗

Bug ID Report Type PoV

op
en
ss
l

AAH053 CVE-2016-0705 Double-free ✓

AAH054 CVE-2016-2842 OOB write ✗

AAH055 CVE-2016-2108 OOB read ✓

AAH056 CVE-2016-6309 Use-after-free ✓

AAH057 CVE-2016-2109 Resource exhaustion (memory) ✗

AAH058 CVE-2016-2176 Stack buffer overread ✗

AAH059 CVE-2016-6304 Resource exhaustion (memory) ✗

MAE100 CVE-2016-2105 Integer overflow ✗

MAE102 CVE-2016-6303 Integer overflow ✗

MAE103 CVE-2017-3730 0-pointer dereference ✗

MAE104 CVE-2017-3735 OOB read ✓

MAE105 CVE-2016-0797 Integer overflow ✗

MAE106 CVE-2015-1790 0-pointer dereference ✗

MAE107 CVE-2015-0288 0-pointer dereference ✗

MAE108 CVE-2015-0208 0-pointer dereference ✗

MAE109 CVE-2015-0286 Type confusion ✗

MAE110 CVE-2015-0289 0-pointer dereference ✗

MAE111 CVE-2015-1788 Resource exhausion (CPU) ✗

MAE112 CVE-2016-7052 0-pointer dereference ✗

MAE113 CVE-2016-6308 Resource exhaustion (memory) ✗

MAE114 CVE-2016-6305 Resource exhausion (CPU) ✗

MAE115 CVE-2016-6302 OOB read ✓

sq
lit
e3

JCH214 CVE-2019-9936 Heap buffer overflow ✗

JCH215 CVE-2019-20218 Stack buffer overread ✓

JCH216 CVE-2019-19923 0-pointer dereference ✗

JCH217 CVE-2019-19959 OOB read ✗

JCH218 CVE-2019-19925 0-pointer dereference ✗

JCH219 CVE-2019-19244 OOB read ✗

JCH220 CVE-2018-8740 0-pointer dereference ✗

JCH221 CVE-2017-15286 0-pointer dereference ✗

JCH222 CVE-2017-2520 Heap buffer overflow ✗

JCH223 CVE-2017-2518 Use-after-free ✗

JCH225 CVE-2017-10989 Heap buffer overflow ✗

JCH226 CVE-2019-19646 Logical error ✓

JCH227 CVE-2013-7443 Heap buffer overflow ✗

JCH228 CVE-2019-19926 Logical error ✓

JCH229 CVE-2019-19317 Resource exhaustion (memory) ✗

JCH230 CVE-2015-3415 Double-free ✗

JCH231 CVE-2020-9327 0-pointer dereference ✗

JCH232 CVE-2015-3414 Uninitialized memory access ✓

JCH233 CVE-2015-3416 Stack buffer overflow ✗

JCH234 CVE-2019-19880 0-pointer dereference ✗

ph
p

MAE001 CVE-2019-9020 Use-after-free ✗

MAE002 CVE-2019-9021 Heap buffer overread ✗

MAE004 CVE-2019-9641 Uninitialized memory access ✗

MAE006 CVE-2019-11041 OOB read ✗

MAE008 CVE-2019-11034 OOB read ✓

MAE009 CVE-2019-11039 OOB read ✗

MAE010 CVE-2019-11040 Heap buffer overflow ✗

MAE011 CVE-2018-20783 OOB read ✗

MAE012 CVE-2019-9022 OOB read ✗

MAE013 CVE-2019-9024 OOB read ✗

MAE014 CVE-2019-9638 Uninitialized memory access ✓

MAE015 CVE-2019-9640 OOB read ✗

MAE016 CVE-2018-14883 Heap buffer overread ✗

MAE017 CVE-2018-7584 Stack buffer underread ✗

MAE018 CVE-2017-11362 Stack buffer overflow ✗

MAE019 CVE-2014-9912 OOB write ✗

MAE020 CVE-2016-10159 Integer overflow ✗

MAE021 CVE-2016-7414 OOB read ✗

Technical Report, , Ahmad Hazimeh and Mathias Payer

B REACHED BUGS
TableA2: Expected time-to-reach-bug values for ten 24-hour
campaigns. Of the 121 injected bugs, 72 were reached.

Bug ID hfuzz fairfuzz afl aflfast afl++ moptafl Aggregate

AAH020 5s 5s 5s 5s 5s 5s 5s
AAH054 5s 5s 5s 5s 5s 5s 5s
JCH207 5s 5s 5s 5s 5s 5s 5s
MAE016 5s 5s 5s 5s 5s 5s 5s
MAE105 5s 5s 5s 5s 5s 5s 5s
AAH003 10s 5s 5s 5s 5s 5s 6s
AAH037 10s 5s 5s 5s 5s 5s 6s
AAH007 5s 10s 10s 10s 10s 10s 9s
AAH032 5s 10s 10s 10s 10s 10s 9s
AAH001 10s 10s 10s 10s 10s 10s 10s
AAH004 10s 10s 10s 10s 10s 10s 10s
AAH005 10s 10s 10s 10s 10s 10s 10s
AAH008 10s 10s 10s 10s 10s 10s 10s
AAH011 10s 10s 10s 10s 10s 10s 10s
AAH024 10s 10s 10s 10s 10s 10s 10s
AAH026 10s 10s 10s 10s 10s 10s 10s
AAH029 10s 10s 10s 10s 10s 10s 10s
AAH034 10s 10s 10s 10s 10s 10s 10s
AAH041 10s 10s 10s 10s 10s 10s 10s
AAH049 10s 10s 10s 10s 10s 10s 10s
AAH055 10s 10s 10s 10s 10s 10s 10s
AAH056 10s 10s 10s 10s 10s 10s 10s
JCH201 10s 10s 10s 10s 10s 10s 10s
JCH202 10s 10s 10s 10s 10s 10s 10s
JCH212 10s 10s 10s 10s 10s 10s 10s
MAE004 10s 10s 10s 10s 10s 10s 10s
MAE006 10s 10s 10s 10s 10s 10s 10s
MAE008 10s 10s 10s 10s 10s 10s 10s
MAE014 10s 10s 10s 10s 10s 10s 10s
MAE104 10s 10s 10s 10s 10s 10s 10s
MAE111 10s 10s 10s 10s 10s 10s 10s
MAE114 10s 10s 10s 10s 10s 10s 10s
MAE115 10s 10s 10s 10s 10s 10s 10s
AAH035 10s 10s 10s 10s 15s 10s 11s
AAH052 15s 10s 10s 10s 10s 10s 11s
AAH048 10s 10s 15s 10s 12s 10s 11s
AAH059 10s 10s 15s 15s 10s 15s 12s
JCH204 20s 10s 15s 15s 10s 15s 14s
AAH045 14s 15s 15s 15s 15s 15s 15s
AAH031 15s 15s 15s 15s 34s 15s 18s
AAH051 10s 20s 20s 20s 35s 20s 21s
MAE103 28s 20s 28s 25s 20s 25s 24s
JCH210 20s 25s 30s 25s 28s 25s 26s
AAH053 35s 26s 30s 30s 28s 30s 30s
JCH214 45s 25s 31s 26s 31s 26s 31s
AAH042 20s 31s 40s 34s 34s 34s 32s
AAH015 10s 1m 1m 52s 1m 50s 60s
AAH022 10s 1m 1m 52s 1m 50s 60s
AAH043 47h 20s 25s 20s 20s 20s 1h

Bug ID hfuzz fairfuzz afl aflfast afl++ moptafl Aggregate

AAH047 47h 20s 25s 20s 20s 20s 1h
JCH215 15s 3h 2h 48m 1h 14m 1h
JCH220 12s 3h 2h 54m 1h 6h 1h
JCH229 16s 3h 2h 1h 1h 6h 1h
AAH018 4m 36m 3h 59m 4h 2h 2h
JCH230 22s 3h 3h 1h 2h 7h 2h
JCH223 30s 4h 3h 1h 2h 7h 2h
JCH231 36s 4h 3h 1h 3h 7h 2h
JCH233 12m 3h 3h 1h 3h 7h 2h
AAH050 47h 20s − 20s 25s 20s 5h
AAH009 50h 22h 5h 24h 5h 4h 10h
JCH232 43m 4h 86h 15h 14h 48h 13h
AAH010 11h 14h 10m − − 10m 13h
AAH017 205h 5h 19h 8h 88h 12h 13h
JCH222 21m 24h 28h 18h 30h − 22h
JCH228 2h 24h 205h − 20h 47h 30h
AAH014 − 23h 4h − − 47h 58h
AAH013 4h − − − − − 110h
JCH226 4h − − − − − 110h
AAH016 − 50h − 47h − − 205h
JCH227 87h − − − − − 684h
JCH219 206h − − 207h − − 684h
AAH025 205h − − − − − 1404h

C WEEK-LONG CAMPAIGNS
Table A3: Expected time-to-trigger-bug for a subset of
Magma targets and bugs over 7-day campaigns.

Bug ID hfuzz afl aflfast afl++ moptafl fairfuzz Aggregate

AAH003 10s 10s 10s 10s 10s 10s 10s
AAH041 10s 15s 16s 15s 15s 15s 14s
AAH056 46s 5m 5m 3m 4m 6m 4m
AAH015 14s 10m 13m 12m 9m 1h 19m
AAH052 16m 12h 2m 2h 9m 3m 2h
AAH032 17s 16m 51m 21m 58h 58m 5h
AAH022 2m 22h 1h 2h 11h 4h 7h
AAH055 19m 2h 33m 1h 42h 2h 8h
AAH017 212h 9h 10h 8h 10h 12h 24h
AAH008 5h 57h 144h 105h − 24h 73h
AAH045 1m 1450h 142h 122h − − 174h
AAH010 21h 616h 189h 88h 70h 348h 202h
AAH053 106h 1450h 213h 1441h 367h 101h 231h
AAH014 75h 120h 621h − 92h 96h 233h
AAH018 529h 1444h 343h 1438h 116h 614h 503h
AAH001 157h 364h − 1440h − 164h 504h
AAH016 277h 1451h 351h 605h 209h 611h 612h
AAH007 33m − − − − − 767h
AAH024 1448h − 1449h 233h − − 1445h
AAH025 1436h − − 1447h − − 4792h
AAH013 5h − − − 1443h − 9830h
AAH026 1445h − − − − − 9830h
AAH009 − 1448h − − − − 9831h
AAH035 1450h − − − − − 9831h

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzz Testing
	2.2 Fuzzer Evaluation
	2.3 Crashes as a Performance Metric

	3 Desired Benchmark Properties
	3.1 Diversity (P1)
	3.2 Accuracy (P2)
	3.3 Usability (P3)

	4 Magma: Approach
	4.1 Workflow
	4.2 Reached, Triggered, and Detected
	4.3 Boolean Bugs
	4.4 Forward-Porting
	4.5 Benchmark-Tuned Fuzzers

	5 Design Decisions
	5.1 Bug Chain
	5.2 Leaky Oracles
	5.3 Proofs of Vulnerability
	5.4 Unknown Bugs
	5.5 Compatibility

	6 Implementation
	6.1 Bug Injection
	6.2 Instrumentation
	6.3 Reporting

	7 Target Selection
	7.1 Injected Bugs
	7.2 Drivers and Seeds

	8 Experiments and Results
	8.1 Methodology
	8.2 Expected Time-to-Bug
	8.3 Analysis of Results
	8.4 Discussion

	9 Conclusion
	References
	A Bugs and Reports
	B Reached Bugs
	C Week-Long Campaigns

