DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING,

%@f@&% SECOND CYCLE, 30 CREDITS
3¢ 58 STOCKHOLM, SWEDEN 2019
EZKTH®

VETENSKAP

28 OCH KONST %%

eos®

Exploring the Possibilities of
Robustness Testing of CoOAP
Implementations Using
Evolutionary Fuzzing

FREDRIK LILJEDAHL

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Exploring the Possibilities of
Robustness Testing of COAP
Implementations Using
Evolutionary Fuzzing

FREDRIK LILJEDAHL

Master in Computer Science

Date: September 27, 2019

Supervisor: Somayeh Aghanavesi

Examiner: Mads Dam

School of Electrical Engineering and Computer Science

Host company: Subset AB

Swedish title: Utforskande studie inom mdjligheterna att testa
robustheten av CoAP-implementationer med evolutionér fuzzing

Abstract

Internet of Things (IoT) is a widely used expression to denote the connection of
physical objects in the internet. IoT devices are attractive targets for malicious
actors as they are often deployed in large numbers with the same software.
Such software is important to test in order to prevent malicious abuse. An
effective robustness testing technique is called fuzzy testing (fuzzing) and in-
volves automatically exposing software to a multitude of generated inputs to
hopefully discover errors in the application before an attacker can exploit them.
The Constrained Application Protocol (CoAP) is a relatively new application
protocol designed for use in IoT devices whose implementations could contain
vulnerabilities. Fuzzing of CoAP applications has been done with success in
a previous study but there is room for improvements and further development
of CoAP testing techniques.

In this report an exploratory study is performed on the possibility of us-
ing evolutionary algorithms to strengthen the effectiveness of regular fuzzing
on CoAP server implementations. For this, an evolutionary fuzzer was devel-
oped that attempts to increase the code coverage of fuzzy input in hopes of
unveiling bugs not found with more primitive forms of fuzzing. Three open
source CoAP server applications were tested with varying degrees of success.
The overall code coverage measurements and number of bugs encountered did
not show enough progression to support the technique as an effective tool to
use when fuzzing CoAP applications. Further research opportunities exist as
this research only tested a subset of available evolutionary algorithms and lit-
tle investigation had been made on the contributing factors for the technique’s
practical ineffectiveness.

Sammanfattning

Sakernas Internet (IoT) &r ett begrepp med en bred anvindning som beskri-
ver ndr fysiska objekt dr uppkopplade till internet. Dessa apparater &r ofta at-
traktiva mal for cyberattacker pa grund av den stora méngd apparater som ofta
utplaceras med likadan mjukvara. Testningen av sddan mjukvara dr av stor vikt
i arbetet mot datoriserat missbruk. Fuzzing &r en testningsteknik diar man ut-
satter mjukvara for en stor mingd indata for att orsaka en krash i hopp om
att hitta sérbarheter innan illvilliga aktorer gor det. Constrained Application
Protocol (CoAP) ér ett nytt applikationsprotokoll som ir specifikt designat for
anviandning inom IoT-apparater vars implementationer kan innehélla sérbar-
heter. Att anvinda fuzzing pa CoAP-mjukvara har gjorts i tidigare skede med
framgéng, men det finns utrymme for utveckling. I denna rapport utfors en ut-
forskande studie inom mojligheterna att anvin- da evolutiondra algoritmer till
att forstarka effektiviteten hos vanliga former av fuzzing pd CoAP-mjukvara.
For att gora detta utvecklades en sa kallad evo- lutionér fuzzer som har som
mal att 0ka tackningen av koden vid testad indata pd CoAP-implementationer.
Detta i hopp om att stita pé fler sdrbarheter &dn vid mer primitiva versioner av
fuzzing. Tre olika CoAP-applikationer med oppen killkod testades med den
skapade fuzzern med olika grader av framgang. Kod- tickningens mitvirden
och antalet sarbarheter som uppticktes visade sig inte vara nog for att stoda
effektiviteten av evolutionér fuzzing vid anviandning pd CoAP-applikationer.
Moijligheter for vidarestudier Oppnades d& denna studie endast testade en del-
mingd av tillgdngliga evolutiondra algoritmer och endast mindre undersok-
ningar gjordes pa anledningarna till teknikens praktiska inef- fektivitet.

Contents

(1__Introduction
(1.1 Research Question|
(I.I.1 ~ ScopeofStudy|

2 Background|

[2.1 Constrained Application Protocol|.
2.1.1 Messaging Modell.
[2.1.2 Resource Discovery|
[2.1.3 Security Options|
2.1.4 Message Formatf

.............................
2.2.1 Black-box Fuzzing|
[2.2.2 White-box Fuzzing|
[2.2.3 Grey-box Fuzzing|.
[2.2.4 Evolutionary Fuzzing|.
[2.2.5 Fuzzing Test Case Generation|

B3__Related Work|
3.1 CoAPFuzzing|.
[3.2 Evolutionary Fuzzing|
4 Methods

4.1 Targeted Software|

4.2 Fuzzing Software Suitef,

4.3 Fitness Calculationl

4.4 Crash Monitoring|

4.5 Evolutionary Algorithm|.
[4.5.1 Components|
{4.5.2 Generating Seed Inputs|
{4.5.3 Evolutionary Mutation Operators|

Vi

CONTENTS

4.5.4 Miscellaneous Evolutionary Algorithm Details|

4.8 Implementation|
4.9 Running the experiment]

> Results

6.1 Code Coverage|
6.2 Crashesl

[6.2.1 Previous CoAP Fuzzingl

(6.3 Constrained Application

Protocoll.

[6.3.1 CoAP and Evolutionary Fuzzing|

©.4 Delimitationsl

[6.5.1 Evolutionary Fuzzing On CoAP|

[6.5.2 Implementation Improvements|

[6.6 Sustainability and Ethics|

29
32
32
33

Chapter 1

Introduction

It is likely that the expression Internet of Things (10T) was first used in 1999
as part of a presentation on the potential for Radio Frequency Identification
(RFID) to be used in a company’s supply chain, mostly to attract the executive
attention on the back of the then trending topic of internet [1]]. It has since
evolved from a sales pitch catch phrase to a worldwide phenomenon. Due to
the recent advances in wireless communication it has grown into a widely used
expression that encapsulates the concept of intertwining the physical world
with the information world; where any object could be internet connected and
talk to other machines on behalf of humans [|13[][25]].

IoT environments are considered constrained when the devices in it have
physical restrictions such as limited memory and battery power. To improve
the performance of these constrained environments, special protocols and soft-
ware are created with efforts to reduce overhead in network communication.
One such protocol is the Constrained Application Protocol (CoAP). CoAP
aims to bring the Representational State Transfer (REST) architecture in an
appropriate form to constrained environments. It is a generic web protocol
with similar characteristics to the Hypertext Transfer Protocol (HTTP) [23].
Due to the popularity of the REST architecture it is likely that CoAP will be
widely adopted in the future.

With the growth of IoT comes new security issues along with an increase in
severity of existing security issues. Big reasons for this is due to the diversity
of the devices and the large scale it is often deployed in. Security flaws can
be found in either the designs of individual devices or in the communication
between them [32]. It is therefore important to review and test the security in
both the actual devices and the protocols they use to communicate. Security
flaws in devices can exist in both hardware and in software. The software

2 CHAPTER 1. INTRODUCTION

implementations made to handle protocols such as CoAP could be vulnerable
and therefore be an attractive target for malicious actors.

One way to test software applications for vulnerabilities is fuzzing, short for
fuzzy testing, named from the way line noise from "fuzzy" telephone lines used
to crash modem applications [20]. Fuzzing is the process of sending irregular
data to a system with the purpose of crashing it, thus revealing reliability issues
in the system [24]. It is an easily automated testing technique that covers a
multitude of boundary cases that would be expensive using other comparable
testing techniques. While it appears primitive in nature, fuzzing is surprisingly
effective and has been responsible for uncovering severe vulnerabilities in, for
example, software created by companies such as Microsoft [20]].

A limitation of normal fuzzing is the significant role randomness has in its
ability to find bugs. Certain functionality in software systems could depend
on specifically structured input and could therefore be hard to reach using ran-
dom data. Both static and dynamic analysis techniques can be used to increase
the accuracy of input creation. One method to improve the efficiency is to use
evolutionary algorithms in the fuzzing process. By monitoring the execution
and calculating the fitness of each input, a new generation of inputs can be
created by combining and mutating the most fit from the previous generation.
The fitness is often measured using the amount of covered code using the in-
tuition that executions with higher code coverage has increased probability of
finding bugs [24]. Evolutionary fuzzing of different forms has been used to
test software applications with reported success [7] [21]] [29].

It will most likely be important to use fuzzing to test the emerging IoT soft-
ware applications, as the number of 10T devices increases on the market. There
has some been effort to employ fuzzing for IoT, but there is room for further
research. CoAP stands out as a candidate for further testing due to the expecta-
tions of future usage. CoAP implementations has been fuzzed using primitive
fuzzing techniques in the master’s thesis by Melo [17] with great success but
it is reported that further research in more advanced fuzzing methods on 16T
could be useful. There is a possibility that evolutionary fuzzing is an effective
method of testing the robustness of applications of CoAP and would therefore
provide a tool to increase the reliability of IoT devices.

1.1 Research Question

It is not entirely obvious how evolutionary fuzzing will behave in the scenar-
ios like the network protocol fuzzing of applications that implement protocols
such as CoAP. An intuition is that the evolutionary algorithm would have trou-

CHAPTER 1. INTRODUCTION 3

ble developing properly due to the homogeneous nature of the packets used in
network communication, but it is also intuitive to expect the fuzzer to construct
better inputs than its non-evolutionary counterparts.

The question this thesis ultimately aims to answer is

e Is robustness testing with fuzzing on CoAP applications improved with
the employment of evolutionary algorithms?

Providing an answer to the question will require a explorative study on ma-
terial relating to the CoAP specification, fuzzing, and evolutionary algorithms.
The objective is to create an evolutionary fuzzing environment so the effects
and performance can be properly monitored. The evolutionary fuzzer will be
tested against available CoAP implementations to get measurements on real
world applications. To achieve the goal of answering the research question,
comparisons between normal fuzzing and evolutionary fuzzing and quantifi-
cations of how well the evolutionary algorithm proceeded in terms of covering
code and causing crashes will be used as arguments for the technique’s suc-
cess.

1.1.1 Scope of Study

The study will only focus on fuzzy testing and will not be compared to other
robustness testing methods. It will also be limited to only testing CoAP ap-
plications. An extensive root cause analysis for potential errors will not be
performed in order to stay within the limits of the research question.

Chapter 2

Background

To sufficiently test implementations of a protocol we need to both understand
the existing techniques of fuzzy testing and comprehend the structure of the
protocol. This chapter provides the knowledge necessary to understand the
problem that is examined in this degree project. Both a summary of the Con-
strained Application Protocol’s specification and information about different
aspects and techniques of fuzzing are presented. This information is used as a
foundation for approaches used in the method and serves as a reference point
in the discussion and conclusions.

2.1 Constrained Application Protocol

In this chapter we look at different aspects of CoAP to get familiarized with
the protocol’s internals and characteristics.

Constrained Application Protocol, abbreviated to CoAP, is a web protocol
designed for the special requirements of resource-constrained computer envi-
ronments, where devices have limited capacity in qualities such as processing
power, storage/memory, and battery power. An example of a constrained en-
vironment is temperature monitoring where battery powered devices monitor
could measure temperatures and communicate over wireless communication.
An advantage in these environments is for the devices to consume as little en-
ergy as possible. One design goal with CoAP was to reduce message overhead
to avoid network fragmentation of the packets that could otherwise cause a
significant reduction in packet delivery probability. CoAP uses an interaction
model that is similar to the client/server model used in the widely used Hy-
pertext Transfer Protocol (HTTP). In this interaction model, requests are sent
from a client to request an action using a method code on a server resource

CHAPTER 2. BACKGROUND 5

that is addressed using a Uniform Resource Identifier (URI), similar to HTTP
requests. The server then performs the requested method action and returns
an appropriate response to the client. The method codes form a subset of the
Representational State Transfer (REST) format, and the defined methods are
GET, POST, PUT, and DELETE. GET is used to access a representation of
the information stored on a resource. The function of POST is determined by
the server executing it but is usually used to create or update a resource. PUT
updates the targeted resource and DELETE deletes a resource [23]].

2.1.1 Messaging Model

To successfully communicate over CoAP we need an understanding of how
messages are sent and received over the network. CoAP uses User Datagram
Protocol UDP as its transport layer protocol and each CoAP packet is designed
to fit within the payload of a single UDP packet. Both requests and responses
uses the same 4-byte header that is explained in detail in section Each
message has a 16 bit Message ID that can be used to detect duplicates and
provide optional reliability. The reliability is provided by setting the mes-
sage as confirmable. Confirmable messages (CON) are retransmitted after a
timeout period and with exponential back-off between retransmissions until an
acknowledgement message (ACK) is received. When a request is unable to be
processed, a reset message (RST) is returned instead of the acknowledgement
[23].

2.1.2 Resource Discovery

Discovering the available devices and other resources is an important part for
the communication between a client and server, especially when it is done
machine to machine and no human is there to guide the process. To discover
the resources available on a server, CoAP implementations should support the
CoRE Link Format [23]]. The CoRE Link Format defines a well known URI
that is used to retrieve the resources that are hosted on the server. This is
defined as the relative URI "/well-known/core" and delivers the resource links
in the payload of the response [22]]. Since all IoT devices running Coap defines
this endpoint, it is well suited to be used to check the liveness of a service, and
because it requires specialized logic in the protocol, it could also be tested for
vulnerabilities.

6 CHAPTER 2. BACKGROUND

2.1.3 Security Options

CoAP is designed with security in mind, and it is therefore important to view
what built in features it provides and does not provide. CoAP provides no pro-
tocol primitives for use in authentication or authorization. There are a number
of security options defined in the CoAP specification and they are based on
the Datagram Transport Layer Security (DTLS).

NoSec No protocol level security which means that DTLS is disabled. Can
only be secured by keeping attackers from being able to send and receive pack-
ets.

PreSharedKey DTLS is enabled and there is a list of pre-shared keys and
each key contains a list of which nodes it can communicate with.

RawPublicKey DTLS is enabled and the device has an asymmetric key
pair without a certificate. The device has an identity calculated with the public
key and a list of nodes it can communicate with.

Certificate DTLS is enabled and the device has an asymmetric key pair
with an X.509 certificate signed by a common trust root. The device also has
a list of trusted roots that can verify certificates.

The three last options are indicated by the "coaps" scheme and a DTLS-
secured CoAP default port[23].

2.1.4 Message Format

This section describes the format of a CoAP message. It is important to study
this closely, as it forms the entire attack vector that is used to communicate
with a server and is therefore directly related to way the fuzzer has to work.

Each CoAP message is designed to be compact and the goal of the design is
to fit within one UDP packet. They are encoded in a simple binary format. The
message starts with a fixed size 4-byte header. This is followed by a variable
length token field, which can be between 0 and 8 bytes long. After the token
comes a sequence of O or more options. The last part of a message is the
optional payload separated from the options with hexadecimal OxFF. Figure
2.1 shows a visual representation of a CoAP message’s format.

Header

The header has a fixed size of 4 bytes. The first two bits are the CoAP ver-
sion number (Ver). It must be set to 1 in the current version. The next two
bits represents the type of the message (T). These can be Confirmable, Non-
Confirmable, Acknowledgement, or Reset with values 0, 1, 2, and 3 respec-

CHAPTER 2. BACKGROUND 7

] 1 2 3

0123457890123 45789012345878901
B s et e A et T S e s e T S e
|Ver| T | TEL | Code | Message ID |
t—t—t—t—t—t—dt—t—t—t—t—t—t—t—t—t—t— bt t— bttt -ttt —t—F—F—t—+—+
| Token(if any, TEL bytes) ... |
T T Ik e e T e e e B O Lk ek ek e o T S S S RS
| Cptions (1f any) ... |
B e T L A s T S T e s T S e i
[1 111111 1l|Payload{if any) ... |
t—t—t—t—t—t—dt—t—t—t—t—t—t—t—t—t—t— bt t— bttt -ttt —t—F—F—t—+—+

Figure 2.1: CoAP Message Format - https://tools.ietf.org/html/
rfc7252

tively. The four bits after the type is the token length (TKL), and represents
the token length in bytes. Only values 0-8 are allowed here because 9-15 is
reserved. Then comes an 8 bit unsigned integer that represents the code of the
message. The code field is split into two parts called class and detail. Class is
the three most significant bits and there are four different values this can have
that are not reserved:

e request (0)

e success response (2)

e client error response (4)
e server error response (5)

The detail part is the 5 least significant bits of the code and combined with
the class it specifies the method of code. An example: the class is 0 and the
detail is 1 (0000 0001) means the message is a GET request. More informa-
tion is found in RFC7252 in sections 12.1.1 and 12.1.2 [23]]. The last 16 bits
of a CoAP header is the message ID. It is used to detect message duplica-
tion and to match Acknowledgement/Reset messages with Confirmable/Non-
confirmable messages. Message ID must be generated by the sender of the
Confirmable/Non-confirmable message and must be echoed by the receiver in
the Acknowledgement/Reset message [23]].

Token

Tokens have values between 0 and 8 bytes and correlate requests with re-
sponses. They are generated by the client and intended to provide client-local

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252

8 CHAPTER 2. BACKGROUND

identifiers of concurrent requests [23]]. Separate message ID and token fields
exist and are needed for the receiver to distinguish retransmissions from new
messages.

Options

The option fields specifies a number of options in a message. Each option
in the field is specified using an option number of the defined option, the
length of the option value, and the option value itself. Option numbers can
represent values like Uri-Path and Content-Format, they are specified in sec-
tion 12.2 of RFC7252 [23]]. Options must appear in the order of the options
numbers, and they are separated by specifying the difference (delta) in op-
tion number for the current option from the previous option value. An op-
tion number is calculated using its delta plus the previous option number,
with the first option using O as the previous option’s number. An example
of this is if the first option number Option[l] is 2 and the second option
number Option|[2] is 5, then the first option delta is encoded as 2 because
Option[l] = Option[0] + A = 0 + 2 = 2 and the second option delta is
encoded as 3 because Option|2] = Option[l] + A = 2 + 3 = 5. The third
option would be calculated as Option[3] = Option[2]+ A = 5+ A. Multiple
options with same number can be used by setting delta value to O.

An option format consists normally of a 4-bit Option Delta followed by a
4-bit Option Length and then the Option Value. There are special cases when
either the Option Delta or Option Length has value 13 or 14 that adds options
for bigger values. With 13, any or both values add an 8-bit unsigned integer
each before the Option Value that specifies either delta or length minus 13.
Value 14 adds a 16-bit integer in network byte order that specifies the delta or
length minus 269. Value 15 is not allowed in either the delta or length as it
is reserved for the payload marker (separator between options and payload).
Figure [2.2] shows the structure of an option. The option value size is exactly
the number specified in the option length [23]].

Option values can have different formats. An empty value is a zero-length
sequence of bytes. An opaque is an opaque (unspecified format) sequence of
bytes. Uint is a non-negative integer represented in network byte order using
the number of bytes specified in the option length field. It is allowed to have
integers with leading zeroes. A String value is a Unicode string that is encoded
using UTF-8 in Net-Unicode format [23]].

CHAPTER 2. BACKGROUND 9

- - +

| | |

| Option Delta | Option Length | 1 byte

| | |

e Fom +

\ \

/ Option Delta / 0-2 bytes
A (extended) A
e +

\ \

/ Option Length / 0-2 bytes
\ (extended) \
- +

\ \

/ /

\ \

/ Option Value / 0 or more bytes
\ \

/ /

\ \
e +

Figure 2.2: CoAP Option Format - https://tools.ietf.org/html/
rfc7252

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252

10 CHAPTER 2. BACKGROUND

Payload

The payload is an optional field. If it is of non-zero length it is prefixed by a
fixed 1-byte payload marker with hexadecimal value of OxFF. It extends from
the end of the marker to the end of the UDP packet. An absence of payload
marker means a zero length payload. A payload marker follow by a zero length
payload should be processed as a message format error.

2.2 Fuzzing

Fuzzing (fuzzy testing), a software testing technique, should not be confused
with fuzzy logic, a form of logic handling the concept of partial truth. There
is no connection between the two areas of study, except for the name.

Fuzzing is a highly automated software testing technique that works by
sending specially crafted input to applications with the intention of uncovering
bugs. The purpose of fuzzing is to better ensure the absence of exploitable
vulnerabilities by covering boundary cases in the application’s logic. It allows
for testing of large amounts of test cases that would otherwise be too costly to
do by hand. When creating software with an external surface that takes input
from untrusted sources, it is important to test boundary cases and a fuzzing
software could make this process significantly easier [20]].

The first credited source of fuzzing is from Miller, Fredriksen, and So [|18]]
in 1990 when Unix utilities crashed when exposed to accidental random input.
Further testing ensued and it was discovered that fuzzing was a surprisingly
effective method of uncovering fatal bugs in programs [18]].

Software and frameworks that perform fuzzing are usually called fuzzers
and since the 1990s it has transformed from a niche technique to a full testing
discipline. Even though the world of fuzzing has changed it still has one true
goal; to crash the system under test by stimulating a multitude of inputs to find
any reliability and robustness flaws. Fuzzing is a pro-active testing approach
that can be used without previous knowledge of vulnerabilities and is there-
fore good at finding new vulnerabilities. It can be used to test the security of
any process, service, device, system, or network without requirements of fully
knowing the supported interface [24]].

2.2.1 Black-box Fuzzing

It is called black-box testing when a testing technique is performed without
assumption of any prior implementation specific knowledge. Only the exter-

CHAPTER 2. BACKGROUND 11

nal specifications of the application is assumed to be known [14]]. A black-box
fuzzing technique is employed when a fuzzer only utilizes the external inter-
face to craft fuzzy input and relies on the responses from the system under test
[24].

This fuzzing technique gained traction in black-hat communities when it
was used to search for vulnerabilities in commercial software products. One of
the reasons for its uptake was that it did not need access to any source code [15].
A major disadvantage with black-box techniques is that they never monitor the
application’s inner state and is therefore likely to only explore and test a small
fraction of the tested application [J3].

Example of black-box inefficiency

A commonly used example to show when black-box testing is inefficient is if
we encounter code that looks like:

if(x == 10) then {
doSomething () ;
}

and x is a 32-bit integer affected by the input. A black-box testing system
will have no idea about whether or not we entered the then-statement. And if
nothing is known about the internals of the system it will be a probability of
2% of actually entering it. If that part of the code happens to be vulnerable,
we have a low chance of exposing any of its vulnerabilities.

2.2.2 White-box Fuzzing

Different from black-box testing but similar to many other software testing
techniques, white-box testing is based on the assumption of internal knowledge
of the tested application. The adequacy of test cases generated with white-box
techniques is assessed using metrics observed in the systems. This metric is
usually coverage of either the system or another model representing the system
[26]. A popular coverage metric is code coverage and is measured by observ-
ing the control flow of the program during test cases. Typical control flow
metrics are statement, branch and path coverage; and the intention is to cover
as many of them as possible [2] .

Fuzzing using the white-box testing technique is used to counter the ineffi-
ciency of black-box techniques exemplified in[2.2.1] Because it is a white-box
scenario the tester can observe the source code and retrieve measurements
from the execution of tests. In the work by Godefroid, Levin, Molnar, et al.

12 CHAPTER 2. BACKGROUND

[11] a white-box fuzzer was invented that symbolically executes the program
with fixed input values and gathers input constraints from conditional state-
ments. A constraint solver is then used to create new inputs that execute dif-
ferent paths in the program [11]. This fuzzer called SAGE has been used in
practice and has had a remarkable impact in finding bugs in Microsoft appli-
cations. Sage was credited for finding a third of all file-fuzzing bugs during
the development of Windows 7. It is even more impressive considering it was
usually run last in the development process, indicating these bugs were missed
by every other software testing technique [[10].

There are problems with white-box fuzzing that should be considered. It
suffers performance issues with large code bases, as it causes severe overhead
in comparisons with black-box testing. A problem is also that it can focus on
the wrong things such as code coverage when it does not necessarily result in
a better bug finding capability [[11].

2.2.3 Grey-box Fuzzing

White-box infers knowledge of source code in the application and black-box
refers to tests run on already compiled code without knowing the structure of
the application. Combining these could create new opportunities to improve
the achieved results. This hybrid technique is called grey-box [24]. The defi-
nition for grey-box testing seems to vary in different reports and articles, but
the resulting core aspects of the grey-box testing methods are similar.

In the paper by Tyler and Soundarajan [27]] a grey-box monitor technique
was used to get more information from the testing process. They added an
auxiliary trace variable [5] to the application to save the states and to hook
method calls performed within a specifically selected method [27]. As they
did not use or alter any source code it can not truly be classified as a white-
box method but information about the implementation is gathered so it also
rejects the classification as black-box. This is an example of how grey-box
techniques can be used to gain more information without strict requirements
on the system.

Applying the grey-box techniques to improve fuzzers has been done and
one famous grey-box fuzzer is called American Fuzzy Lop (AFL). It uses com-
pile time instructions and genetic algorithms to automatically create test cases.
AFL has been used to find some very notable bugs in systems such as smart
phone platform Android and open source DNS server BIND [12].

CHAPTER 2. BACKGROUND 13

2.2.4 Evolutionary Fuzzing

Evolutionary testing is a software testing technique that uses ideas and con-
cepts found in the study of genetic algorithms [24]]. Genetic algorithms use
combinations of previous inputs to optimize the effectiveness of the next in-
put. This is done by culling the inputs with bad performance while mixing
those with good performance with each other to form the next generation of
inputs. The idea is loosely based off genetics and is often compared to Dar-
win’s theory of evolution. For these algorithms to apply to software problems
a numerical fitness value must be computable from an execution to allow for
the comparing of input performance [31]. As with white-box testing, code
coverage is a possible candidate for this fitness value. Using code coverage as
fitness metric, a fuzzer would let the input that caused high code coverage to
survive while discarding the inputs that yielded low code coverage. Evolution-
ary testing can be considered as either white-box or grey-box testing depending
on what is required to measure fitness in the application. It can be classified
as grey-box because it is possible to calculate code coverage without access to
source code using a debugger attached to the application [7]].

Evolutionary algorithms has been used with good effect on fuzzing and one
example is the Evolutionary Fuzzing System (EFS). It utilizes evolutionary
algorithms to both learn the targeted protocol and to find effective fuzzing
input. The goal of the system is to reduce the developer times while providing
a better probability of finding bugs. EFL uses code coverage as its fitness
metric [[7]].

Code coverage as testing metric has been criticized for not always provid-
ing an accurate representation of the performance of a specific input. More
specifically, high code coverage does not imply a better bug finding capability
[11]. The reasoning is that even if 100% of the code is covered, some vulnera-
ble parts could have been executed with benign data and not triggered bugs that
may exist. In response, it is then argued that the metric is still useful because
it is realistic to assume that less tested code has a higher probability to contain
trivially triggered errors [4]. Another argument with similar reasoning is that
no bugs are found in code that is not executed [24]. However, one can see
that two branches of execution may be exclusive and one of the two provides
better code coverage than the other. An evolutionary fuzzer would conven-
tionally choose the branch with higher code coverage and the other branch is
never tested. If there exist vulnerabilities in the lower code coverage part, the
fuzzer would miss them. To counter this, Rawat et al. [21] applied weights
on blocks of code to indicate the importance of reaching that part. Less fre-

14 CHAPTER 2. BACKGROUND

quently reached code would generally get a higher weight and easily reached
code would get a lower weight. An execution of a testing input would accu-
mulate weight based on what code it executed and it would be given a score
directly calculated from the weights. This would then be used as their fitness
value [21]].

2.2.5 Fuzzing Test Case Generation

Fuzzing has grown in popularity because it is easier to generate inputs auto-
matically than to manually create them by hand. Both quality and quantity of
the fuzzing inputs are two of the most important aspects of successfully finding
vulnerabilities [[19]. This section describes some categories of fuzzing input
construction and what the advantages and disadvantages of them are. The art
of creating fuzzy input is often only referred to as fuzzing.

Random Fuzzing

Random fuzzing is a simple method of creating fuzzing input. It works by
using an algorithm that generates data at random and sending it to the ap-
plication. It has potential to detect a lot of bugs but the inputs will often be
considered invalid and rejected by the application before any vulnerable code
has been reached. [28]].

Generation-based Fuzzing

Generation-based fuzzing is a test case generating technique that involves build-
ing entire inputs from the ground up. This is not to be confused with the word
generations that might appear when describing iterations in evolutionary algo-
rithms. To perform generation-based fuzzing, a specification of the application
is used to describe how the inputs should be constructed. This specification
could be an RFC or something similar. The key to making effective test cases is
to make them different from valid data but at the same time make them similar
in structure. Valid data would probably pass through the application without
errors and significantly different data would be rejected quickly. The advan-
tage of using generation-based fuzzing is that it is very effective at finding bugs
due to the easy generation of semi-valid fuzzy input once the specification is
understood. The drawback is that it takes a lot of upfront work to understand
the specification [[19].

CHAPTER 2. BACKGROUND 15

Mutation-based Fuzzing

Instead of constructing original input for the tested application, one can use
the technique called mutation-based fuzzing. This technique avoids the chal-
lenge of understanding the specification by using existing valid input as its
seed. It then mutates the valid input by performing actions such as random bit
flipping to cause problem in the application. More advanced methods of se-
lecting mutations that uses mathematical models for optimization of the muta-
tions to increase its bug finding capability have been proposed [6]. The benefit
of mutation-based fuzzing is that there is no requirement of knowledge about
the application beforehand and is therefore easy to create. A disadvantage is
that there are not many possibilities for different inputs as the fuzzer has lit-
tle knowledge about the structure of the input which could lead to lower bug
finding capability [19].

Intelligent and Dumb Fuzzing

The names intelligent and dumb (non-intelligent) fuzzing appears in a lot of
texts about fuzzing and they refer to the notion of whether or not a fuzzer
knows the protocol (specification). Intelligent fuzzing has information about
the specification while the dumb fuzzer does not. It is in general expected
that intelligent fuzzing covers more code than the dumb and thus uncovers
more bugs. Intelligent fuzzers are, however, more time consuming to create
[24]. A generation-based fuzzer is obviously intelligent (otherwise it would
be equivalent to a random fuzzer) but a mutation-based fuzzer could also be
intelligent if it made intelligent mutations such as repeating certain fields in
protocols.

Chapter 3
Related Work

This chapter provides a more detailed view of related work that directly relates
to this project.

3.1 CoAP Fuzzing

Fuzzing on CoAP implementations is not thoroughly researched and the only
publicly available work that could be found at the time of writing this was
the publication by Melo, Geus, and Grégio [16] and its corresponding mas-
ter’s thesis by Melo [[17]. This section will mostly present information from
the master’s thesis as it is the more thorough presentation and both the mas-
ter’s thesis and the publication are based on the experiment. The study is fo-
cused on the use of black-box fuzzing to test the robustness of currently avail-
able CoAP server implementations. A fuzzing framework is presented that
utilizes five different black-box fuzzing techniques: random, informed ran-
dom, generation-based, mutation-based, and smart mutation-based fuzzing.
The regular random fuzzer would randomize entire CoAP messages (random
payload in the UDP packet). To give the random fuzzer a fair chance they
constructed another version called the informed random fuzzer that only ran-
domizes selected parts of the CoAP message to avoid the immediate rejection
of the input. The smart mutation-based fuzzer is a more intelligent version
of the mutation-based fuzzer that mutates specific parts of a CoAP message
instead of performing simple bit flips at random. These mutations follows cer-
tain mutation-rules such as testing O, 1, and -1 when an integer is expected.
They were adapted from the rules made in the work by Vieira, Laranjeiro, and
Madeira [30] to make them suitable for CoAP fuzzing [|17]].

The implementations they chose to perform fuzzing on were searched for

16

CHAPTER 3. RELATED WORK 17

on the internet using a number of search engines and repositories. Because
of CoAP’s recent conception there are not a lot of implementations out there,
and only a few of commercial products use the protocol. They chose any ap-
plication they could find that listened for CoAP packets on a UDP port [17]].

Important concepts of false positives and reproducibility are brought up in
the study. Not all errors found with a fuzzer are guaranteed to be actual flaws
in the system. Sometimes it could be something that went wrong with the
heartbeat pulses such as timing out before the application was able to respond.
Not all errors found with a fuzzer are guaranteed to be actual flaws in the
system, and some may be hard to find and reproduce. A majority of the non-
reproducible errors were found in implementations built in C and it is assumed
that it is because low level languages are more prone to race conditions and
other issues that might affect robustness and reliability [[17]].

The results of the study were impressive. A total of 100 errors were found
in 14 out of 25 applications. There was a 83% error reproducibility. The av-
erage false positive rate was 31,3% but in implementations that found at least
one true positive error (a real error), the false positive rate was 1,86%. A con-
clusion of the study states that different or combinations of fuzzing techniques
that cover more code could be used to find more vulnerabilities [[17]].

This master’s thesis separates from Melo’s master’s thesis in that this one
will explore the effect of evolutionary elements in fuzzing of CoAP applica-
tions while Melo’s only examines the effect of black-box fuzzing. Developing
an Evolutionary Fuzzer is more a complex and time-consuming process than
for a black-box fuzzer which means that this report will not be able test as
many applications as Melo.

3.2 Evolutionary Fuzzing

There are many papers on the subject of evolutionary fuzzing and they have
different applications and use different methods for their evolutionary algo-
rithms.

VUzzer is an advanced evolutionary fuzzer that uses Dynamic Taint Anal-
ysis (DTA) to evolve its input. DTA works by tainting input and during exe-
cution examine which operations are affected by the tainted input. DTA in
VUzzer is mainly used to satisfy conditional statements with strict require-
ments to cover more obscure code paths and to avoid code that handles errors
which, if visited, would indicate rejection of input. For fitness calculation they
use weighted blocks of code to give paths a distinct fitness value, where less
frequently visited code is given a higher weight and therefore higher priority

18 CHAPTER 3. RELATED WORK

for the evolving input. After successful results they conclude that their method
is a viable and scalable strategy [21].

IFuzzer is another fuzzing tool that uses evolutionary algorithms to im-
prove itself. It targets JavaScript interpreters and was used on an older version
of Mozilla’s JavaScript Interpreter with success. To use fuzzy testing on inter-
preters, code is generated and sent to the interpreter with the hopes of crashing
it. Unlike other evolutionary fuzzers, IFuzzer does not monitor the targeted ap-
plication for code coverage. It instead just listens for crashes, warnings, and
errors etc. It also analyzes its own generated JavaScript code statically using
structural metrics such as cyclomatic complexity to generate as unusual code
as possible. They conclude that the technique works but there exists room for
improvement, especially in the rules of mutation between generations [29].

Evolutionary Fuzzing System (EFS) is one of the first fuzzing projects
to feature evolutionary algorithms to improve testing input and is presented
in both the publication by DeMott, Enbody, and Punch [7/]] and in the book
by Takanen, Demott, and Miller [24]. EFS was presented as a revolutionary
grey-box fuzzer that could be applied to any interface without needing to know
any details about its specification. It instead learned the protocol using genetic
algorithms, and in the same time creates better fuzzy input each iteration. A
framework called PaiMei was used to pre-analyze binaries, attach debugging
flags, and then measure code coverage for each test. The evolutionary algo-
rithm was using a layered mutation approach where sequentially tested input
was grouped into full transactions called sessions, and sessions are group to-
gether into pools. Fitness was maintained in both a session level and a pool
level. Sessions are used because an application may have persistence between
inputs that could cause different behaviour and pools are used because groups
of less fit sessions could be better when measured as a group than any single fit
session, which effectively provides a solution to evolutionary algorithms only
selecting a long path instead of a potentially vulnerable shorter path. Main-
taining fitness on a session level was done by both crossing over sessions so
that the inputs themselves used are mixed among each other and by mutating
the inputs according to a set of mutation-rules. The fitness metric measure in
sessions was the coverage of each session. Maintaining fitness on a pool level
was also done with crossovers and single pool mutations. Pool crossovers are
similar to session crossovers; sessions are mixed together from different pools
but the fitness was calculated using the sum of unique code covered for all ses-
sions in the pool. Mutating pools was done by removing sessions and adding
new sessions according to session initialization rules. EFS was used to test a
software application called Golden FTP server with success and it was con-

CHAPTER 3. RELATED WORK 19

cluded that the two-layered evolutionary process with sessions and pools was
effective [7]].

Chapter 4
Methods

To provide an answer for the question this report aims to answer, an experi-
mental suite was developed that is able to start a CoAP server, send a set of
testing parameters in forms of CoAP packets, measure fitness of the running
server, and use the results in an evolutionary algorithm to provide a new set of
testing parameters. By recording the code coverage of each test set and record
the crashes, a projection of the success of using evolutionary algorithms in
CoAP fuzzing will be provided.

This chapter will explain in detail the practical experiments that were done
to provide this report with quantifiable results. The content will serve as a
foundation for the discussion and ultimately the conclusion. As large portions
of the topics of fuzzy testing and evolutionary algorithms involve intuitive
thinking and often has a stochastic outcome, the decisions made for the exper-
imental suite will be accompanied with a thought process or argument for the
choice of method.

4.1 Targeted Software

In order to get as accurate results as possible, available open source software of
CoAP server applications were used as targets for the fuzzy testing. There are
both good and bad consequences of choosing this method instead of using a
specially prepared software as target for the testing,. An already available open
source system reflects the real world directly and any vulnerabilities discovered
would irrefutably favor the testing method. Another perk is the time saved by
not having to develop a custom CoAP server application. The issues that arise
with using existing software are that there are no certainties of the existence
of vulnerabilities and the potential lack of support for diagnostic tools. We

20

CHAPTER 4. METHODS 21

. Evolutionary
Seed File algorithm
‘ T Code Coverage Tool
1 6 /]
l] 3
/ 4##4' CoAP Server
Fuzzer Server Handler [

Figure 4.1: Flow diagram of test suite

could for example systematically measure the effect of testing methods if the
software had known planted vulnerabilities.

Due to time constraints and the desire to research with measurements based
on the real world, the decision was made to use already available CoAP server
applications. In the work by Melo [17] all available CoAP servers were fuzzy
tested but because this experiment’s method has requirements such as com-
patibility with fitness measuring and increased overhead due to process mon-
itoring and fitness calculation, only a set of selected server applications will
be tested. Some servers may for example require a different operating sys-
tem and would require lots of work to make compatible with the experimental
suite. The selected servers are listed in the results.

The server binaries used in the tests are the example or test servers provided
in the base source code that allow the user to test the software without initial
configuration. These were chosen to reduce the time required to set up the
experiments, as they are already working server applications. If more than one
example binary exists, the one exposing the most endpoints will be chosen.

4.2 Fuzzing Software Suite

This section provides an overview of the system developed for this experiment.
A flow diagram of the important parts of the fuzzing suite is seen in Figure
4.1

To start the fuzzer we include a seed file that contains a simplified form of
CoAP message. This includes small packets containing a method, URI, and
payload if necessary. In Figure [.1]in action 1, the fuzzer parses these seed
packets and places the information of them into the internal CoAP message
structure. The fuzzer uses these seed packets to generate an initial set of test

22 CHAPTER 4. METHODS

parameters. These parameters are in the form of CoAP messages. Action 2
is the process of the fuzzer telling the server handler to send these inputs to
the targeted server. The server handler then starts the server using the Code
Coverage Tool as seen in action 3. The CoAP messages are sent to the server in
action 4. After the CoAP server has finished the processing of all the messages
the server handler sends a final input that, if the server is running, will always
yield a response from the server, to check if the server has crashed. The server
handler then shuts down the server to let the Code Coverage Tool write the
code coverage information. At action 5 the Server Handler reads the code
coverage information from the Code Coverage Tool and translates it into a
fitness value. The fitness values are sent to the Evolutionary Algorithm in
action 6. The Evolutionary Algorithm analyzes the fitness values and decides
what mutations to make and what parameters to cull in order to create a more
fit next generation. This decision is sent to the Fuzzer in action 7 and the whole
process repeats itself in action 2.

To switch between the targeted CoAP server applications the only thing
that in theory should need is to change the CoAP server module, and monitor
the other application with the Server Handler and the Code Coverage Tool.
But in the real world there may be discrepancies in how the server is run and
what endpoints are available, and manual adjustments may be required. The
endpoints (that may differ between server applications) can be tested by sim-
ply changing values in the seed file to that the fuzzer bases the parameters on
the available endpoints, in the attempt of triggering more server functional-
ity. A more vicious problem is a that servers take different time to start and
some servers may spawn additional processes, making it harder for the Server
Handler to predict which processes to end. This requires hands on testing to
make sure the system works the way it should on each server. For the Server
Handler to be robust enough to reliably handle a server it may need to delay
its operations to allow the server time to act. This causes delays in the system,
causing it to be slowed down. If it fails to wait for the CoAP server we could
experience false positive results in crashes. To not report any false positives,
all packets that causes errors are tested again for reassurance.

4.3 Fitness Calculation

To use an evolutionary algorithm we need to calculate a fitness value for each
parameter we are testing, to decide on which parameters are more likely to
cause crashes. Code coverage is used as the fitness value for this experiment.
This is because a higher code coverage of a test is more likely to encounter

CHAPTER 4. METHODS 23

bugs than a test with less code coverage.

Calculating code coverage for this experiment requires measurements based
on the packets being handled in the server. There are several possible ways of
performing this kind of monitoring. The best and most accurate one would
be to start measuring code coverage once the server has started and then send
one set of packets. After the set of packets has been sent, the code that was
executed when handling the packets is counted and we start measuring again
to count the coverage of the next set of packets. Unfortunately, no tool was
found that properly supported this functionality resulting in a less convenient
process to be used. This process is to measure code coverage of a server pro-
cess from start to end, and reporting code coverage for the whole process. This
will result in a lot of covered code that is related only to start up the server and
the precision of packet based code coverage is lost. But because the difference
in code coverage between packets is the same regardless of counting start up
code coverage, it sufficed as the method to use.

The code coverage tool used in the experiment is an open source run time
code instrumentation tool platform called DynamoRIO [9]. A major benefit of
using DynamoRIO is that it does not require instrumentation before compila-
tion, and can therefore be attached to pre-compiled binaries. It has a built in
tool called drcov that is used to calculate code coverage. To run this you first
run DynamoRIO with the tool drcov attached and feed it with a shell command
that runs the server binary, and once the server binary process is finished or
killed, DynamoRIO writes the code coverage information in a log file. The
code coverage log contains the coverage of the code in terms of basic blocks.
Because the log not only counts the code of the binary, but also the linked li-
braries, the decision was made to filter out only the modules that belong to the
source code of the server application, and discard the coverage of the linked
libraries. The reason for this is that the purpose for this project is to test the
robustness of the actual servers, and instrumenting the evolutionary algorithm
with information that belongs to external code could steer it of its intended
purpose of covering the source code. Code coverage is parsed in the form of
an absolute value rather than a percentage based value because DynamoRIO
only reports the basic blocks that have been covered. This is fine for coverage
comparisons but results in difficulties knowing how much of the code base
has not yet been covered, which could be useful in strengthening conclusions
made on the completeness of the tested parameters.

24 CHAPTER 4. METHODS

4.4 Crash Monitoring

The purpose of robustness testing is to make the application crash in an un-
intended way, so that it can be fixed before any consumer encounters it. This
means that there needs to be functionality in the test suite to check if the appli-
cation has crashed. Server applications can be considered alive if it responds
to requests made to it. As a result, it could emit false negatives to check if the
process is running as a liveness check. The false negatives could come if the
server process is running but it cannot reply to requests due to specific state
or bug in the application. A well known request is therefore used to check the
liveness, as it will yield a reply if the server is alive and timeout if the server
considered dead. The request used is the /.well-known/core URI that most
CoAP servers support and will always reply to.

Checking liveness occurs at the final stage of each set of test packets sent to
a server process. To track the packets that caused the server to crash, the suite
logs all the sent packets in a unique file once a crash has occurred, for later
review. Due to the fitness tool used, the test suite will calculate the liveness
request as part of the code coverage. This should not have an impact on the
performance of either the fuzzer or the evolutionary algorithm because all set
of test parameters will include it, and it is highly unlikely that a valid well
known packet itself would cause any crashes.

4.5 Evolutionary Algorithm

Choosing the best evolutionary algorithm to use in fuzzy testing CoAP ap-
plications is a hard task that require careful research on the specifics of both
CoAP as a protocol and the properties of algorithm. The focus of this research
was to examine the effects of evolutionary fuzzing on CoAP applications and
a decision was made to not put time and effort into researching the best evo-
lutionary algorithms. Because the primary inspiration for this research came
from the initial work from DeMott, Enbody, and Punch [7], the chosen algo-
rithm became the two layer approach described in that paper. In this section
the two layer evolutionary algorithm will be explained along with how was
tailored to fit the CoAP protocol.

4.5.1 Components

Originally, the evolutionary algorithm described in DeMott, Enbody, and Punch
[7] contained four data components named pools, sessions, legs, and tokens.

CHAPTER 4. METHODS 25

This made sense as they were fuzzing an FTP server called Golden FTP server.
Tokens were pieces of data that could be of different types such as integer, char-
acter string, or binary string. A leg was a collection of tokens and performs
either a read or a write with the tokens in its collection. A session was a col-
lection of legs and represented a whole transaction with the target application.
Sessions were grouped together to form pools. Fitness were calculated and
maintained on a session and pool level separately [7].

Adopting the original components to work on a CoAP server is not compli-
cated but since an FTP server and a CoAP server handle different types of in-
puts it is still a necessary process. A CoAP message is the primary component
used in communications with a CoAP server. This contains all the information
the CoAP server needs. The contents of each CoAP message will be subject
to mutation but the evolutionary algorithm does not measure the performance
of each message. Instead a session similar to the one used originally is used
for the minimum single fitness value. A session in CoAP will comprise of a
set number of CoAP messages. A session’s performance is measured by start-
ing the server and sending each contained CoAP message sequentially to the
server before closing and calculating the code covered by all CoAP messages
together as fitness. Groups of a set number of sessions are divided into pools
that represents the outer layer of the algorithm. Fitness is calculated for each
pool along with the fitness of each session inside the pool. Instead of adding
each pool’s sessions’ fitness into a large sum, the sum of all unique code cov-
ered is calculated for all the sessions in the pool. The unique code covered by
a pool is guaranteed to exceed or be equal to the fitness for any single session,
because the worst case is that the single best session’s code coverage is the
superset of all other code coverage in the pool. Figure 4.2 shows an exam-
ple of a pool containing two sessions where each session contains five CoAP
messages.

4.5.2 Generating Seed Inputs

The initial inputs are generated through the use of a seed file that defines some
basic properties of CoAP messages. These properties could for example be
the URI, method and value of a request. Once loaded into the program they
become a vector of example messages that is used for generating new input.
At the start of an execution all the pools are filled with sessions that are filled
with generated CoAP messages. An initial mutation is made on the generated
messages to avoid sending valid packets to the server.

26 CHAPTER 4. METHODS

Pool
Session Session
CoAP Message CoAP Message
CoAP Message CoAP Message
CoAP Message CoAP Message
CoAP Message CoAP Message
CoAP Message CoAP Message

Figure 4.2: Example of a pool containing two sessions, each containing five CoAP
messages

4.5.3 Evolutionary Mutation Operators

In the original version of the algorithm there were four operators performed on
the components each generation. For pools there were Pool Crossover and Pool
Mutation, for sessions there were Session Crossover and Session Mutation.
The crossover operations mixes contents between two sessions or two pools by
combining the first x elements of one operand with the remaining y elements
of the other operand, forming a new session or pool. The mutation operations
perform operand specific mutations on existing sessions or pools. Selection
of operands depend on the measured fitness. Adapting these operations for
CoAP was done in the following manner:

1. Session Crossover is done by first ordering the sessions of a pool ac-
cording to their fitness value, and denote this generation as G. The most
fit session is automatically copied into the next generation that we can
call G’, ensuring the survival of the most fit. A selection of two ran-
dom distinct sessions from G are mixed together to form a new session.
To increase the survival of the fit there is a 70% chance of selecting a
random session from the top half of G, and a 30% chance of selecting
a random session from the whole of (G. The mixing is done by using a
random crossover point which is some index that exists in both sessions,
and then connect the top part of the first chosen session to the bottom

CHAPTER 4. METHODS 27

Session A Session B
CoAP Message A1 CoAP Message B1
CoAP Message A2 CoAP Message B2 Crossover
€ Point
CoAP Message A3 CoAP Message B3
CoAP Message A4 CoAP Message B4
CoAP Message A5 CoAP Message BS

New Session

CoAP Message Al

CoAP Message A2

CoAP Message B3

CoAP Message B4

CoAP Message BS

Figure 4.3: Session Crossover operation with crossover point 2

part of the second chosen session, where the top and bottom parts of
the sessions is separated by the crossover point. An illustration of this
operation is seen in Figure 4.3 The new session is then added to new
generation GG'. This session crossover is repeated until generation G’ has
the desired amount of elements.

Session Mutation is the act of modifying parts of the session by apply-
ing one of the mutation rules seen in section 4.6 on a random part of
a CoAP message. In order to maintain the fitness, the most fit session
of each pool is not mutated. Any other sessions has a set probability of
being mutated.

. Pool Crossover is very similar to Session Crossover but the fitness is

calculated using a sum of unique code covered of all contained sessions
and the crossover operation is applied to whole sessions instead of mes-
sages. Figure depicts a pool crossover operation.

4. Pool Mutation differs from a session mutation. The most fit pool is

28

CHAPTER 4. METHODS

Pool A Pool B
Session A1 Session B1
Session A2 Session B2
Session A3 Session B3
Session A4 Session B4
Session A5 Session B5

New Pool

Session Al

Session A2

Session B3

Session B4

Session B5

Crossover
T4 Point

Figure 4.4: Pool Crossover operation with crossover point 2

CHAPTER 4. METHODS 29

again not mutated. All other pools have a 50% chance of adding a ses-
sion with the help of the seed generation, and 50% chance of removing
an existing session. If the size of pools have a set value then there is
instead a 50% chance of both removing an existing session and adding
a newly generated seed session.

4.5.4 Miscellaneous Evolutionary Algorithm Details

The original version of this algorithm used a fixed generation based wait before
applying operations. Session crossover was applied after every generation,
session mutation every seven generations, pool crossover every five genera-
tions and pool mutation every nine generations. For this experiment the inter-
val for session mutations to occur is reduced to every three generations because
the intuition is that it is more likely that malformed values in the packets will
cause problems for the parser, rather than packets triggering an erroneous state
in the server that would cause problems for future packets. The reason for this
is because each message sent independently to the server and is parsed inde-
pendently. Both individual parsing errors and combination errors are however
possible so no changes were made on the timings of the other operations. Dur-
ing a session mutation, two random CoAP messages in the session are chosen
as targets to perform mutations on, as the original algorithm would perform
two different mutations on two different input tokens.

4.6 Mutations

The list of mutations to make on CoAP messages is an important building
block in the fuzzer as they reveal all possible fuzzy input that can be created.
Because mutations can be applied to already mutated messages, the combina-
tions of mutations are important to consider when analyzing what input can
be created. The mutation rules used in these experiments are heavily based on
rules created for the smart mutational fuzzer used in the work by Melo [17].
These rules were used because they are tailored for the CoAP message for-
mat and has already been used to fuzzy test CoAP applications with success.
An issue with this is that many of the inputs this paper’s fuzzer creates will
be similar to already tested inputs and may uncover fewer bugs in the earlier
generations as they could have been fixed. A veiled benefit of testing already
tested software with a new technique is that if the testing is successful, there
is reason to believe the new technique is advantageous.

30 CHAPTER 4. METHODS

A table of the adapted mutation rules for different types and parts of CoAP
messages are seen in Tabled. 1| The types defined in the table are based of the
types defined in the CoAP RFC [23]], except for Payload which is a section of
a message that can have different types between messages. In addition to the
type-based mutations seen in the table, a bit flip mutation is also used. A bit flip
changes the value of one random bit in the CoAP message. The targets for the
mutations, both type-based and bit flip, are chosen among a number of sections
defined in each CoAP message. Figure[2.T|shows the available sections that are
individually mutated in the mutation engine, except for the Code section that
is split into code class and code detail. These target sections have a different
probability of being selected for mutations. The probabilities were chosen by
the author to more often mutate the sections with a high number of possible
values, to minimize the risk of testing the same value in a redundant manner.
For example, the Version section of a message is currently required to be 1
according to the specification, and if it is not 1 then it should be rejected by
the server. There is therefore little reason to mutate that part of a message as
many times as we would change the options where a great number of values
and combinations are valid. Each target section is given a set amount of tickets
and when the mutation happens a random ticket is drawn to choose what target
to mutate. This means that a higher ticket count means a higher probability of
being mutated. Table[d.2]shows the ticket distribution used in this experiment.

The Option section of a message has special handling for its mutation due
to its special structure. Options differ from normal targets because it can have
different number of elements and uses special ordering and delta values. In
case there is a mutation targeted for the Option section and there is no option
available then a new option is automatically created and added. There is oth-
erwise also a possibility for removing or adding an option. If options exist
and no removal or addition of options occur, a random option is targeted for
mutation. The option is mutated based on what type the option has and uses
the same rules as for any other section of the message. Only the value of the
option is used in the mutation, but the length fields of each option are also
adjusted to fit the new value.

CHAPTER 4. METHODS 31

Type Test Name Parameter Mutation
StrEmpty Replace by empty value
String Replace by prec}eﬁned string with
random length in the range of the
StrPredefined valid minimum and valid maximum,
containing a random mixture
of characters: \0’ ‘a’ ‘A’ " ‘\’ ‘%’
Add non-printable characters to the
StrAddNonPrintable string. Any character with ASCII encoded
value less than 32 is appended to the string
StrOverflow Add characters to overflow max size
UintEmpty Replace by empty value
UintAbsoluteMinusOne Replace by -1
UintAbsoluteOne Replace by 1
UintAbsoluteZero Replace by 0
Uint | UintAddOne Add 1
UintSubtractOne Subtract 1
UintMaxRange Replace by maximum value valid for the
parameter
UintMinRange Replace by minimum value valid for the
parameter
UintMaxRangePlusOne Replace by maximum value valid for the
parameter plus one
OpaqueEmpty Replace by empty binary string
Opaque Replace by predefined binary string with
random length in the range of the valid
OpaquePredefined minimum and valid maximum, containing
a mixture of bytes with random value
between 0 and including 255
OpaqueOverflow Add characters to overflow max size
EmptyPredefined Replace by predefined value
Empty EmptyAbsoluteMinusOne | Replace by -1
EmptyAbsoluteOne Replace by 1
EmptyAbsoluteZero Replace by 0
PayloadEmpty Replace with empty binary string
Payload PayloadPredefined Replace with predefined binary string.

Uses same rules as for OpaquePredefined

PayloadAddNonPrintable

Add a non printable character.
Uses same rules as StrAddNonPrintable

Table 4.1: Type-based Mutation Rules

32 CHAPTER 4. METHODS

Target Tickets
Version 1
Type 3
Token Length 2
Code Class 3
Code Detail 3
Message Id 5
Token 5
Options 30
Payload 15

Table 4.2: Mutation target ticket distribution

4.7 Tested CoAP Attack Vector

The attack vector that is generally available to an attacker in CoAP servers is
the message that communicated to the server. There is number of features that
this experiment does not cover, that could possibly contain vulnerabilities. A
reason for not testing these features is that it takes time to modify the fuzzer
to cover them, and that the basics of the protocol is the most import piece of
code to test.

Some notable features mentioned in the CoAP RFC [23]] and elsewhere
that this experiment does not explicitly test (that should be tested in production
situations if available):

e Observe option
e HTTP-CoAP and CoAP-HTTP proxies
e DTLS

e CoAP over TCP, TLS, and Websockets (defined in RFC8323 [3]])

4.8 Implementation

This section describes details about the practical implementation of the exper-
imental suite.

Developing the experiment suite was done using C++ as the programming
language with the only external tool being DynamoRIO for calculating code

CHAPTER 4. METHODS 33

coverage. The creating of CoAP messages, mutations, communication was
done using only C++ standard libraries.

DynamoRIO was invoked using a system command, thus creating a new
process that uses the same environment as the experiment suite. This has both
advantages as well as disadvantages compared to invoking DynamoRIO func-
tionality directly from the fuzzer process. The main benefit is that it is easy
to implement and configure as long as the correct path to the server binary is
used. The disadvantages of this approach is a decrease in performance, which
leads to fewer test inputs sent in a given time frame. After DynamoRIO is
started as a new process, it runs and monitors the CoAP server as another pro-
cess and writes the code coverage information to a file only once the CoAP
server is terminated. The fuzzer sequentially sends the inputs over the local
network and once it is finished it has to find the process of the CoAP server
and terminate it. A problem with this approach is that there needs to be delays
in the fuzzer to accommodate for the writing of code coverage logs and the
general delay when communicating over the operating system. These ineffi-
ciencies are addressed in section

The source code for this project and experiment can be found at https:
//github.com/fliljeda/CoAP-Evo-Fuzzing—-Msc. Animportant
detail about the source code is that it is written purely as a proof of concept for
this report and there was no intention of developing it as a tool to use in pro-
duction environments. As a result it will most likely not run properly on any
other machine unless manual configurations and installments has been made.
The source code is linked in this report for transparency reasons; any detail
not mentioned in this section is observable in the git repository.

4.9 Running the experiment

Due to the manual work required to tailor the system to handle different servers,
only a few were chosen to be tested. Looking at the work by Melo [|17]], there is
a huge difference in robustness between applications due to the fact that there
were 17 found bugs in one of the applications and few to none in others. To get
some diversity to be able to draw comparisons, three server applications were
chosen. One that had lots of bugs, one that a had a few bugs, and one that had
few to none bugs. A requirement was also that it should be compatible with
DynamoRIO. The chosen CoAP servers were:

e Canopus, written in Golang. Suspected of containing a large amount of
errors. Foundathttps://github.com/zubairhamed/canopus.

https://github.com/fliljeda/CoAP-Evo-Fuzzing-Msc
https://github.com/fliljeda/CoAP-Evo-Fuzzing-Msc
https://github.com/zubairhamed/canopus

34 CHAPTER 4. METHODS

Version e374f5b.

e Libcoap, written in C. Believed to have comparably few bugs. Found at
https://github.com/obgm/libcoap. Version 102836¢.

e Libnyoci, written in C. Bugs believed to exist but in modest numbers.
Found athttps://github.com/darconeous/libnyoci. Ver-
sion 64cac86 tagged full/latest-release.

A server test can begin once initial configurations has been done for the
tested server. This includes creating a customized seed file that contains ex-
ample CoAP messages that can be parsed and sent to the server and changing
the configuration file so the testing suite can identify the server binary to exe-
cute, the module to include in filtering of fitness logs (a method of increasing
the accuracy of fitness calculations described in Section @) and where to di-
rect the logged output. Once the initialization is complete, a few practical test
executions of the real tests are done to see if there are any crashes or failures.
The failures monitored are the responses of the server and the fitness calcula-
tions. Responses from the tested server are logged as output and the server is
expected to respond occasionally making it visible in the logged output. Fit-
ness is monitored by observing the log file in real time to make sure it does
not approach zero, as it would mean the server is not running correctly. If the
initial testing looks promising, the real testing for the research is run by exe-
cuting the main program of the experimental suite. The tests are then run as
described in 4.2 autonomously using hard coded parameters to limit the size
of each test.

The experiment parameters, such as number of generations and sizes of
pools, were inspired by the experiment in the work by DeMott, Enbody, and
Punch [7]. Some parameters differ from their experiment due to the struc-
tures of the algorithm components. For this experiment each server was tested
twice, where each test ran for 100 generations. Each generation contained five
pools, each pool contained five sessions each, and every session contained ten
CoAP messages. The tests took about 3 hours each to complete on a machine
running Ubuntu 18.04.2 LTS 64bit, with Intel® Core™ i5-4210U CPU @
1.70GHz x 4.

Every generation a fitness values of both the best Pool and the best Ses-
sion were logged. Because the algorithm tends to focus survival on the most
fit test cases it is more valuable to record the best performing in each gener-
ation, rather than an average, as it more accurately project the success of the
algorithm. If a crash occurred, the session that caused the crash was saved

https://github.com/obgm/libcoap
https://github.com/darconeous/libnyoci

CHAPTER 4. METHODS 35

for false positive testing after the experiment is complete. In cases where the
server provided any error message, it was separately logged for a simple root
cause analysis of any encountered bug.

Chapter 5

Results

This chapter presents the results gathered from the experiments described in
sectiond] The results consist of code coverage graphs representing the fitness
curve of the evolutionary algorithm on each server, a display of the found bugs
and errors, and a lightweight root cause inspection of the encountered bugs.

The fitness results of the two experiments performed on each server is seen
in the graph figures of each server section. The Y-axes corresponds to the
number of executed basic blocks for the current generation of the experiments.
Two lines track the progressions of the most fit pool and the most fit session
in each generation.

5.1 Canopus

Figures[5.1and[5.2]shows the fitness graphs of the two experiments performed
on Canopus. Both experiments started at roughly the same code coverage, at
around 12200 basic blocks. The general progression of the experiments is a
slight increase by roughly 100 basic blocks. Pool code coverage fluctuated
greatly in both experiments and in Figure [5.1] for experiment 1 it causes the
pool code coverage to start with the same coverage as it ends with. But the
pool code coverage tends to increase in the generations after a fall has occurred,
visible from generation 5 to 70. From generation 70 to 100 it seems to decrease
slightly. Figure for experiment 2 shows the same fluctuating pool code
coverage but the positive progression of the coverage is more visible. The
coverage seems to recover from falls quite quickly and structurally increase
from generation 1 to generation 100, finishing with a pool code coverage of
about 200 basic blocks higher than it started with.

36

CHAPTER 5. RESULTS 37

12350 T T

I
best pool
best session - - - - -

| fﬁ\ A \
h \ JH h J ﬁ i /\ﬂf' “
'\J‘”\"J VW “‘\f'r\“’ \." WV ”'mu'\' 'vw"u ;\\

f
12250 - /\/f g I'IH". AN
\ Ilr ﬁ

12300

o]

o \ / |

e \‘ N

o 12200 - [.

= | A \f

o (W

v} ',J'

w 12150 | -

h=]

8 % i .
12050 - .- -
12000 L ! ! ! ! 1 ! ! ! 1

0 10 20 30 40 50 60 70 80 90 100

generation
Figure 5.1: Canopus fitness graph experiment 1. Y-axis (code coverage) denotes the

number of basic blocks covered in the server code. X-axis (generation) denotes the
current iteration number of the evolutionary algorithm.

12400 T T

belst pool
I,'pest session == - -+ -

L A'Ae
NOASYiA j\\fﬂ\x Ilrv‘v‘_
\/

12300 M

12350

12250 |- |'\ M A i ' .
A Iv\\f\.' ANSN Nﬁ"w"yﬁ.jk/
12200 'r‘vH /

12150 |- VU P T T

code coverage

12100 |- L e o .
12050 |- s

12000 (. N

11950 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

generation

Figure 5.2: Canopus fitness graph experiment 2. Y-axis (code coverage) denotes the
number of basic blocks covered in the server code. X-axis (generation) denotes the
current iteration number of the evolutionary algorithm.

38 CHAPTER 5. RESULTS

The curve of the session code coverage of both experiments have a trend
of increasing as generations increase. Jumps of about 50 basic blocks are seen
continually of both increases and decreases in code coverage. Certain jumps
up are expected as combinations of mutations and CoAP messages triggers
a new path of basic blocks. It is, however, unexpected to see decreases in
code coverage for the best sessions. The reason for this being unexpected is
that the best session of a pool skips the mutation process and is instead im-
mediately copied to the new generation in a crossover operation. The most
fit sessions would therefore be the same and cover the same code. This sug-
gests that either the state of the server has changed or that the code coverage
measurements’ lack accuracy, either because of the tool DynamoRIO or the
implemented parsing of logs.

5.1.1 Crashes and Errors

As expected of this CoAP server there were a large number of crashes that
would hinder the server’s availability causes by sending certain packets. Due
to the unaddressed issues brought up by Melo [[17] and current lack of response
from the creator/s of the application this section will refrain from revealing
certain details about the vulnerabilities and the packets that causes such issues,
in an attempt to protect any usage of this specific CoAP server.

There were two different types of errors detected during the course of the
two experiments. The golang server outputted one of the following two error
identifiers before becoming unresponsive in an apparent crash:

e panic: runtime error: invalid memory address or nil pointer dereference

e panic: runtime error: slice bounds out of range

It is fairly simple to understand how the code breaks by analyzing the er-
ror messages; all invalid memory address or nil point dereference error mes-
sages originate from a single line of code which seems to happen because an
unchecked dereferenciation of a null value. An interesting note here is that
the error occurs in code that is meant to handle errors, and is also caused by
erroneous error handling logic. The panic: runtime error: slice bounds out of
range errors happens if the execution tries to read or write beyond the bounds
of an array structure and in these experiments it originates from numerous lo-
cations in the source code. This happens due to failure to check the bounds of
arrays/slices before writing to or reading from them.

A simple root cause analysis was performed on the malicious sessions.
One error was caused by mismatching a declaration of a value and the actual

CHAPTER 5. RESULTS 39

value in the CoAP message, causing the slice bounds out of range error. The
invalid memory address or nil pointer dereference occurred when a particular
value was placed at a particular field in the CoAP message.

Another error worth mention that did not show during the runtime of these
two experiments but appeared during testing and other stages before the final
experiments was:

e fatal error: concurrent map writes

This error occurs when writing information to an object that is locked by an
another resource. The root cause for this error is not known to the author of
this experiment.

5.2 Libnyoci

The code coverage information for Libnyoci is seen in Figure [5.3|and Figure
[5.4]for its first and second experiment respectively. Both figures have different
coverage progression but there are common traits seen in both of them. Most
apparent are the incremental spikes in best pool code coverage that quickly
fades back to the the previous value. Lasting effects on code coverage is
achieved from spikes as seen in Figure [5.4] at generations 5 through 10 and
25 through 35. Many of the smaller increases in code coverage of experiment
1 seen in Figure [5.3] are results of similar spikes. Both experiments end up
with a code coverage of a little over 1170 basic blocks. But it is also visible
that the pool code coverage started with around 1200 basic blocks in their very
first generations, though both quickly plummeted 50 to 100 basic blocks in the
first 10 generations. After the initial drop the code coverage follows a long-
term increase to about 1170 basic blocks before growing stale, except for the
spikes that is seen continuously in both experiments.

40 CHAPTER 5. RESULTS

1220 T T T T T T
best pool -———
best sgssion -] -
1210 l -
(| |
1200 | . | | H ‘ | -
4]
s | | ||
[
] 11901 ‘ ‘ ‘ .
3 | |l
o
: | :
p 11304 | | N -| i
T | ‘ ' |
| A

1170

|
- -ll
1160 —UJ ’ T .
| | | | | | | | |

1150

generation

Figure 5.3: Libnyoci fitness graph experiment 1. Y-axis (code coverage) denotes the
number of basic blocks covered in the server code. X-axis (generation) denotes the
current iteration number of the evolutionary algorithm.

1240 T T T T T
| P'| . best p_ool
| est sgssion - - -
1220 [f-’j ” | | | ||| T |||
R | -
| ‘ | || |I IP\ || lt _\/J l". | || A
L. \ \]
. IJ U A LA RONATANS

1200

1180

1160

1140

code coverage

r ——7F— T T
—

1120 | || ||||||.

100 |\ [
\J

1080 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

generation

Figure 5.4: Libnyoci fitness graph experiment 2. Y-axis (code coverage) denotes the
number of basic blocks covered in the server code. X-axis (generation) denotes the
current iteration number of the evolutionary algorithm.

CHAPTER 5. RESULTS 41

The session coverage employs a less dramatic progression than its pool
counterpart. A few spikes can be seen in both figures and as is expected the
coverage is maintained even after the spike increases, except for a few places
such as generation 71 in Figure [5.3] and generation 46 in[5.4]

5.2.1 Crashes and Errors

Libnyoci crashed on several occasions throughout both experiments, causing
the server to be unresponsive. The output from the server binary itself was
minimal and contained no information about the crashes. As a result the
logged packets from the crashes were tested on the server after attaching a
debugging tool onto it. This revealed the location of the crashes and it was re-
vealed that all the crashes experienced during the experiment originated from
the same piece of code. To find out what caused the error, a packet was dis-
sected bit by bit until no crash occurred and the liable section was found. It
turned out that by only including a certain option number with a certain length,
the server could crash by processing it. More details will not be provided as
the bug still exist in the version labeled full/latest-release as of the moment of
writing this. The bug has been patched in later versions using the information
provided by Melo [17].

5.3 Libcoap

Figure [5.5] and Figure [5.6) shows the fitness graphs of experiments 1 and 2
on the CoAP server Libcoap, respectively. Both graphs shows a pool code
coverage start at the lower half of 1600 and finish with a slight increase in
code coverage, still getting a code coverage value in the 1600 range. There
are spikes of increased code coverage in both that quickly plunges down to
about the previously calculated code coverage. Although the spikes in Figure
[5.5]1ook more dramatic than in Figure[5.6] the scale of the y-axes are different
and the graphs shows that the spikes have similar increases in code coverage
of about 50 basic blocks. The top of the spikes in experiment 1 have roughly
the same value throughout the experiment but the session coverage increases
in the first 50 generations and then stays at about 1620 basic blocks. Experi-
ment 2 shows a more varied value for the pool code coverage spike increases
and the highest value is 1750 basic blocks at generation 82, while the second
highest is generation 73 covering 1723 basic blocks. The session coverage for
experiment 2 increases greatly between generations 0 and 12, and then stays
at about 1660 code coverage until a slight increase to 1674 at generation 64.

42

code coverage

CHAPTER 5. RESULTS

1670

1660

1650

1640

1630

1620

1610

1600

1590

1580

1570

I. I I I T n T i belgt p00| I'-
= |‘| | 1 ‘ est sTsion -||| R
i f' ‘|| I ‘III| h' |III II| \ IIIﬁll || || || IL |\I |
L ‘ ||5I [A || N f' (4
‘| \ || ” |!| |‘ ||| A || . I”l I || | ||| I |' H' I| L
i Il' “l || | || I|I| || || | ll I'||'_
0 I | [A LI
| :
iR I|t._ i i
0_' £0 £D ;0 ;0 ;0 éD ;D éO ;D 100
generation

Figure 5.5: Libcoap fitness graph experiment 1. Y-axis (code coverage) denotes the
number of basic blocks covered in the server code. X-axis (generation) denotes the
current iteration number of the evolutionary algorithm.

code coverage

1750

1700

1650

1600

1550

1500

I I I I beIS‘LpOUI I
Ibests sion === -~
2l A I'| Elf
R EAYAY i '\ 1
[1 / —‘I
N\ VY WY RSNARNAL
_ I\J : i
AR
I -
I
_In_Alc —
1 | 1 | | 1 1 | 1
0 10 20 30 40 50 60 70 80 90
generation

100

Figure 5.6: Libcoap fitness graph experiment 2. Y-axis (code coverage) denotes the
number of basic blocks covered in the server code. X-axis (generation) denotes the
current iteration number of the evolutionary algorithm.

CHAPTER 5. RESULTS 43

5.3.1 Crashes and Errors

This server was expected to be resilient to fuzzy input and this seemed to
hold true for both the experiments performed on it. None of the tested in-
put managed to produce a crash that made the server unresponsive. However,
by looking at the server error output generated by the binary an error message
is present, stating that an assertion has failed and that the process was aborted.
Assertions are mostly used for debugging purposes, and a failed one does not
immediately point to vulnerabilities in the code considering the application
works as intended following the error.

Chapter 6

Discussion

In this chapter a discussion is held regarding the connection between the re-
search question, background information, methods used, and the results of the
experiments to be used as a foundation for the conclusion.

To test whether or not evolutionary fuzzing is an improvement on simpler
forms of fuzzing when testing CoAP server applications, an experimental suite
containing a working evolutionary fuzzer was created from the ground up and
then used on three different available CoAP server applications. By using ex-
isting software as targets, the results can be projected on real-life productions
with greater confidence. A classification of improvement using a specific tech-
nique, is awarded if there exists arguments that would suggest that it is useful in
replacement of the previously used technique. To create such arguments, this
report uses measurements of code coverage, comparisons to previous fuzzing
in terms of effectiveness and usability, and analyses of CoAP in conjunction
with evolutionary fuzzing as important argumentative pillars.

6.1 Code Coverage

Code coverage can affect a fuzzy input’s probability of encountering vulnera-
ble code and is therefore the fitness value used in the evolutionary algorithms.
As the evolutionary algorithm evolved each generation, it was intended that the
fitness would increase to gradually cover more and more code. Because mu-
tations are chosen randomly it is also expected that the fitness would increase
in different magnitudes at different generations.

Looking at the figures of the two servers Libcoap and Libnyoci in Figures
5.3] 5.4, 5.5 and [5.6] a pattern is visible in the differences between the best
pool coverage and the best session coverage. Pool coverage has spikes of high

44

CHAPTER 6. DISCUSSION 45

code coverage before often plunging down to the previously experienced code
coverage. Session coverage increases occasionally but seems to stay at the in-
crease code coverage. Since no modifications is done on the best session, this
progression of the session code coverage is expected. The pool code coverage
is measured based on the unique code covered by all sessions in it and there is
always a possibility of a session to be removed or mutated between generations,
impacting the unique code coverage of it; sometimes even negatively. While
expected, it is not necessarily the progression the algorithm seeks to achieve.
A good result would be for the best pool to remain on a high code coverage
as it would mutate values that affect larger parts of the code. The results of
the experiments seem to indicate that the evolutionary algorithm used is not
suitable at maintaining an increasing pool coverage. A spike in code coverage
is often quickly followed by a drop in the next generation or the one after that,
suggesting that the session crossover operation performed on every genera-
tion may be the culprit causing the drops in code coverage. Session crossover
prioritizes individually fit sessions and sessions with smaller (but potentially
different) code path could be excluded from the new sessions created by the
crossover. This means that operations with intention of increasing bug finding
capability could actually be harming the collective pool coverage and thus also
the real bug finding capability. The other operations have a chance of decreas-
ing coverage too, but as they are applied less often they are not as likely to be
the cause of the decreasing fitness in the results graphs.

In servers Libcoap and Libnyoci, the lowest points of the best pool coverage
seem to increase in over generations and suggest some kind of progress. But
it happens due to the best pool containing the best session, thus measuring
the same code coverage as that session. An equality in code coverage between
session coverage and pool coverage indicates that the best session covers a code
superset of all other sessions’ covered code in the same pool. Such a state in
the evolutionary algorithm contains only one useful session as the rest does
not affect the pool fitness. But assuming the evolutionary algorithm is applied
to a fuzzer it does not mean that the rest of the sessions are useless, because the
values in them may be different from the most fit session and trigger a crash
in a section of code also covered by the most fit session.

Canopus shows fitness in Figures [5.1] and [5.2] that differs from the results
seen from Libnyoci and Libcoap. The progression of fitness in both pool and
session code coverage jumps up and down in almost every generation. A prob-
lem with this is that session code coverage should never decrease in fitness due
to no mutations performed on the best session. This phenomenon also occurs
on a few occasions in Libcoap and Libnyoci, but not with the continuity dis-

46 CHAPTER 6. DISCUSSION

played by Canopus. The major difference between Canopus and the other two
servers is that it is written in Golang instead of C. There could be problems in
the accuracy of the code coverage tool DynamoRIO when analyzing Golang
binaries, or there could be an issue in the code coverage log parsing. The cause
for this behaviour is unknown at the time of writing this. The code coverage of
pools and sessions always differs by a noticeable amount which is the sought
after behaviour of using sessions and pools. However, skepticism should be
maintained as this observation is only seen in one of the three servers; espe-
cially after suspecting the code coverage metrics to be moderately inaccurate.
It is possible for the unique code coverage measurements for a pool to be dis-
torted by inaccurate measurements of individual sessions. If the code coverage
calculation mistakenly thinks the sessions covered different parts of the code
it would measure the pool code coverage as a sum of the inaccurate measure-
ments. Even with inaccuracies, the progression of average fitness increases
with generations suggesting that the evolutionary algorithm manages to gain
traction in code coverage. Figure[5.2]shows a better net change progression in
pool code coverage than seen in[S.I]but session code coverage has a long term
improvement in both.

A summary of the code coverage discussion so far is that the pool fitness
progression over generations is not as effective and stable as hoped, and it
may be due to the session crossover operation performed between generations.
The Golang server Canopus may suffer from inaccurate code coverage mea-
surements, but seems to have a similar net progression compared to the other
servers. Due to the massive amounts of code coverage spike increases that
quickly plummets to a lower value observed, especially in Libcoap and Lib-
nyoci, it seems as if the fuzzer mutates inputs in an effective manner to cause
the spike increases but some changes to the contents of the pools causes them
to lose the progression. This suggests that different operations may increase
the effectiveness of the evolutionary algorithm’s progression when applied on
CoAP servers.

6.2 Crashes

The purpose of any fuzzy testing is to encounter bugs during the testing. The
quality and quantity of bugs found by a fuzzer is a good metric of its success
and for this reason the encountered crashes will be discussed and compared to
previous work on CoAP fuzzing

In the server Libcoap, the evolutionary fuzzer never detected any critical
error during the two 100 generation experiments, and none in the test runs

CHAPTER 6. DISCUSSION 47

made before. Libcoap was expected to be resilient as it is a popular imple-
mentation of CoAP, with other servers recommend using the Libcoap client
to test other server implementations. The results of this experiment neither
disqualifies evolutionary fuzzing or proves absolute resilience for Libcoap. A
specific path in the Libcoap code could have been untouched by the fuzzer,
or just not covered with the correct vulnerable input. Maybe a longer running
time of the fuzzer would have covered these cases. But as of this moment there
is nothing indicating that the fuzzer would be able to find bugs in Libcoap.

Libnyoci was vulnerable to one specific input found by the fuzzer. The vul-
nerability caused the server process to crash and become unresponsive. Root
cause analysis of the vulnerability showed no signs of attacks other than a
denial of the service. This vulnerability was caused by a simple mismatch
between a declared value and its actual value, making it an easy find by the
fuzzer. It was triggered a multitude of times over the course of the 100 genera-
tions, in both experiments. The bug was fixed in the original code base due to
being discovered by normal black-box fuzzing before this experiment, making
it a non-unique find for the evolutionary fuzzer. There were also no indication
that the bug was found more frequently with the growth of generations, as the
crashes happened at random intervals during the experiments. Thus the crash
discovered on Libnyoci does not indicate any improvements in bug finding
capability when using evolutionary algorithms with fuzzing on CoAP.

Canopus is a far more broken CoAP server as several bugs were found
during the course of the experiments. It crashed many times during the ex-
periments, with three different error messages and two easily reproducible.
The root cause analysis of the two reproducible crashes pointed towards failed
error handling and the absence of correctness checks. It appears as if they
were simple enough for any black-box fuzzing technique to find them as they
could be triggered by changing a single part of a message without any relation
to other values in the message. The third error triggered during the testing
phases prior to the experiment may have been a more complex error since it
involved writes on a locked object indicating a failure state in the server or fail-
ure due to a combination of values in the message. Unfortunately the packet
logs were not available at the time, so the cause for the failure is unknown at
this time.

None of the three servers produced any errors that would suggest a superior
bug finding capability by using evolutionary algorithms in conjunction with
fuzzing.

48 CHAPTER 6. DISCUSSION

6.2.1 Previous CoAP Fuzzing

In the black-box testing by Melo [17] the fuzzy test inputs were generated by
either generating random data, according to the protocol’s specification, or
mutating existing messages. The evolutionary fuzzer created in this research
is both generating according to specification and by mutating existing inputs,
as parts of the evolutionary algorithm. Much inspiration has also been sourced
from Melo [17] such as the rules for generating parts of the CoAP messages. It
is therefore intuitive to believe that the failure detection of both fuzzers would
be of similar quality, but the results show that Melo [17] discovered 7 unique
failures for Libnyoci, 15 unique failures for Canopus, and 1 failure for Libcoap.
Comparing with the results of this research’s fuzzer that found only 1 failure
for Libnyoci, 3 for Canopus, and O for Libcoap. The versions of Canopus and
Libnyoci were similar in both experiments and bugs were not fixed in the time
between them. Such a big difference is alarming for this research as it could
indicate a lack of quality in the implementation. One key difference between
the two fuzzers is that the one used by Melo [17] generates a complete set of
test cases in its generational engine and the one used in this research uses rules
randomly. There is a possibility that certain bug-triggering values were never
selected due to randomness and that a longer experiment with the evolution-
ary fuzzer would provide similar results. Another possible reason is that this
research tested a comparably small portion of the functionality available in
CoAP, as described in Section The intuition of code coverage’s relation
to bugs could be applied; more obscure functions are less tested and therefore
more prone to erroneous code.

Summarizing the comparisons between this research and the previous re-
search it is clear that the work by Melo [17] has been more successful in bug
discovery.

6.3 Constrained Application Protocol

CoAP was designed to be a lightweight and simple protocol to prevent errors
caused by complex parsing. It is evident that fuzzing is still a useful method on
such designs as errors were detected. Most errors existed in the options section
of a CoAP message, although errors caused by values in the CoAP header were
detected. As more functionality is being added to the protocol such as features
described in Sectiond.7|one can expect its complexity to increase. The exper-
iments performed in this research did not cover enough of the available attack
vector to fully test such applications. Fuzzing these additional functionalities

CHAPTER 6. DISCUSSION 49

could be a crucial step towards securing CoAP applications.

6.3.1 CoAP and Evolutionary Fuzzing

In the pioneering work by DeMott, Enbody, and Punch [7], a primary rea-
son for using evolutionary fuzzing was to provide a method of learning the
specification of the protocol and then using that knowledge to generate more
effective test cases. In this research it was only used as a way to accomplish
a more effective bug finding capability. It is therefore possible that the grey-
box algorithm proposed by DeMott, Enbody, and Punch [[7] is not optimal for
the specific purpose of fuzzing small protocols such as CoAP. Perhaps a more
white-box approach would have been more effective since it would have been
more connected to the actual source code. There could also be benefits in
changing the operations performed on each generation so that they affect the
evolutionary algorithm in a more effective manner.

A benefit of using a evolutionary fuzzer is that it utilizes combinations of
mutations to trigger certain vulnerabilities. For example there may be code
snippets that are reached with the help of one variable but the bug is triggered
by another variable’s value. There could also be states in the application that
are more vulnerable than other. It is important to understand if CoAP servers
are prone to these kinds of vulnerabilities or not. CoAP messages have a struc-
ture that separates most fields from affecting each other during parsing. Due to
the header being a set number of bits and the contents have an assigned location
it is hard to imagine much difficulty in parsing it. Most values in the header
only affects one part of the message and is unlikely to trigger bugs combined
with other values. The message ID and token are pure data which is likely
only stored in values and used for comparisons. Payload is mostly application
specific and is hard to fuzzy test and evaluate properly. The option fields are
the most likely to cause problems with combinations as they require a rela-
tively complex parsing. But options are themselves mostly isolated from other
options and are unlikely to affect each other in any significant way. This could
prove to be a problem for the evolutionary fuzzer as its strengths are vastly re-
duced due to the structure of the protocol. None of the crashes encountered in
the experiments performed in this researched were caused because of a com-
bination of values, except for combinations of internal values of individual
options.

A reason for having multiple messages in a session is to create a state in
the server that would be more prone to crashes. But a general application
layer protocol such as CoAP is unlikely to have any notable states affected by

50 CHAPTER 6. DISCUSSION

network packets. No error was traced to such behaviour in the experiments as
all crashes could be triggered using only a single network packet.

6.4 Delimitations

A more detailed and complete root cause analysis was not performed as it is
not directly relevant to the core of the research question. It is interesting and
important to analyze what bugs appear in the code and draw parallels between
applications to find a pattern. An error in the code could occur in similar forms
in other parts of the code, posing an opportunity to prevent further crashes by
patching them. Some errors could expose more serious vulnerabilities that
would for example let an attacker take control of the device. But such analyses
do not influence the answer to the research question directly and was therefore
left out of the research.

Section [6.5]shines light on certain topics that were not dealt with properly
in this research and should be considered in future research.

6.5 Future Research

This section explains the improvements that can be used to expand this re-
search further.

6.5.1 Evolutionary Fuzzing On CoAP

There were a few important aspects in the study of evolutionary fuzzing that
were left out because of time constraints. Because of the relatively under-
whelming results of this research it could be useful to further investigate such
features before consensus is reached regarding evolutionary fuzzing’s effec-
tiveness on CoAP applications.

A decision was made in this research to choose a suitable evolutionary al-
gorithm and stick with it. There are both good and bad aspects of this decision.
The benefit is that the research becomes more focused and time is spent on the
core subject of testing applications rather than evaluating different algorithms
for longer periods of time. The bad aspects of choosing just one algorithm
before any experimental evaluation has been done is that there may exist bet-
ter evolutionary algorithms that are more suited for this type of fuzzing. An
expansion to this research would be to analyze the benefits and drawbacks of

CHAPTER 6. DISCUSSION 51

particular parts of an evolutionary algorithm when applied to a CoAP appli-
cation.

The operations of the evolutionary fuzzer could benefit from further analy-
ses as it is suspected that certain operations affects the evolutionary algorithm
negatively in its quest to achieve higher code coverage. This also applies to the
mutations performed on single CoAP messages. Many percentages and seed
values were improvised using intuition in preparations for the experiments and
some of them are most likely not optimal.

Allowing longer experiments that exceeds 100 generations may be impor-
tant for the development of the evolutionary algorithms as many operations
depend on randomness and may take many generations before certain positive
changes appear. This research limited the generation cap to 100 only due to the
time it took to run the experiments. This is addressed in detail in section[6.5.2]
There should also be benefits to running more than two parallel experiments
as the graphs for each server shown in Chapter §| displays wildly different pat-
terns. A greater variety and redundancy would make the results less biased
towards potential anomalies.

6.5.2 Implementation Improvements

The delays in the experiments that are caused by starting the server, send-
ing packets over the network interface, closing the process, waiting for Dy-
namoRIO to write logs, and only then be able to parse the logs, should not
be overlooked. All of the implemented delays combined results currently in a
session of ten CoAP messages taking roughly five seconds to finish. And by
using five pools each containing five sessions means that there are 25 sessions
tested in each generation. 25 sessions with each taking five seconds results in
a generation taking two minutes to complete. Every hour we manage to com-
plete 30 generations using the current version of the implementation. This
is arguably too slow for a testing method such as fuzzy testing that relies on
multitudes of inputs to yield good results. The original version of the evo-
lutionary algorithm used in fuzzy testing by DeMott, Enbody, and Punch [7]
took roughly the same time to complete and they ran the algorithm for 100
generations with good results. It should therefore not be a major issue for the
intended progress of the evolutionary algorithm, but the low number of tested
inputs remains a problem for the completeness of the fuzzy testing.

Fixing the delays in the experiment suite should be possible given enough
time and knowledge of the code coverage tool. The delays are caused currently
by running DynamoRIO as a new process every time a server is started, be-

52 CHAPTER 6. DISCUSSION

cause this is the most simple use of the tool. If the fuzzer was connected so
that it communicates directly with the code coverage tool, information about
the runtime code coverage could be extracted directly instead of writing to the
file system. Another improvement could be to calculate code coverage with-
out closing the server down between each session, eliminating most start and
termination delays. A hidden performance benefit of this is that the process
would be connected to fuzzer and there would be no need to scrape the process
table to find the correct process of the server, eliminating an additional delay.
If the servers source code is available it should be possible to connect directly
to the servers packet handling functions and thus avoid using the network in-
terface resulting in further speedup of the fuzzer.

Using the suggestions made in the previous paragraph, there should be
little notable delays in the fuzzer and the process could reasonably be sped up
to properly match the performance of an ideal fuzzer. These changes were not
made in this project mostly due to time constraints.

6.5.3 Other Protocols

CoAP was selected as the targeted protocol as it has a potential for future
widespread usage. There are other protocols that can possibly show greater
potential for evolutionary fuzzing such as MQTT and XMPP. Their character-
istics and behaviours may be vastly different to that of CoAP but this research
can be used for inspiration and help in decision making when performing sim-
ilar research.

6.6 Sustainability and Ethics

While the studied technique’s intention is to break programs and could be used
for malicious practices, it is still a study that would benefit the society as a
whole. Revealing bugs in programs is equally important for the developers of
the applications as for any malicious actors. IoT devices are often deployed
in great numbers and a disruption of their services could prove catastrophic
in the future. Testing techniques such as the one tested in this research are
valuable additions to a developer’s toolkit in that they can find the bug before
anyone else.

Evolutionary fuzzing does not affect any other aspect than the robustness
of certain applications.

Chapter 7

Conclusions

A fuzzer’s primary goal is to expose bugs not found with manually created
input and it was apparent that it worked with success in the master’s thesis by
Melo [17]. Applying the evolutionary fuzzing algorithm found in the paper
by DeMott, Enbody, and Punch [7] to work on CoAP servers and running it
for 100 generations showed no increase in encountered bugs. The amount of
errors discovered in this research was lower than what was reported by Melo
[17], though the difference may not depend on factors relevant to the evolu-
tionary algorithm.

The intuition that higher code coverage of tests would yield a bigger chance
of uncovering bugs in code is an important assumption in evaluating an evolu-
tionary fuzzer. Code coverage progression was at the center of the experiments
performed and the better the evolutionary algorithm became in terms of code
coverage the better the chances would be to find bugs. The code coverage pro-
gression measured in the experiments turned out to be underwhelming in that
high code coverage often lasted only a short while and the difference in values
between the start and end of an experiment showed little progress.

Considering both the small number of bugs discovered with this method
and the failed progression of the evolutionary algorithm it is clear that this
research did not show any signs of improved fuzzy testing.

Further research on evolutionary algorithms, evolutionary operations, im-
proving performance of the development suite, and the parsing of CoAP mes-
sages in servers can be done to more confidently reject the possibility of using
evolutionary algorithms in CoAP fuzzing effectively.

53

Bibliography

[1]

[6]

[7]

[8]

Kevin Ashton et al. “That ‘internet of things’ thing”. In: RFID journal
22.7 (2009), pp. 97-114.

André Baresel et al. “The interplay between model coverage and code
coverage”. In: Proc. EuroCAST. 2003, pp. 1-14.

C. Bormann et al. CoAP (Constrained Application Protocol) over TCP,
TLS, and WebSockets. RFC 8323. RFC Editor, Feb. 2018.

Sergey Bratus, Axel Hansen, and Anna Shubina. “LZfuzz: a fast compression-
based fuzzer for poorly documented protocols”. In: Darmouth College,
Hanover, NH, Tech. Rep. TR-2008 634 (2008).

Martin Biichi and Wolfgang Weck. The Greybox Approach: When Black-
box Specification Hide too much. Citeseer, 1999.

Sang Kil Cha, Maverick Woo, and David Brumley. “Program-adaptive
mutational fuzzing”. In: 2015 IEEE Symposium on Security and Pri-
vacy. IEEE. 2015, pp. 725-741.

Jared DeMott, Richard Enbody, and William F Punch. “Revolutionizing
the field of grey-box attack surface testing with evolutionary fuzzing”.
In: BlackHat and Defcon (2007).

Adam Doupé et al. “Enemy of the State: A State-Aware Black-Box
Web Vulnerability Scanner”. In: Presented as part of the 21st USENIX
Security Symposium (USENIX Security 12). Bellevue, WA: USENIX,
2012, pp. 523-538. 1sBN: 978-931971-95-9. urL: https:// www .
usenix.org/conference/usenixsecurityl2/technicall-
sessions/presentation/doupe.

DynamoRIO website. https : / / www . dynamorio . org/. Ac-
cessed: 2019-04-16.

54

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.dynamorio.org/

BIBLIOGRAPHY 55

Patrice Godefroid, Michael Y Levin, and David Molnar. “SAGE: white-
box fuzzing for security testing”. In: Communications of the ACM 55.3
(2012), pp. 40-44.

Patrice Godefroid, Michael Y Levin, David A Molnar, et al. “Auto-
mated Whitebox Fuzz Testing.” In: NDSS. Vol. 8. 2008, pp. 151-166.

Rody Kersten, Kasper Luckow, and Corina S Pasdreanu. “POSTER:
AFL-based Fuzzing for Java with Kelinci”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM. 2017, pp. 2511-2513.

Shancang Li, Li Da Xu, and Shanshan Zhao. “The internet of things: a
survey”. In: Information Systems Frontiers 17.2 (Apr. 2015), pp. 243—
259.1ssN: 1572-9419.p01:/110.1007/s10796-014-9492~ 7. URL:
https://doi.org/10.1007/s10796-014-9492-7.

Y. K. Malaiya. “Antirandom testing: getting the most out of black-box
testing”. In: Proceedings of Sixth International Symposium on Software
Reliability Engineering. ISSRE’95. Oct. 1995, pp. 86-95. por: 10 .
1109/ISSRE.1995.497647.

Richard McNally et al. Fuzzing: the state of the art. Tech. rep. DE-

FENCE SCIENCE and TECHNOLOGY ORGANISATION EDINBURGH

(AUSTRALIA), 2012.

Bruno da S Melo, Paulo Licio de Geus, and André A Grégio. “Robust-
ness Testing of CoAP Server-side Implementations through Black-box
Fuzzing Techniques”. In: ().

Bruno da Silva Melo. “Robustness testing of CoAP implementations
and applications through: Teste de robustez de implementacdes e apli-
cagoes utilizando CoAP por meio de técnicas de fuzzing”. MA thesis.
Universidade Estadual de Campinas, Instituto de Computag¢do, Camp-
inas, SP, 2018.

Barton Miller, Louis Fredriksen, and Bryan So. “An empirical study of
the reliability of UNIX utilities”. eng. In: Communications of the ACM
33.12 (1990), pp. 32—-44. 1ssn: 1557-7317.

Charlie Miller, Zachary NJ Peterson, et al. “Analysis of mutation and
generation-based fuzzing”. In: Independent Security Evaluators, Tech.
Rep (2007).

P Oehlert. “Violating assumptions with fuzzing”. eng. In: IEEE Secu-
rity & Privacy 3.2 (2005), pp. 58—62. 1ssn: 1540-7993.

https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.1109/ISSRE.1995.497647
https://doi.org/10.1109/ISSRE.1995.497647

56 BIBLIOGRAPHY

b

[21] Sanjay Rawatetal. “VUzzer: Application-aware Evolutionary Fuzzing.’
In: NDSS. Vol. 17. 2017, pp. 1-14.

[22] Z. Shelby. Constrained RESTful Environments (CoRE) Link Format.
RFC 6690. http://www.rfc—editor.org/rfc/rfc6690.
txt. RFC Editor, Aug. 2012. urL: http://www.rfc—-editor.
org/rfc/rfc6690.txtl

[23] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application
Protocol (CoAP). RFC 7252. http://www.rfc—-editor.org/
rfc/rfc7252.txt. RFC Editor, June 2014. urL: http://www.
rfc-editor.org/rfc/rfc7252.txt.

[24] Ari Takanen, Jared D. Demott, and Charles Miller. Fuzzing for Software
Security Testing and Quality Assurance. eng. Artech House informa-
tion security and privacy series. Norwood: Artech House, 2008. 1sBN:
9781596932142.

[25] Lu Tan and Neng Wang. “Future internet: The internet of things”. In:
2010 3rd international conference on advanced computer theory and
engineering (ICACTE). Vol. 5. IEEE. 2010, pp. V5-376.

[26] P. Tonella and F. Ricca. “A 2-layer model for the white-box testing of
Web applications”. In: Proceedings. Sixth IEEE International Work-
shop on Web Site Evolution. Sept. 2004, pp. 11-19. por: |[10.1109/
WSE.2004.10012L

[27] Benjamin Tyler and Neelam Soundarajan. “Black-Box Testing of Grey-
Box Behavior”. In: Formal Approaches to Software Testing. Ed. by Alexan-
dre Petrenko and Andreas Ulrich. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 1-14. 1sBN: 978-3-540-24617-6.

[28] Ilja Van Sprundel. “Fuzzing: Breaking software in an automated fash-
ion”. In: Decmember Sth (2005).

[29] Spandan Veggalam et al. “Ifuzzer: An evolutionary interpreter fuzzer
using genetic programming”. In: European Symposium on Research in
Computer Security. Springer. 2016, pp. 581-601.

[30] M. Vieira, N. Laranjeiro, and H. Madeira. “Benchmarking the Robust-
ness of Web Services”. In: 13th Pacific Rim International Symposium
on Dependable Computing (PRDC 2007). Dec. 2007, pp. 322-329. por:
10.1109/PRDC.2007.56.

http://www.rfc-editor.org/rfc/rfc6690.txt
http://www.rfc-editor.org/rfc/rfc6690.txt
http://www.rfc-editor.org/rfc/rfc6690.txt
http://www.rfc-editor.org/rfc/rfc6690.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
https://doi.org/10.1109/WSE.2004.10012
https://doi.org/10.1109/WSE.2004.10012
https://doi.org/10.1109/PRDC.2007.56

BIBLIOGRAPHY 57

Joachim Wegener et al. “Testing real-time systems using genetic algo-
rithms”. In: Software Quality Journal 6.2 (June 1997), pp. 127-135.
1SsN: 1573-1367.po1:/{10.1023/A:1018551716639. URL: https:
//doi.org/10.1023/A:1018551716639.

Zhi-Kai Zhang et al. “IoT security: ongoing challenges and research
opportunities”. In: 2014 IEEE 7th international conference on service-
oriented computing and applications. IEEE. 2014, pp. 230-234.

https://doi.org/10.1023/A:1018551716639
https://doi.org/10.1023/A:1018551716639
https://doi.org/10.1023/A:1018551716639

TRITA -EECS-EX-2019:703

	Introduction
	Research Question
	Scope of Study

	Background
	Constrained Application Protocol
	Messaging Model
	Resource Discovery
	Security Options
	Message Format

	Fuzzing
	Black-box Fuzzing
	White-box Fuzzing
	Grey-box Fuzzing
	Evolutionary Fuzzing
	Fuzzing Test Case Generation

	Related Work
	CoAP Fuzzing
	Evolutionary Fuzzing

	Methods
	Targeted Software
	Fuzzing Software Suite
	Fitness Calculation
	Crash Monitoring
	Evolutionary Algorithm
	Components
	Generating Seed Inputs
	Evolutionary Mutation Operators
	Miscellaneous Evolutionary Algorithm Details

	Mutations
	Tested CoAP Attack Vector
	Implementation
	Running the experiment

	Results
	Canopus
	Crashes and Errors

	Libnyoci
	Crashes and Errors

	Libcoap
	Crashes and Errors

	Discussion
	Code Coverage
	Crashes
	Previous CoAP Fuzzing

	Constrained Application Protocol
	CoAP and Evolutionary Fuzzing

	Delimitations
	Future Research
	Evolutionary Fuzzing On CoAP
	Implementation Improvements
	Other Protocols

	Sustainability and Ethics

	Conclusions
	Bibliography

