
A comparison of FFUF and Wfuzz for
fuzz testing web applications

Matheos Mattsson 40476
Master Thesis in Computer Engineering
Supervisor: Dragos Truscan
Faculty of Science and Engineering
Åbo Akademi University
2021

Abstract

We use web applications every day, even if we do not stop to think about it. Web appli-
cations are found on all devices ranging from phones to TVs to tablets and, of course,
computers. As the usage of web applications grows more and more popular, the constant
need to keep these applications secure increases.

Security in software is always important, and as web apps are so common these days,
their security is of utmost importance, too. The developers of these web apps have a great
responsibility to keep their users’ private data safe.

Writing bug-free code would be ideal and would increase the security of the web
apps produced. However, this is not completely possible in practice. Testing will help
keep bugs out of the web apps, but no collection of human written tests will guarantee a
vulnerability-free program.

Fuzz testing, also known as fuzzing, provides an easy way to test software without the
need for human interaction or experience. Fuzzing automates the testing by generating
test input data in various ways, from very basic ways to smarter ways, depending on the
tool used. This input data is used to test the software in question with the intent to cause
it to crash or hang. These crashes, errors and hangs are indicative of problems in the
software that need fixing.

Fuzzing can target any piece of software, including web apps. Web app fuzzing is
slightly different from "regular" fuzzing, however. Web app fuzzers rarely generate any
random input data themselves, but instead they make use of word lists and other payloads
as inputs. They use these inputs to generate combinations of HTTP requests based on how
the tester configures them. Consequently, the HTTP requests are executed automatically
in a brute-force like manner.

This thesis compares the two command-line web fuzzers FFUF and Wfuzz with each
other. These two web fuzzers are very similar in terms of functionality and usage. FFUF
is newer and based on Wfuzz, which is why the initial assumption was that FFUF would
be a better version of Wfuzz. On top of that, FFUF is compiled software, contrary to
Wfuzz which runs in the Python interpreter, further boosting the initial hypothesis that
FFUF is the better one of the two. Execution time, request rate, CPU utilization, memory

footprint, and vulnerabilities found are metrics used in the comparison.
As it turns out, Wfuzz is, in fact, easier to use and to install, and it is faster than

FFUF. Wfuzz proved to be the exact opposite of what was initially assumed. It finishes
the fuzzing jobs much faster than FFUF, it utilizes the CPU more efficiently, and, conse-
quently, records a better request rate. In terms of vulnerabilities found, both tools produce
the same results more or less, as they both make use of the same input word lists. Wfuzz
is able to run requests and do a lot of work concurrently, something which FFUF seem-
ingly struggles with. The concurrency factor is also seen in the higher memory footprint
of Wfuzz, as it consistently uses more memory than FFUF does. Even though FFUF uses
less, it is most likely only because of the fact that FFUF is not capable of doing as much
at once as Wfuzz is. Furthermore, Wfuzz makes the task of filtering the resulting request
list easy as it provides a way to make an initial request whose characteristics can be used
to filter the final results. FFUF does not provide a similar functionality and leaves the
determination of the filtering values up to the user.

The final verdict of the comparison is that even though FFUF is newer and assumed
to be an improved version of Wfuzz, it is not. Wfuzz is an established tool in the web
fuzzing community and FFUF still has a long way to go until it is able to compete with its
predecessor. As FFUF is openly based on Wfuzz, but seemingly not better, the question
as to why it was ever created remains. The author of this thesis would personally choose
to use Wfuzz over FFUF in any scenario. However, FFUF is still relatively new and will
hopefully improve and grow stronger with time. For the time being though, Wfuzz should
be the first choice for any web application tester.

Acknowledgements

I would like to thank my supervisor Dragos Truscan for his continued support and guid-
ance throughout the writing process of this thesis. There were times when finishing this
work seemed impossible and far away, but with the help of Dragos I managed to carry on
until the finishing line. Thank you!

Secondly, I would like to thank my mom, Sonja Granbacka, who has been my personal
language advisor. The time she has spent proof reading, correcting and helping me with
the language and grammar in this thesis is more than I could ever have have asked for.
I do not even want to try to imagine how many hours she has dedicated to helping me
improve my work. Even when I was taking breaks, she was working so that I could have
some feedback to review when I got back to work. On top of that, all the effort she has
put into this, was on her spare time in between correcting homework, assignments, and
planning lectures for her job as an upper secondary school English teacher. This thesis
would never have gotten done without you. Thank you!

Matheos Mattsson

Turku, May 30, 2021

Contents

1 Introduction 1
1.1 Vulnerabilities in web applications . 2
1.2 Objective . 3

2 Background 5
2.1 Security concepts . 5

2.1.1 Information security . 5
2.1.2 Attacks . 6
2.1.3 Vulnerabilities and exploits . 6
2.1.4 Security testing . 7
2.1.5 Penetration testing . 7

2.2 Fuzzing . 8
2.2.1 The basics . 8
2.2.2 The brainpower of fuzzers . 9
2.2.3 Fuzzer types . 10
2.2.4 Black-box versus grey-box versus white-box fuzzers 11
2.2.5 Detecting problems . 12

3 Fuzzing tools 15
3.1 Available fuzzing tools . 16

3.1.1 Commercial tools . 16
3.1.2 Open-source tools . 18

3.2 Tools for fuzzing web-based systems . 23

4 FFUF or Wfuzz - What is the difference? 26
4.1 FFUF - Fuzz Faster U Fool . 26
4.2 Wfuzz - The Web fuzzer . 28
4.3 Experiment planning . 29

4.3.1 System under test . 29
4.3.2 Payloads . 30

4.3.3 Attack scenarios . 31
4.3.4 Metrics . 32

4.4 Environment preparation . 33
4.4.1 Setting up DVWA . 34
4.4.2 Installing FFUF . 39
4.4.3 Installing Wfuzz . 40
4.4.4 The fuzzing input . 41
4.4.5 Implementation of attacks . 42

4.5 Execution . 46
4.5.1 Brute Force . 46
4.5.2 SQL injection . 52

4.6 Results and analysis . 63

5 Conclusion 67

Swedish Summary 69

References 74

Chapter 1

Introduction

Web applications, computer programs, mobile applications, and software in general are
everywhere today. We have software in our cars, dishwashers, and even in many other
everyday household appliances. All these things may seem neat and practical at first
glance, but where there is software, there are security concerns, especially if the software
is accessible from the Internet. All things that run software have one thing in common:
no matter how perfect or well thought-out products based on software may seem, they
all contain flaws (bugs), which could make the system vulnerable to intruders. If these
vulnerabilities are exploited, they could potentially give unauthorized access to private
data and resources [1].

The Oxford English Dictionary defines a web application (web app) as "an application
that is designed to be accessed over the internet using a web browser" [2]. This may sound
similar to how we define a website, but the word application is the key difference. The
difference between a website and a web app is that a website more or less always provides
the same static data if one visits the same URL multiple times, no matter who visits it. A
web application, on the other hand, can be interactive and provide custom content, and it
is often able to change its data and displayed content dynamically when the user interacts
with it, even without refreshing the page. Web applications often consist of a back-end
and a front-end. The back-end includes a database and server-side scripts that provide
the data to the user and handle requests between the user and the database. The front-
end, which is made up of HTML, CSS, and Javascript, makes the visual elements and the
client-side interactivity that the user experiences.

It is impossible not to think of a web application when thinking about software we
encounter daily. We use applications such as Whatsapp, Telegram, Instagram, Facebook,
and many more, both on our mobile devices and on our computers. Some people may say
that they only use applications on their phones and never surf the web from a computer,
and while that may be true, that does not mean that they do not use web applications.

1

Web applications are often used as a way to easily develop cross-platform applications
for mobile devices. In other words, many popular applications we use on a daily basis
on our phones are web applications at the core, that have been written using some form
of web application framework. A more obvious example of this is using a web applica-
tion straight from the browser or using a Progressive Web Application (PWA), which is
installed by adding a website to "the home screen".

1.1 Vulnerabilities in web applications

There are security vulnerabilities in software, and web applications are no exception.
Web applications can be exploited in different ways using, for example, SQL injection
or cross-site scripting (XSS). An SQL injection attack makes use of a vulnerability in a
web application, allowing an attacker to manipulate the back-end database by injecting
their own SQL queries and commands to be executed [3]. To find a vulnerability of this
nature, an attacker could, for example, manually test different characters that are known
to terminate a string in an SQL query or characters that are known to terminate a whole
SQL statement. This testing process can also be automated. The attacker can rule out
some options right from the start if they have prior knowledge of the SQL engine used, as
different engines may have a slightly different syntax. Once the attacker has found such
a vulnerability, they can use their knowledge of the SQL statement syntax to modify the
intended query either by extending it or terminating it and appending their own query at
the end. For instance, the attacker could extend the SQL query by terminating a string
early, using a double or single quotation mark (testing would reveal which), and then
append a condition with the logical operator OR followed by a statement which is always
true, such as ’1’=’1’. At this point, the WHERE condition of the SQL query will always
evaluate to true, meaning that all rows from the queried table will be fetched and output.
An attack of this nature could have catastrophic consequences, as the attacker could gain
access to sensitive information such as usernames, passwords, or anything that could
possibly be stored in a database [3].

An XSS attack is when an attacker has found a vulnerability in a web application,
which allows them to inject malicious scripts into a web page. An example of where
such a vulnerability could be found is in the comments functionality of a blog site. If an
attacker realises that the server does not parse the comments properly, they can simply
include a small script in their comment which does something harmful when loaded by
other users. As the comment is not parsed before published on the page, the script that the
attacker "injects" will be read and executed by the web browser as any normal Javascript
code that would exist in the source code of an HTML page. When the web page is loaded

2

by a user, the user’s browser will automatically execute the attacker’s malicious script.
The script will often be designed to fetch locally stored data for the website, such as a
session cookie, which is sent to a server that the attacker has access to. The attacker is
effectively making the user’s browser send them some piece of sensitive data, without
the user’s knowledge. Using the stolen data, the attacker could potentially be able to
impersonate the victim by, for example, using their session cookies to bypass logins and
gain instant access to the web application [4].

All well produced software is tested before it is released. The method of testing varies,
but more often than not it involves either humans testing the software manually or pro-
grammers writing tests to cover as many use cases as they can possibly imagine. Some
companies may even make use of test-driven software development, which means that
they write the tests before they write the program itself. The program is then developed
and tested continuously and no feature or function of the program is given the green light
until it passes all the tests. The use of test-driven development helps ensure that the pro-
duced software complies with the requirements, but it does not by any means guarantee
bug-free software as the tests are written to make sure all wanted functionality is imple-
mented and working as intended, but not that all use cases and edge cases are tested. In
fact, all software contains bugs, though some may be very well hidden. Bugs will often
make it into production and therefore it is of utmost importance that the developers find
them before an intruder does.

It is humanly impossible to think of everything that could go wrong in software. This
makes producing bug-free software very difficult. Writing tests to cover as many cases
as possible and to cover as much of the source code as possible helps in finding and
preventing bugs, but it requires a lot of time and knowledge. Manually written tests are
also only able to test scenarios that the developers can imagine themselves, which means
that the unlikely scenarios which are not considered will not be covered. Edsger W.
Dijkstra described the problem with testing well: "Testing can only prove the presence of
bugs, not their absence." [5]. While this quote is true for any type of testing, manually
written tests are especially prone to leave scenarios unconsidered. The need for a faster,
less time consuming, and more automated process for testing software was always long
awaited.

1.2 Objective

This thesis aims to compare two web fuzzers with each other to determine which one is
the better option in terms of performance, bug finding, and ease of use. The comparison
will be done between the two open-source command-line web fuzzers FFUF and Wfuzz.

3

To compare the two with each other, a common target application will be used. The target
in the experiment will be the Damn Vulnerable Web Application (DVWA), which is an
intentionally vulnerable open-source web application. Both tools will be asked to carry
out some attacks against the target. The comparison will focus mainly on two attacks:
Brute-force and SQL injection. Each attack will be carried out using both tools, after
which a comparison of the results will follow. FFUF, Wfuzz and DVWA will all be
explained in more detail later in the thesis.

In the comparison part of the thesis, properties that will be measured are: execution
time, request rate, number of vulnerabilities found, memory footprint, and CPU utiliza-
tion. The request rate is reported by Wfuzz by default and is given in requests per second.
FFUF, however, only reports the time consumed and the number of requests, meaning the
rate will have to be manually calculated from those values.

The thesis first covers what fuzzing is and the basics behind it. It then goes on to
present a few fuzzing tools, both commercial and open-source alternatives. In Chapter 4
the experiment itself will be carried out, covering both the tools to be compared in detail,
experiment planning, preparation and setup, execution, and, finally, a discussion of the
results. The last chapter presents a conclusion on the findings and some final thoughts.

4

Chapter 2

Background

Before diving into the practical part of this thesis, some background information needs to
be covered. This chapter will explain the concepts required to understand what security
vulnerabilities are, what fuzzing is and how it works. Security concepts will be explained
first, then fuzzing and how fuzzing can be used to find the security vulnerabilities men-
tioned in the first part of the chapter, will be covered.

2.1 Security concepts

A few terms and concepts regarding security are frequently mentioned throughout this
thesis. This section aims to ensure the understanding of these terms and concepts.

2.1.1 Information security

Security in general can be defined as "the state of being free from danger". There are
many types of security: physical security, personnel security, operations security, com-
munications security, network security, and more [6]. However, the one type of security
we are mainly concerned with in this thesis is information security.

While the term information security speaks a lot for itself, it is not as basic as it sounds.
Information security involves the preservation of the confidentiality, integrity and avail-
ability of information, as defined in the international standard ISO/IEC 27002 [7]. The
combination of these three characteristics are often called the C.I.A. triangle [7]. With the
evolution of information, however, this triangle model is no longer considered adequate
to describe information security. In Principles of Information Security, the authors Whit-
man and Mattford explain that due to these environmental changes, there is reason to also
add more specific threats to the list, such as accidental or intentional damage, destruction,
theft, unintended or unauthorized modification, or other misuse from human or nonhuman

5

threats [6].

Information security includes a number of more specific types of security. As defined
by Cisco on their website, these types are: application security, cloud security, cryptog-
raphy, infrastructure security, incident response and vulnerability management [8]. The
type that is mostly referred to when talking about security in this thesis is application
security.

Application security is a rather wide topic as it involves software vulnerabilities in
web applications, mobile applications and application programming interfaces (APIs).
Such vulnerabilities may be detected in, for example, user authentication or authorization.
These vulnerabilities may in the worst cases act as entry points for intruders, which can
cause remarkable breaches in information security [8].

2.1.2 Attacks

An attack (cyber-attack) is the act of breaching the security of a system. The person that
is carrying out the attack is called an attacker. The intentions of the attacker may vary and
attackers could even be classified into more specific categories depending on their inten-
tions. In general, though, regardless of intentions, most attacks consist of breaching the
security of the target to gain unauthorized access to restricted components or to compro-
mise the integrity of the stored and processed data. If an attacker exploits a vulnerability
in the system which causes harm to the owner organization and/or its customers, it is also
considered an attack. In short, any action that breaches the characteristics of the security
of a system is considered to be an attack [9].

Attacks are made possible by the existence of vulnerabilities in a system. If attackers
know of these vulnerabilities, they can write exploits which could give them unautho-
rized access to data or compromise the security of the system in some other way. These
concepts are explained below.

2.1.3 Vulnerabilities and exploits

A vulnerability is a weakness in software that can be exploited by an attacker to perform
unauthorized actions. Vulnerabilities are, in other words, parts of software which can be
forced to react in an unintended way due to a mistake or an event not considered in the
implementation. Such unintended reactions may be taken advantage of by intruders using
so-called exploits [1].

To use a vulnerability to their advantage, attackers write code that triggers the vul-
nerability in question, which then causes the unexpected behaviour that characterizes the
vulnerability. This method or piece of code is called an exploit. An exploit needs to be

6

tailored for the specific vulnerability it is targeting as vulnerabilities are unique [1]. There
is no single exploit that can trigger multiple vulnerabilities.

If an attacker manages to find a vulnerability in a program, such as a web app, they
can potentially cause significant damage. Exactly what the vulnerability allows them
to do depends on where in the code it is happening and what other potential security
measures are in place. The consequences of an exploited vulnerability can be anything
from minimal to catastrophic [1].

2.1.4 Security testing

In the paper Research on Software Security Testing, Gu Tian-yang, Shi Yin-sheng, and
Fang You-yuan define security testing as "the process to identify whether the security fea-
tures of software implementation are consistent with the design" [10]. Security testing
aims to ensure the security of the software system. The testing can be divided into func-
tional testing and security vulnerability testing. The process of functional testing involves
making sure that the software complies with the defined security requirements specified in
the requirements specification. Security vulnerability testing consists of trying to identify
vulnerabilities in the system as an attacker [10]. Security vulnerability testing is part of
what is done in penetration testing, as described below.

2.1.5 Penetration testing

Penetration testing, or pen testing for short, is a technique often used by organizations to
determine how difficult it would be for a potential attacker to break into their system. In
this case, "breaking in" basically means getting unauthorized access to data. However, it
is always important to define what the goal of the penetration test is, as the tests carried
out always aim to determine whether the goal can be achieved or not. The goal does not
necessarily have to be to gain access to data, but it could, for example, be to find out
whether an attacker could gain access to data within a certain period of time.

Penetration testing is carried out by simulating attacks as an attacker using automated
tools and/or manual testing techniques [11]. The results of these simulations are docu-
mented thoroughly and assessed in order to prevent real attackers from taking advantage
of the vulnerabilities that are found. The downside of pen testing is that it requires human
interaction and experience. The results of the tests will depend heavily on the knowledge
and skills of the tester. It is also very time-consuming work.

This is where fuzz testing comes in handy. Fuzz testing, or fuzzing, is an automated
testing technique which requires very little, if any, human interaction. Fuzzing does not
replace pen testing, though it can be used to complement it. Pen testing simulates an

7

attacker trying to break into a system, while fuzzing basically force feeds the system with
random input data until it detects a reaction out of the ordinary. Parts of pen testing may
be replaced with fuzzing where applicable. As fuzzing eliminates the human factor to a
certain extent and as it is effective and able to cover a lot more ground in less time than
pen testing, these parts will hugely benefit from it. The results of fuzz testing can be
recorded automatically in order to be replicated if needed.

2.2 Fuzzing

Fuzzing is an automated black-box testing technique in which a fuzzing tool, called a
fuzzer, feeds the system under test (SUT) with generated input data, aiming to trigger a
fault in the target system in the form of a crash, hang, or some other event indicative of a
problem. These errors and crashes could be the entry points of potential security breaches
and should be fixed as soon as possible [12].

The word fuzz has multiple definitions but the most fitting one in this context is "a
blurred effect", with its verbal definition being "to become blurred" [13]. There are several
stories of how the term fuzzing became the name for this testing technique; according to
one of these accounts, the term comes from the developer and author of the first fuzzer,
Professor Barton Miller, who named it after how electrical lines used to be tested. Another
theory suggests that the word comes from fuzzy logic [12]. Regardless of the term’s
etymology, Barton Miller was the first person credited with performing an early form of
fuzzing in 1990 [14]. He had earlier noticed that providing seemingly random characters
of input to Unix utilities would often cause them to crash, which gave him the idea of
developing a new automated testing technique. Since then, utilities and code have grown
more mature and are less prone to simple bugs. However, utilities nowadays are not bug-
free, even though it sometimes may seem like they are. Consequently, fuzzers will have
to evolve and improve, too, in order to uncover more hidden and obscure bugs [12] [14].

2.2.1 The basics

The basic principles of fuzzing are rather simple: with the intent of causing an error to
occur, continuously and automatically feed a target system or program with semi-valid
input data. The input data mentioned can either start from nothing, allowing the fuzzer to
generate everything from scratch, or from some valid input data which the fuzzer in turn
mutates from iteration to iteration. How the input is generated depends on the fuzzer used.
Once a crash or error occurs, it is recorded in such a way that it can easily be replicated.
The detection and recording features are heavily dependent on the fuzzer being used.
In theory (and depending on the fuzzer), fuzzers are exhaustive, meaning that they will

8

keep generating input data until they reach some predefined stop condition for coverage
of inputs, or until we tell them to stop. The high-level workflow of a general fuzzer is
illustrated in Figure 2.1.

Figure 2.1: The Basic workflow of a fuzzer [15].

2.2.2 The brainpower of fuzzers

In terms of brainpower or intelligence, a fuzzer can be as smart or as dumb as one makes
it. If thinking of fuzzing as a simple brute-forcing method, the most simple and bare-
bones fuzzer would be one that generates random input indefinitely, following no rules
whatsoever on how to generate this input nor taking into account previous runs of gener-
ated data. These fuzzers are easy to develop and require very little effort to set up. If this
type of fuzzer suits the needs of the program to be fuzzed, it is a simple choice.

However, that is often not the case, as complex software takes different kinds of inputs
which can have software-specific constraints that must be fulfilled. If these constraints and
restrictions are not met, the software will most likely disregard the input and quit, making
the iteration useless. If such a program is fuzzed using a dumb fuzzer as the one described
earlier, a lot of the iterations will most likely be in vain, and because the simplicity of the
fuzzer does not allow it to learn from its mistakes, the pointless iterations would keep
occurring.

A smarter fuzzer, on the other hand, could be designed to fuzz a specific program or
protocol. This would mean that it would not generate pointless input data that would be
thrown away immediately, but only generate semi-valid input data that passes the initial
checks, at the very least, and is regarded by the target program. Better yet, the fuzzer
could be designed to learn from previous iterations, preventing the fuzzer from making
the same "mistakes" again. For instance, it would not generate the same data twice, and it

9

would always aim not to generate data that are obviously valid and which have no risk of
causing an issue in the target. This kind of fuzzer that learns could potentially even learn
what the restrictions for the input of the program are, meaning the user would not have to
define these constraints manually [16].

The benefits of using smart fuzzers seem infinite. However, it might not always be
the best option. To begin with, they require a lot more effort to program and setup.
They are also often very strictly designed for a specific target, meaning they would need
modification to work for fuzzing other types of software or protocols. A dumb fuzzer, on
the other hand, would not require much effort to program or set up, and it is also very
versatile as it can be used to fuzz a larger group of targets. In the end, it boils down to
budget, time, and needs. A smart fuzzer for a specific use case would, of course, be ideal,
but with time, budget and complexity taken into consideration, it is rarely feasible. A
good rule of thumb would be to use the simplest fuzzer possible that suits the needs of the
project [16].

2.2.3 Fuzzer types

Fuzzers can be divided into a few different types. In this section, three of the most com-
mon types will be covered; mutation, generation and behavioral fuzzers.

Mutation

Mutation is a technique which can be used by almost any fuzzer and it is especially pop-
ular among dumb fuzzers. Mutation makes use of known valid input data which is ran-
domly mutated. This mutation could be as simple as switching around the order of the
data, replacing some part of the input with random data, or randomly flipping bits. Bit-
flipping is one of the most popular mutation techniques and the basics are as easy as they
sound, a randomly chosen bit in the input may be flipped from 1 to 0 or vice versa [11].
Where there are strict constraints on the form of the input data, this could in some cases
cause issues with less intelligent fuzzers. In these cases, the fuzzer would need some in-
telligence in order to know what can be mutated and what form the final generated input
data must have in order not to get instantly rejected by the target software. Mutation offers
good code coverage with little intelligence required from the fuzzer [16].

Generation

Contrary to mutation based fuzzers which make use of known valid input data, generation
based fuzzers generate the input data completely from scratch. This often means that
these kinds of fuzzers need some kind of intelligence, as this randomly generated data will

10

most likely be rejected by the target unless the fuzzer is programmed to know what kind
of format the generated data should have (according to the SUT). Therefore, generation
fuzzers are often designed to split up the generation of the wanted data into chunks which
are then generated in a valid order to make sure that the generated data complies with the
rules that define the input. A valid order means that the data is generated and compiled in
an order that outputs a format which is accepted by the SUT. Data generated in an invalid
order would be rejected by the SUT and therefore be useless. This means that generation
fuzzing can, compared to mutation fuzzing, more easily fuzz specific protocols as it will
always generate data in a valid format [16]. Generation fuzzing is sometimes also called
intelligent fuzzing [11].

Behavioral

While mutation and generation based fuzzers are well known and established in the
fuzzing scene, behavioral based fuzzers are relatively new. Instead of focusing on gener-
ating invalid input data, behavioral fuzzers are built to generate invalid message sequences
[17]. This basically means that behavioral fuzzers aim to use the SUT in an invalid man-
ner, contrary to mutation and generation fuzzers which aim to provide the SUT with semi-
valid input data. Due to the rather simple idea of behavioral fuzzers, they generally do
not need any knowledge of the underlying program or protocol implementation. Because
of this low knowledge requirement, behavioral fuzzers are classed as black-box fuzzers.
[18].

2.2.4 Black-box versus grey-box versus white-box fuzzers

The terms, black-box, white-box and their combination, grey-box describe the amount of
knowledge, in this case, a test has of the SUT prior to execution. Knowledge is everything
from access to the source code of the SUT, to knowing its accepted input parameters and
allowed file types. It is basically knowing the implementation of the SUT.

Black-box

The most basic fuzzers can be described as black-box software, as they have no knowledge
about the SUT. These fuzzers are the most general and could in theory target any system
as they do not have a specific implementation targeting a certain protocol or software [12].
These fuzzers are often the ones we call exhaustive, as they keep on running until we stop
them or until some other logic tells them to stop. As they have no knowledge of the source
code of the target, they cannot have stop conditions based on branch or code coverage.

11

White-box

Contrary to black-box fuzzers, white-box fuzzers take into account knowledge about the
internal logic and source code of the target. These fuzzers can be programmed to run until
a certain level of code, branch or path coverage is reached [14]. White-box fuzzers may
be doing things more intelligently than black-box fuzzers, but they are also less adaptable
to a wide variety of targets because of their implementations targeting a specific use case.

Grey-box

Grey-box fuzzers are a combination of both black-box and white-box fuzzers. They have
partial knowledge of the implementation of the target, but they do not have full access to
all the details. For example, a grey-box fuzzer could have knowledge about the number
of input parameters and input parameter restrictions of the SUT, but no knowledge of the
underlying source code of the target.

2.2.5 Detecting problems

As mentioned earlier, the aim of fuzzers is to trigger a fault in the target system, such
as a crash, hang, or some other event indicative of a problem. The aim is clear, but how
do fuzzers actually know when they have encountered a problem? The manner in which
fuzzers detect these things is dependent on the fuzzer, the target and other tools used
in the fuzzing project. Irrespective of how a problem is detected, all fuzzers have one
thing in common: recording what input caused the problem. Once the fuzzer has been
notified through a channel of communication that a problem has occurred in the target,
any reasonable fuzzer should output logs containing what input was used and what the
response from the program was (if any). Without this information, the tester will not be
able to replicate the problem for further investigation. Furthermore, once the problem is
supposedly fixed, this information can be used to test the target again to make sure that
the problem is no longer present.

However, analysing this output may not always be enough to locate the source of the
problem, which is why there is often a need for further tools and instrumentation in order
to locate the problem [12].

Fuzzer-specific instrumentation

So-called binary fuzzers, like American Fuzzy Lop (AFL) [19], often come with their own
compiler wrappers. These wrappers are used to compile the target program. Naturally,
this means that the source code needs to be available to the tester, which may not always
be the case. In cases where the source code is not available, the compiler will not be

12

of any use. In the cases where the tester is able to utilize the fuzzer-specific compiler
wrapper, it can be used both to compile the target as a normal compiler like clang or GCC

would, and simultaneously to inject the fuzzer-specific instrumentation into the target.
The instrumentation is used to help report program states, crashes, coverage, and such
things, back to the fuzzer itself. It enables the fuzzer to monitor the target, at least to
some extent, without the use of third-party tools.

However, using this fuzzer-specific compiler rarely comes with any performance ben-
efits. On the contrary, fuzzing a binary compiled with a normal compiler may have per-
formance benefits over the fuzzer-specific one, although with the obvious drawback that
no additional helping instrumentation is available in the target [19]. AFL, the example
fuzzer mentioned, will be covered in more detail later in this thesis in Section 3.1.2.

Crash dumps

All operating systems provide the ability to record crash dumps. It varies from one oper-
ating system to another how this feature is enabled, what it is called, and where the dumps
are saved. Nonetheless, what they do have in common is their usefulness in the quest of
determining the root cause of a software crash.

In program or protocol fuzzing where the source code is not available, meaning po-
tential fuzzer-specific instrumentation injection is not possible, the use of crash dumps
may come in very handy. Even with injected instrumentation and fuzzer output logs, it
may not always be possible to determine what caused the problem, though with the help
of crash dumps, it could be easier.

Crash dumps are rather complex, and the interpretation and analysis of them can be
very advanced. Though, for the sake of simplicity in this thesis, they will not be covered
any further. The bottom line is that crash dumps provide extremely valuable information
to the tester regarding the execution of the program, such as crashes and unexpected
behaviours [12].

Debuggers

Debuggers are useful software tools that simplify the analysis of crash dumps and results
of fuzzer runs. There are a lot of debuggers available, each with its pros and cons.

Some debuggers are only available for a certain operating system and are designed
to integrate specifically with that system. Others are cross-platform and work on most
common operating systems. Some debuggers only provide static analysis, which means
that they only have the ability to analyse crash dumps and logs after the execution of
the target program has finished. Other debuggers provide the functionality of run-time
analysis, which means real-time information of what is happening inside the program

13

being debugged. Debuggers also vary in terms of what their targets may be. Kernel
debugging may be possible using one debugger while another one simply monitors a
single process.

As with most tools, debuggers come with both graphical and/or command-line inter-
faces. Ultimately, the choice of a debugger comes down to personal preference and what
type of functionality is required for the job in question. An example of a well-known
open-source debugger is the cross-platform tool gdb by the GNU Project [12]. A very
simple run-time debugging session using gdb can be seen below in Figure 2.2.

Figure 2.2: An example of gdb catching a crash due to zero-division.

14

Chapter 3

Fuzzing tools

There are both commercial and open-source alternatives available when it comes to fuzzers,
and they both have their advantages and drawbacks. Open-source fuzzers are almost al-
ways free to use, modify and, depending on their popularity, they are also well supported
by the community. On the other hand, open-source fuzzers are not guaranteed to have
good, or any, documentation available, and lesser known fuzzers may also lack support.
Open-source fuzzers may not be maintained very well either and they are prone to contain
bugs and to be lacking in functionality.

However, most of these disadvantages do not apply to commercial fuzzers. As they are
paid software, they should have great support and be well maintained by the developers.
The commercial fuzzers are most likely also easier to use and contain more advanced fea-
tures than their open-source counterparts. A major disadvantage of commercial fuzzing
tools, apart from the price tag, is that one does not have access to the source code and one
is bound to use the software as is. Commercial software is often very limited in terms of
what the end user can do to tailor it to their needs. Some companies may offer the ability
to tailor the software, but such privileges often come with a price tag. However, it can
be noted that the cost of a commercial fuzzer, given its potentially higher productivity
rate, may be lower than the cost of hiring an engineer to implement one from scratch, or
tailoring an existing open-source fuzzer to be as easy to use as the commercial alternative
[12].

There are many different software available for fuzzing purposes today. Some of these
software are paid, some are free, and some provide both a free and a paid version. The
free version of the same software often lacks much functionality and features that the
paid version has. In terms of paid versus free, free often sounds more attractive, and that
attraction is even further boosted if the free software in question is also open-source.

No matter if it is a binary, a network protocol, or a web application that is to be fuzzed,
it is always good to know what the options are in terms of available software. The target of

15

the fuzzing project may strongly decide what options that should be considered and what
options should be disregarded. At times, the needs of the project may not be fulfilled by
just one tool. There might be a need for multiple tools for different purposes, or even for
the same purpose, to improve the odds of finding vulnerabilities in the SUT.

3.1 Available fuzzing tools

In this section a number of useful tools for different fuzzing projects will be mentioned.
The tools that are covered below are a mixture of old well-established tools and newer less
well-known up-and-coming tools. The tools included were found from reading various
articles and blog posts on fuzzing. This method of finding tools reveals a lot of alterna-
tives, many more than included in this list, but the ones selected have all been updated
fairly recently and were considered appealing and of interest to the author of this thesis.
The types of tools in this list vary from bare-bones dumb fuzzers to more sophisticated
speciality fuzzers, such as API fuzzers or clever binary fuzzers. All in all, each of these is
interesting and can be extremely useful, given the right project.

The tools have been divided into two categories; commercial tools and open-source
tools. They are listed in alphabetical order within each category. Each item in the list is
a tool, each with a brief description describing the tool and its purpose. All the tools are
summarized in Table 3.1 at the end of the section.

3.1.1 Commercial tools

For companies with a lot of big fuzzing projects, commercial fuzzers may be a better
alternative than free open-source fuzzers as they give some level of guarantee in terms of
functionality, user experience and support. The commercial solutions often work "out of
the box" and are well documented [12]. A couple of commercial fuzzers, along with their
main features, will be mentioned in this section.

beSTORM

Beyond Security’s beSTORM fuzzer is a commercial black-box protocol and general-
purpose fuzzer [20]. beSTORM does not require command-line navigational skills from
the user, as it provides a nice and simple graphical user interface. It contains more than
200 so-called testing modules, which provide easy access to testing most common pro-
tocols. Protocols not included as presets can be defined manually by the user as needed
[21]. On top of that, beSTORM is intelligent as it starts the fuzzing process by testing
the most common known weaknesses, and it is also able to learn the implementations of

16

unknown protocols, even without help from the user. beSTORM runs tests exhaustively
and is able to generate and deliver an enormous amount of attack vectors in order to find
as many errors and bugs as possible. Every test can be recorded in order to be easily
reproduced. beSTORM is available for both Windows and Unix based systems [20].

Burp Suite

Burp Suite, also known as "Burp", is a popular tool for penetration testing and for finding
vulnerabilities in web applications. The tool is developed and maintained by a company
called PortSwigger [22]. Burp contains many different tools for different purposes rang-
ing from a built-in fuzzer to its own proxy. Burp provides a graphical user interface which
is very extensive but allows for full control of every aspect of the configured testing pro-
cess. All the tools in Burp can be made to work together and provide data to each other.
For instance, one can use the proxy to intercept an HTTP request that can be passed on
to the Intruder. The Intruder allows the user to modify parts of the request by defining
injection points for iterative brute-forcing based on word lists. The intruder contains dif-
ferent types of attacks which can be easily toggled in the interface. The request can be
resent and the response and behaviour recorded [23]. Not only can the integrated tools
of Burp Suite interact with each other, but Burp can also be used together with another
web fuzzer such as FFUF. This is done by pointing the web fuzzer (in this case FFUF)
to the proxy of Burp and letting Burp handle the cookie and session management while
the web fuzzer handles making the fuzzed requests. The web fuzzer FFUF is covered in
the next section of this list as well as in more detail in Chapter 4.1. Burp Suite comes in
three different versions: Enterprise Edition, Professional, and Community Edition. The
Community Edition is a completely free version of the Professional Edition with limited
functionality, such as the lack of built-in attack-vectors and word lists. The Enterprise
Edition is targeting organizations that want automated vulnerability scanning and testing.
This edition is completely different from the other two, and the description above does not
necessarily apply to it [24]. As Burp is written in Java, it basically runs on any operating
system.

Peach

Peach Tech’s Peach is one of the oldest and most well-known fuzzers (according to the
literature and blog posts reviewed by the author of this thesis). The commercial version
of the tool spawned from the community edition of Peach fuzzer which was released
more than ten years ago. The original open-source community edition is still maintained
today even though it lacks a lot of features of the paid version. The fuzzer goes under the
category of general-purpose fuzzers as it is capable of fuzzing a wide variety of targets

17

such as files and protocols [25].

Peach Tech was acquired by GitLab in June, 2020 and, at the time of writing, the
commercial version of Peach fuzzer seems to have vanished from the internet as all links
to Peach Tech’s old website now just redirect to GitLab’s website [26]. The community
edition is still available from various download sites, however. This version is free and
open source, which consequently means that this fuzzer falls into both the commercial
and open-source category. Both the commercial version and the open-source version run
on Windows, macOS and Linux with a graphical interface [25].

3.1.2 Open-source tools

Contrary to commercial fuzzers, open-source fuzzers do not give any kind of guarantee
in terms of maturity, functionality or support. The one obvious benefit they do have over
commercial alternatives is that they are free to use and to modify.

Many open-source fuzzing tools are general-purpose fuzzers. This means that they
can be used to fuzz a wide variety of targets with little to no effort, in terms of modifying
and configuring the fuzzer. The problem with these types of fuzzers, though, is that they
are, as the name suggests, not very specific. They will probably be able to find superficial
errors and bugs, but they will not be able to dig deep and find those well-hidden vulner-
abilities, like some commercial "special-purpose" fuzzers would be able to. Of course,
there are open-source alternatives for almost anything, and special-purpose fuzzers are no
exception, though such open-source alternatives may be few and far between [12].

AFL - American fuzzy lop

American fuzzy lop (AFL) is an open-source security-oriented binary fuzzer originally
developed by Michał Zalewski. This command-line tool is most likely the most well-
known open-source fuzzer available. As a fuzzer, it is extremely intelligent as it takes
input data and tests it against the SUT, and based on what paths of the source code are
triggered by the given input, it will mutate the input for the next iteration to cover new
paths. Each mutation is done "using a balanced and well-researched variety of traditional
fuzzing strategies." If the "instrumentation" of AFL notices a new transition for a given
mutated input, the input will be added to the input queue of the next iteration for further
mutation [27]. The instrumentation in question is provided by AFL by using its own
compiler to compile the target binary before performing the fuzzing. Using this technique,
AFL is able to efficiently reach high code coverage and thus test a lot of the edge cases
and the functionality of the targeted binary. As AFL keeps track of previous test cases, it
also ensures high efficiency by eliminating old cases which can be covered by newer more

18

in-depth cases to reduce redundancy [27]. AFL is easy both to compile and to install on
most Unix based operating systems, such as Linux and macOS. Windows users will have
to settle for the WinAFL fork of AFL.

FFUF

FFUF, or Fuzz Faster U Fool, is a web fuzzer written in Go. FFUF is inspired by Wfuzz,
which is an older, but very similar web fuzzer. Wfuzz will be covered briefly further down
in this list and in detail in Section 4.2. The main selling point of FFUF is its supposed
superiority in terms of performance compared to other similar tools, like Wfuzz.

Web fuzzers are not like regular fuzzers [28]. Instead of doing a lot of fuzzing them-
selves, they make use of word lists used as input for the "fuzzed requests" that they exe-
cute. How web fuzzers compare to regular fuzzers is explained in Chapter 3.2.

FFUF is able to fuzz raw HTTP request and the URLs themselves. Folders and files
that may not be meant to be found can easily be found simply by fuzzing the URL of a
website, thus allowing FFUF to request all kinds of potentially valid paths. By analysing
the output that consists of the status code, size, content, and number of lines of the request,
it is possible to find out what URLs or requests may be interesting to take a second look
at. FFUF makes this very easy by offering a lot of options for filtering the output [29]. As
FFUF is written in Go which is compiled directly to machine code, it can be compiled to
run on almost any operating system. As is the case with many open-source fuzzers, FFUF
does not come with a graphical interface and only makes use of the command line. FFUF
will be covered in more detail in Chapter 4.1.

Honggfuzz

Honggfuzz is a security-oriented, feedback-driven binary fuzzer which is maintained by
Google. Unlike some fuzzers, Honggfuzz is able to run both multi-process and multi-
threaded out of the box. This means that there is no need for the user to run multiple
instances of the program to run it on multiple cores. It will automatically distribute the
workload over the available CPU cores. Honggfuzz prides itself on its performance and
claims to be able to run up to one million iterations per second on a relatively modern
CPU. Another big selling point is the ease-of-use factor. A simple corpus directory (a
collection of interesting sample inputs) is the only thing the feedback-driven fuzzer needs
to start working. It can even start from no input, and then learn the input format through
the feedback system.

Hongfuzz does not provide a GUI and can only be controlled from the terminal. How-
ever, this applies to all command-line fuzzers, and it is quite a desirable feature for larger

19

fuzzing projects as these types of fuzzers are easy to set up and control remotely. Instances
of the fuzzer could for example be deployed in the cloud with ease.

Honggfuzz runs on all popular operating systems available. Even some more uncom-
mon systems like FreeBSD and NetBSD are included in the list of (officially) supported
systems. Among Hongfuzz’s greatest achievements in the fuzzing scene is its critically
marked bug find in OpenSSL. The bug in question is the only bug with the critical mark
that has been found in OpenSSL to date [30].

PyJFuzz

PyJFuzz is, as the name suggests, a fuzzer written in Python. PyJFuzz is a small program
and is installed with just a few commands. The main purpose of PyJFuzz is to fuzz JSON
input points. Such points are, for example, REST APIs and other interfaces that make
use of the JSON format. Once installed, the software provides both a command-line tool
and a Python library. Using the Python library, one is able to create automated fuzzing
scripts that make use of the PyJFuzz fuzzer. Included in the command-line tool there is
a tool called the "PyJFuzz Web Fuzzer". Contrary to what is regarded as a web fuzzer
in this thesis, this tool enables the user to fuzz almost any web browser. The difference
between the two definitions of what a web fuzzer is, is in short that PyJFuzz fuzzes actual
web browser programs, such Mozilla Firefox, while this thesis defines a web fuzzer as a
fuzzing tool that is able to fuzz web applications. A more detailed explanation on how a
web fuzzer is defined according to this thesis is available in Chapter 3.2. As PyJFuzz is
written in Python, it runs on all operating systems that run Python, meaning all common
operating systems (Windows, macOS and Linux and more) [31].

Radamsa

Radamsa is a small open-source general-purpose black-box fuzzer. It was developed by
The University of Oulu in Finland. As early as 2013, Radamsa had already been used
to find more than a hundred vulnerabilities in web browsers. Vulnerabilities in anti-virus
software and common image and audio formats were also found by using Radamsa while
the tool was still young [32].

What Radamsa does is very simple; it takes input either from a file or from the output
of another command line utility and fuzzes it in some random way to create the fuzzed
output. Running Radamsa with the same input will rarely produce the same output, even
though it is possible by providing the same seed to the utility manually. The output of
Radamsa can either be written to a file or to the console, and, as previously mentioned,
its input possibilities are very flexible. It may often be wise to use Radamsa together
with some other tool, such as a web fuzzer like FFUF. Radamsa would do the fuzzing

20

part, feeding the outputs continuously to the web fuzzer which takes the fuzzed data and
injects it into HTTP requests or URL paths, for example.

Radamsa does not provide any graphical interface, and is used exclusively from the
command-line. It is written in C and runs on GNU/Linux, OpenBSD, FreeBSD, macOS
and Windows [33].

RESTler

RESTler is a REST API fuzzing tool developed by Microsoft. This open-source command-
line tool is written in Python and utilises Microsoft’s .NET core SDK. It reads the Swag-
ger/OpenAPI specification of a REST API service. Based on the specification, it is able
to generate and execute tests against the API.

RESTler performs four steps to test the API. First it uses the Swagger JSON or YAML
specification to compile RESTler grammar. This grammar may be analysed, edited, and
extended manually where needed ahead of the next step. In the next step, RESTler tests all
the endpoints and methods in the RESTler grammar quickly to check what endpoints are
valid and which ones are not. All reports are saved separately to be analysed. The third
step is called "Fuzz-lean". In this step RESTler tests every endpoint and method once,
using a default set of "checkers". Checkers contain functionality which will try to trigger
specific bugs by making additional requests to endpoints determined by context. Some
checkers may, for example, aim to trigger bugs that cause the endpoint to respond with
status 500. The "Fuzz-lean" step finds the most superficial bugs relatively quickly. To find
the deeper laying bugs, RESTler provides the fourth step, Fuzz. The fuzz step is similar
to the third step, though it goes more in depth and utilises smart breadth-first-search to be
able to find those more well-hidden bugs. RESTler is designed to run on 64-bit Linux and
Windows systems. The project is still under active development [34].

SPIKE

SPIKE is an open-source fuzzing tool which has been around for long. It was first released
in 2002 by Dave Aitel along with a scientific paper [35] of his. At the time, SPIKE
introduced a feature not seen before in the field. SPIKE allowed the user to specify where
in the input it would insert randomly generated data. SPIKE also offered a framework
which could be used to define new data-set templates, so that protocols that were not
already defined, could also be fuzzed. This is something that is seen in most modern
fuzzers, but at the time of SPIKE’s release, it was not as common [12].

The so-called SPIKE scripts are written in C, as the framework itself is also written
in C. These user made scripts are in practise what make the fuzzer. SPIKE of today does
not provide a fuzzer itself, rather than just the framework with which anyone can quickly

21

build a script which makes up a tailored fuzzer for their specific purpose. SPIKE was
initially designed to run in a Unix (Linux or macOS) environment, and this it does not
officially support Windows, unfortunately. However, there have been mixed reports of
successfully running SPIKE on Windows using Cygwin [36]. Cygwin is a collection of
open-source and GNU tools which provide Linux-like functionality to Windows systems
[37].

Wfuzz

Wfuzz is one of the most common open-source web fuzzers available to date. As previ-
ously mentioned, Wfuzz is what inspired the creation of FFUF. One of the main differ-
ences between the two is that Wfuzz is written in Python while FFUF is written in Go.
Wfuzz is consequently (supposedly) slower in terms of performance, as Python is an inter-
preted language compared to Go, which is compiled. Another major difference between
the two is that FFUF is purely a command-line tool while Wfuzz is both a command-line
tool and a framework for creating customized fuzzing scripts in Python. On top of that,
Wfuzz also comes with a tool called wfpayload which is used to generate new payload
content or analyse saved sessions. A payload in Wfuzz is a source for input data.

In most other aspects, FFUF and Wfuzz provide about the same functionality. The
main command-line utility allows the user to specify word lists as sources of data (pay-
loads) and website URLs as targets for either fuzzing the URL path itself or some part
of the HTTP request. Wfuzz runs on all common operating systems including Windows,
Linux and macOS [38]. Wfuzz is covered in more detail in Section 4.2.

Summary

All the tools covered in this chapter are summarized in Table 3.1 below. The Type column
defines what category the tool falls into. These types are by no means standardized and
the terminology used for the classifications is simply a combination of this author’s own
wording and the classifications provided by the developers of the tools. Binary fuzzers

are fuzzers whose main targets are binary files, General-purpose fuzzers are fuzzers that
can be used for a wide variety of fuzzing jobs, often including (but not exclusive to)
protocols. Burp Suite is the only tool in the table classed as Pen testing tool kit as it is the
only one that includes a very large range of tools for a wide variety of situations in terms
of penetration testing. The Structured input fuzzers are fuzzers that are tailored to fuzz
endpoints expecting some kind of structured data, such as REST APIs expecting JSON
input data. The Basic fuzzer is, as the name suggests, the most simple kind of fuzzer
imaginable. It simply takes input data and randomizes it in some way to produce fuzzed
output data. In this case, it is completely up to the user how they choose to save and

22

use the output data. The last type of fuzzer mentioned below is the Fuzzing framework

type. This phrase is a bit ambiguous and requires further explanation. In this thesis, a
fuzzing framework is defined as a programming framework which a programmer can use
to develop their own fuzzer. Such frameworks are particularly useful in cases where no
existing fuzzer satisfies the requirements, and a solution tailored for the job is needed.

Abbreviations are used in the Interface column to preserve space. GUI stands for
graphical user interface and CLI stands for command-line interface.

Tool Type Interface Open-
source Paid Operating System UpdatedLinux macOS Windows

AFL Binary fuzzer CLI Yes No Yes Yes No 2020
beSTORM General-purpose fuzzer GUI No Yes Yes Yes Yes 2019***
Burp Suite Pen testing tool kit GUI No Yes* Yes Yes Yes 2021
FFUF Web fuzzer CLI Yes No Yes Yes Yes 2021
Honggfuzz Binary fuzzer CLI Yes No Yes Yes Yes 2021
Peach General-purpose fuzzer GUI No** Yes* Yes Yes Yes 2020
PyJFuzz Structured input fuzzer CLI Yes No Yes Yes Yes 2019
Radamsa Basic fuzzer CLI Yes No Yes Yes Yes 2019
RESTler Structured input fuzzer CLI Yes No Yes No Yes 2021
SPIKE Fuzzing framework None Yes No Yes Yes No 2017
Wfuzz Web fuzzer CLI Yes No Yes Yes Yes 2020

Table 3.1: Overview of useful tools in the world of fuzzing.

* Free version available, though with fewer features

** While the commercial version is not open-source, the community edition is.

*** The release year of the latest version of beSTORM is given as an educated guess

based on blog posts and news articles as no official information could be found.

None of these tools is the best in all cases, they are all useful in their own areas. In
this thesis, the focus will be on FFUF and Wfuzz, which are two open-source tools that
can be used for fuzzing web applications and web services, such as APIs. These two tools
will be described in more detail in Chapter 4.

3.2 Tools for fuzzing web-based systems

The distinction between mutation, generation and behavioural type fuzzers has already
been covered in this thesis, but it is also important to explain what tools for fuzzing web-
based systems are, and how they function compared to "regular" fuzzers. The first type
of web-based fuzzing tool that will be covered is the so-called web fuzzer. The common
understanding of what a fuzzer is, is that it is a piece of software that takes some valid
input and modifies it in various ways to create semi-valid data which is used as input
to test a target system. The ways in which the fuzzer performs these steps and how it

23

handles things depend on the fuzzer, but this is often the high-level explanation of what
one imagines almost any fuzzer would be doing.

Contrary to regular fuzzers, web fuzzers are rather different in terms of functionality.
Web fuzzers rarely perform any fuzzing of the kind mentioned above, but instead, they
rely on predefined word lists as their inputs. These word lists may, of course, be the
results of prior fuzzing jobs performed by a regular fuzzer, but that step would often
happen before the web fuzzer even comes into play [39]. Some web fuzzers can use
freshly fuzzed input "on the go" by working together with a basic fuzzer. For example,
FFUF could make use of Radamsa’s fuzzing outputs as inputs for its own web fuzzing
jobs by continuously receiving fuzzed data through piping.

While web fuzzers often do not perform any traditional fuzzing, they do things that
traditional fuzzers do not. Web fuzzers let the user define what part of a URL, HTTP
request or some payload that they want to fuzz. These parts can be one or multiple. The
fuzzer then makes repeated requests to the given URL. Alternatively, the fuzzer can make
the repeated requests using a raw HTTP request. Both alternatives use "words" from the
word list(s) as input. How the fuzzer chooses what words to use, and in what order,
depends on the method used by the fuzzer. Web fuzzers often supports multiple methods
for making fuzzed combinations based on multiple word lists. The most popular ones are
"pitchfork" and "clusterbomb". In pitchfork mode, only the words on the same "indices"
of the multiple word lists are combined, for example, the first word in word list A is only
combined with the first word in word list B, and so on. This method assumes that all the
supplied word lists are of the same length. Consequently, it means that the web fuzzer
will make a total of N combinations of the HTTP request template or URL, where N is
the length of the word lists. However, the word lists do not have to be of the same length
in clusterbomb mode, as it generates all possible combinations using the given word lists.
For example, if word list A is of length k, word list B is of length j and word list C of
length m, the fuzzer will generate a number of j ∗ k ∗m combinations [29]. The names
of the modes vary from fuzzer to fuzzer. In short, instead of performing regular fuzzing,
web fuzzers can be said to perform brute-force-like, repeated HTTP requests using word
lists. The type of fuzzing job dictates what type of word list is to be used, "pre-fuzzed"
(word list run through a regular fuzzer) or not. The two main tools of this thesis, FFUF
and its predecessor Wfuzz, are prime examples of web fuzzers.

Web fuzzers are not the only kind of tool for fuzzing web-based systems, however.
In Table 3.1 there are mentions of two other tools that also fall into the category of web-
based tools, but are not classified as web fuzzers. The fuzzers in question are PyJFuzz
and RESTler and this thesis has chosen to classify them as structured input fuzzers.

Structured input fuzzers are fuzzers that output fuzzed input data which comply with

24

some standardized structured input definition. Examples of such structured inputs are
JSON and XML. Javascript Object Notation (JSON) is a data-interchange format based
on a subset of Javascript. This format is both easy to read and write for humans, but
can also be read and parsed easily by computers [40]. Extensible Markup Language
(XML) is another structured text format for data [41]. Just like JSON, XML is easy
to read and write for both humans and computers, which is why both formats are often
accepted by endpoints expecting structured input data. Structured input fuzzers take valid
structured data as input, fuzz the actual data part while leaving the structure intact and
then, potentially, try this fuzzed output against a target such as a REST API or in the case
of PyJFuzz, even in a browser.

All in all, these types of fuzzers understand what parts of the input can be fuzzed,
and what parts must not be touched in order to preserve a valid structure. RESTler does
not exactly take valid structured input data as input, but instead it takes the endpoint’s
OpenAPI specification (formerly known as Swagger) as input and uses this detailed and
standardized specification to generate grammar and tests. The specification describes the
API, its endpoints, expected parameters and data in detail. The specification is given in
the form of a JSON or YAML file [42]. The grammar can easily be modified and extended
by the user to include even more test cases. However, this approach requires the target
endpoint to provide an OpenAPI specification, which may not always be the case.

25

Chapter 4

FFUF or Wfuzz - What is the
difference?

The main focus of this thesis are the two web fuzzers FFUF and Wfuzz, which have
been briefly covered in Section 3.1.2. It is undeniable that they share a lot of features
and functionality, so why do they both exist? FFUF is the newer tool, but why did the
developers of FFUF decide to create a tool so similar to something that already exists
and works? Is newer always better or are there scenarios where both tools would serve
different, but useful, purposes in one’s fuzzing toolbox? It is no secret that FFUF is
inspired by Wfuzz, and even if they seem to be almost the same tool, they are different.
This part of the thesis aims to find, emphasize and compare these differences in order to
determine whether there is a need for both tools, or if one could replace the other, making
the choice between them a matter of personal preference.

This chapter will first describe both the tools in detail, followed by an initial planning
of the comparison. The planning will define the system under test, fuzzing payloads,
attack scenarios as well as the metrics which will be used to compare the two tools. The
planning phase will be followed by preparation including detailed steps on how the tools
are installed and configured. The execution phase will consist of the execution of the
attack scenarios with both tools. During the execution, measurements and data will be
recorded. This data will then be summarized and analysed in the results and analysis
section at the end of this chapter.

4.1 FFUF - Fuzz Faster U Fool

FFUF is a web fuzzer written in Google’s Go (also known as Golang) language [29]. Code
written in Go is compiled into machine code for the specific architecture the program is
to be run on. This means that programs developed in Go can run both on a wide variety

26

of architectures and operating systems. This also means that they will, at least in theory,
outperform programs written in interpreted languages, for example Python, and languages
that run in virtual environments, such as Java [43]. The performance factor is one of
FFUF’s main selling points as it should, on paper, outperform most similar tools, such as
Wfuzz. Wfuzz and FFUF share a lot of similarities but it seems as if people prefer the
newer, faster FFUF over Wfuzz, from which FFUF has taken a lot of inspiration [29].

Just like the open-source tool Radamsa, FFUF is a command-line tool completely
without a graphical interface. However, compared to Radamsa, FFUF is more of a brute-
force tool. Radamsa on the other hand, is a form of mutator which takes valid data as
input and fuzzes it in some way to produce random output. FFUF depends on word
lists, or other types of pre-produced input data, which it uses to test the target website or
web application with. A combination of Radamsa and FFUF results in a really powerful
fuzzing arsenal which can fuzz a web target quickly with fresh randomly generated input
data.

When running FFUF, the web targets are specified using the -u flag and are given in
the form of a URL. The most simple thing one could fuzz with FFUF is the URL itself.
When fuzzing the URL, one is often looking for folders or files that could be accessible
if the correct URL is found. The way FFUF does this is by injecting one word at a time
from the input word list into the chosen position in the URL. It then makes a request to
the resulting URL, reporting back the HTTP status code, size, words, and lines of the
response. FFUF provides the -w flag for specifying the input word list. The word lists are
assumed to contain one word per row.

FFUF also allows the user to filter the results to only show requests that, for example,
returned a certain status code or were of a certain size. The filtering can also work the
other way around. For instance, the user could choose to only show results that did not
return a certain status code. FFUF also allows for fuzzing multiple places of a URL or
request at once by specifying multiple word lists using aliases [29]. An example of URL
fuzzing using FFUF can be seen below.

$ ffuf -w directory-list-2.3-small.txt -u https://matheos96.github.io/FUZZ/

Apart from fuzzing any part of the URL, FFUF is also able to fuzz raw HTTP requests,
which, for instance, can be defined in a simple text file. By supplying word lists with
aliases and specifying the injection points in the request file using the aliases, any part of
the request can be fuzzed easily and effectively. FFUF will by default use the so-called
clusterbomb mode for creating iterations of the fuzzed request. The clusterbomb mode
will generate all possible combinations of requests using words from each word list. The
second available mode, pitchfork, will simply generate requests where the first word is
paired with the first word from each list, the second word with the second word from

27

each list, and so on [29]. Basically, if two word lists have a length of N, pitchfork will
generate N requests while clusterbomb will generate Nk, where k is the amount of word
lists. An example of a request template for fuzzing an HTTP POST request using FFUF
can be seen in Figure 4.1. In this example, the injection points are specified by the word
list aliases WFUZZ and HFUZZ.

Figure 4.1: Fuzzing an HTTP POST request using FFUF.

FFUF also comes with more complex features such as the ability to pass cookie data
along with requests, verbose output, specifying delays between requests, and much more.
The tool is regularly updated and is maintained, and it is available on GitHub.

4.2 Wfuzz - The Web fuzzer

Wfuzz is an older and more mature alternative to FFUF. It is written in Python, contrary
to FFUF which is written in Go. As is the case with FFUF, Wfuzz is also cross-platform,
as Python runs on nearly any operating system and architecture.

Wfuzz is a command-line based tool without the luxury (or burden) of a graphical
interface. Just like FFUF, Wfuzz takes a URL as target along with a payload or multiple
payloads. Based on these payloads, combinations are created and injected into the URL
itself, a raw HTTP request, or even into the cookies of the request. The way input data
and other properties are given to Wfuzz is extremely similar to the way FFUF handles
it. Wfuzz also provides a -w flag, which is a shorthand for specifying a word list as a
payload. A notable difference from FFUF is that Wfuzz does not allow the user to specify
custom aliases for each word list. Instead of custom aliases, each word list or payload
is automatically assigned an alias depending on in what order they are provided in the
command. The first payload corresponds to the alias FUZZ, the second to FUZ2Z, the third
to FUZ3Z, and so on [38]. An example of a simple Wfuzz command with one word list is
seen below.

$ wfuzz -w directory-list-2.3-small.txt -u https://matheos96.github.io/FUZZ/

Apart from accepting files as payloads, Wfuzz also accepts several other types of
payloads. Such advanced input options are given to the tool using the -z flag, followed by

28

the type of payload and potential additional parameters. One custom payload that Wfuzz
has built in is iprange which automatically generates a list of IP addresses for a given
range. When given multiple payloads, Wfuzz will generate combinations based on all of
them. Wfuzz uses the product iterator by default, which combines each element from the
first payload with each element of the second payload, and so on. This iterator is identical
to the clusterbomb mode of FFUF. Wfuzz also includes the zip and chain iterators. The
zip iterator matches one element from each payload and makes the combinations that way.
It is identical to the pitchfork mode which FFUF provides. The first word from word list 1
is paired with the first word from word list 2, and so on. The chain iterator simply chains
all payloads together into one large payload. When using chain, only one injection point
is expected, as it ultimately uses only one combined payload [38]. FFUF does not have a
mode that acts in the same way as the chain iterator.

The features mentioned are just a small piece of the functionality that Wfuzz has to
offer. Just like FFUF, it also includes filtering options, passing of cookie data, regex
matching, and a lot more. Wfuzz also provides a few additional command-line tools sep-
arate from the wfuzz command itself. Among these, there is an encoder for encoding
strings using different algorithms as well as a payload generator which can be used to au-
tomatically generate payloads based on input data and conditions. Another big difference
from FFUF is that Wfuzz comes with its own Python library. This library can be used
to create tailored fuzzing jobs which can be easily replicated by simply re-running and
distributing the Python script file [38]. Though interesting, the Python library will not be
explored further in this thesis.

4.3 Experiment planning

In order to carry out the comparison experiment, the target, attack scenarios and metrics
need to be defined. This section will briefly cover the system under test, which will act
as target for both our tools. The attack scenarios will also be defined and explained on
an abstract level. Lastly, the metrics of the experiment will be mentioned, as well as how
these will be measured.

4.3.1 System under test

In order to evaluate, test, and compare the two fuzzers with each other, a common target
is needed. The intentionally vulnerable Damn Vulnerable Web Application (DVWA) [44]
will be used as the target in the comparison. DVWA is an open-source web application
written using PHP and MySQL. It was developed with the purpose of being a test target
for security professionals to attack and test their skills against [44]. DVWA is made inten-

29

tionally vulnerable and its security level can be configured using the web app interface.
During the course of this experiment, we will have the security level set to low, as this
level of security does not throttle our requests. Higher security levels tend to throttle the
traffic if a large number of requests come in during a short period of time, and, as this
is what we aim to do (send a large number of requests quickly), we do not want a high
security level to limit our experiment. In reality, of course, one does not have the luxury
of setting the level of security. Because of that, the fuzzers might need to be run for longer
periods of time to get through all the requests.

DVWA includes a lot of different vulnerabilities, each with its own page (see the left
menu in Figure 4.2). Each page includes instructions, tips, and even the option to view the
PHP source code. This makes DVWA a good tool both for security professionals evaluat-
ing their tools and skills and for beginners wanting to learn about different vulnerabilities
and what to do to protect their own web applications against them.

DVWA contains the most common vulnerabilities found in web applications [44].
This list of vulnerabilities can be seen in Figure 4.2. This thesis will not cover all the
vulnerabilities that DVWA has, but will choose to focus on a couple of them. Given that
FFUF and Wfuzz are very similar, both being brute-force web fuzzers, it makes sense
that one of the vulnerabilities to test will be a vulnerability which is exploitable using
Brute-Force. Another common type of vulnerability that comes to mind when talking
about web applications is the type which can be exploited using SQL injection. SQL
injection is an obvious thing that developers need to consider when parsing user input
to web applications and saving data to the back-end database. Still, however obvious
that may be, vulnerabilities exploitable using SQL injection still arise and are sometimes
overlooked. Therefore it is important that SQL injection is covered in this thesis. Thus
the vulnerabilities exploitable using Brute-force and SQL injection will be the ones tested
and explained in detail.

4.3.2 Payloads

As explained earlier, web fuzzers rely on payloads of some sort. In practice, these pay-
loads are often simple word lists containing known usernames, passwords, SQL injection
phrases, or some other input data known to trigger a certain type of problem in web ap-
plications. There are a lot of word lists of various sizes available for different scenarios.
In this experiment, the popular SecLists lists will be used. SecLists is a GitHub repository
containing a large set of different lists for different types of attacks and scenarios. It has
lists for usernames, passwords, URLs, fuzzing payloads, and lot more. This collection of
lists is meant to aid security testers in their web application testing [45].

30

Figure 4.2: Damn Vulnerable Web Application provides a simple user interface.

4.3.3 Attack scenarios

In this section, several attack scenarios will be instrumented to evaluate the two tools.

A brute-force attack is very simple. The tool tries every possible combination based
on the given input. In this case, our tools are web fuzzers that expect payloads. The brute-
force page of DVWA consists of a simple login form which we will want to try to attack
using brute-force. As SecLists provides large and good word lists for both usernames
and passwords, they will be made use of. Given one list of usernames and one list of
passwords, each tool should be able to create every possible combination of the two, and
run a request for each of them. To determine what requests are successful, or in some other
way out of the ordinary, a failed login request can be recorded manually at first. Based on
the response size, status code, or amount of words of the known failed request, our tools

31

can be told that only results that DO NOT match the characteristics of a failed login are
wanted to be seen. The outputs of the two tools should hopefully only be combinations
of interest, such as valid logins.

SQL injection attacks are often found in input forms of web applications and web
sites. Flaws which make web apps vulnerable to SQL injection arise when the developers
do not sanitize the user submitted form data properly before executing SQL queries meant
to save these values to the database or alter the state of the database in som other way. If
the data submitted by the user is not sanitized (using escaping, blacklisting or whitelisting
techniques), attackers could potentially "hijack" the query to be run by terminating it early
and appending their own query at the end. Alternatively, they could alter the existing
query in order to return more results than intended from the database. This is often done
manually as the characters used in the query in the source code dictate what characters
need to be used in the intercepting SQL injection string.

In SQL, one can often compose queries with slightly different syntax to get the same
result. A developer can choose to use either single quotation marks or double quotation
marks, with the same effect. However, the choice the developer has made, dictates what
syntax will be needed in the SQL injection string. Furthermore, the SQL engine used
plays a part as different SQL implementations have different syntax. Knowledge of what
SQL engine is used makes the task of finding the vulnerabilities easier, but it is still done
through trial and error.

Using our two brute-force web fuzzers together with SQL injection word lists pro-
vided by SecLists, we can automate this process. By testing a lot of SQL injection strings
known to be vulnerable and by focusing on the responses with some characteristics that
stand out (, for example, larger or smaller response size or word length), we can quickly
and efficiently determine if the target is vulnerable, and to what type of SQL injection
string it is vulnerable. Using our tools, we do not expect to extract any data from the
database automatically, or execute any harmful queries on the database, but instead we
expect to find the vulnerabilities that make things like this possible. Having found some
vulnerabilities, we will try to exploit them manually and extract data from the database
that are not meant for our eyes.

4.3.4 Metrics

Both FFUF and Wfuzz report some metrics themselves, though, as it turns out, FFUF does
not report the average request rate for the execution, while Wfuzz does. FFUF reports the
current request rate, but it has been noted through testing that the final rate that is left
on the screen after the run is, in fact, just the rate that was recorded last. On top of
that, FFUF only reports the execution time with a precision of one second, while Wfuzz

32

reports the time with a precision of six decimal points. Because of these inconsistencies,
the built-in Linux tool /usr/bin/time -v will be used to record more consistent and
exact execution times. The tool reports a few different time measurements, but the one
that will be used for the experiment is the Elapsed (wall clock) time. The request rate
can consequently be calculated manually based on this time by dividing the number of
requests with the time. Wfuzz’s request rate could well be accurate, but in order to have
as fair a comparison as possible, that rate will also be calculated manually.

On top of those attributes, the memory footprint and CPU utilization for each attack
will also be measured. They will both be measured using the /usr/bin/time tool. The
output of the tool will give the CPU utilization and the memory footprint as Percent of

CPU this job got and Maximum resident set size respectively. The CPU utilization is
given as a percentage, where 100% means a full CPU core was used. Consequently, a
percentage of 200 would mean that two cores were fully utilized. The memory footprint
is given in kilobytes.

As the same word lists will be used for both tools in every attack, the same number
of vulnerabilities are expected to be found. The number of vulnerabilities found will be
noted, and potential differences compared.

The definition of "a vulnerability found" of this thesis also will need to be assessed.
The tools themselves will not know what is a vulnerability and what is not, which means
some human experience and interaction will be needed, contrary to what has been ex-
plained earlier regarding fuzzers in general. The results of the runs will be in the form of
lists of request responses along with the characteristics of each request. When a request
that sticks out is found, that request will be regarded as a potential vulnerability. In order
to determine what requests stick out, a baseline will be needed. By manually recording a
simple request which causes an expected behaviour from the application, one can easily
use the filter/hide functions of the tools to only show the request responses that differ from
the baseline. These are the responses that are of interest and the ones that will be regarded
as potential vulnerabilities.

4.4 Environment preparation

In order to get started with the fuzzing and running our experiment, we need to set up the
environment including DVWA and all its prerequisites as well as both our fuzzers. All the
tools we need will be deployed locally on a Windows 10 machine. The tools, however,
will run on Ubuntu using Windows Subsystem for Linux (WSL). Linux is by no means a
requirement for our given tool chain; the choice is simply a matter of personal preference.
Linux allows us to navigate comfortably using the terminal with familiar Unix commands,

33

and, furthermore, Ubuntu provides the very handy package manager APT (Advanced
Package Tool), which makes installing a lot of dependencies and packages very simple
[46]. As everything will technically run in Linux, one could easily view this whole set
up process as being done on a Linux machine (and disregard the fact that it is being run
inside of Windows). The installation and set up of WSL and the configuration of Linux
itself will be left out as the aim of this thesis is not to explain how to setup and install
Linux, but how to use the chosen fuzzing tools to exploit our target web application.

However, before we do anything, we should make sure that all our package reposito-
ries are up to date, so that we can get the latest available versions of all the packages that
we intend to install. In Ubuntu, this is as easy as running the command:

$ sudo apt update

With our package lists refreshed, we are ready to start setting up our fuzzing environment.

4.4.1 Setting up DVWA

We will set up DVWA first. It is available to download for free from the website dvwa.co.uk
or from the official DVWA GitHub repository at github.com/digininja/DVWA. We will
choose to clone the GitHub repository to be sure to get the latest version. We do this using
the following command (assuming we have git installed):

$ git clone https://github.com/digininja/DVWA.git

We should now have a folder named DVWA in our working directory. This folder contains
the whole web application, but we still need some other packages in order to host it
locally. Following the intrusctions on the DVWA GitHub page [47], we will install the
packages required for Debian based systems (as Ubuntu is a Debian based system) using
the command below. We have modified the command given on the DVWA GitHub page to
run with full privileges by pre-pending sudo and we have also swapped the old apt-get
command for the newer apt.

$ sudo apt -y install apache2 mariadb-server php php-mysqli php-gd

libapache2-mod-php

This will install Apache, PHP and MariaDB along with some dependencies. Apache2 is
an open-source HTTP server which will be used to serve the application [48]. PHP is a a
server side scripting language which is embedded into the html of web pages [49]. DVWA
is built using PHP so we need our server to be able to run it. MariaDB is an open-source
MySQL server made by the original developers of MySQL [50]. DVWA needs a MySQL
database to store data in, and as MariaDB works out of the box with DVWA, according

34

https://dvwa.co.uk/
https://github.com/digininja/DVWA

to the DVWA GitHub page [47], we will use it instead of the "regular" MySQL server
package.

Once all the packages have finished installing, we can move the DVWA folder to our
website root folder. The Apache root folder is by default located at /var/www/html/.
We will need root privileges to move the folder to this location, which means sudo will
be needed. The move is done using the following command:

$ sudo mv DVWA /var/www/html/

Now we have all the files where we want them. Next, we need to make a copy of the
DVWA configuration file and rename the copy for it to be used. The file config.inc.php.dist,
located at /var/www/html/DVWA/config/, should be copied to its current folder with
the name config.inc.php. If we start the Apache server without doing this, the page
shown at http://localhost/DVWA will tell us that this is the problem. We create this
copy using the cp command, but first we have to change directories to the config folder.
This is done by using the following commands:

$ cd /var/www/html/DVWA/config/

$ sudo cp config.inc.php.dist config.inc.php

This configuration file contains, among other things, the database name, the database
username and the password that will be used by DVWA to connect to the MariaDB server.
For simplicity, we will use the defaults given in the file by default, but these can easily
be changed by modifying the configuration file. At this point, we can access the web
application using a web browser, but first we need to start Apache using the following
command:

$ sudo service apache2 start

The default behavior is that Apache and MySQL (MariaDB) services will automatically
start with the machine, so this start command is only needed at this time if we do not
restart the operating system in between. We can now visit the web app at http://local-
host/DVWA. As the set up is not quite done yet, we will be greeted with a useful page
that tells us what still needs to be done. This page is seen in Figure 4.3. The text
in red indicates problems that we need address. First of all DVWA wants us to enable
allow_url_include. This is a PHP setting which allows programmers to include()
.php files using a remote URL, rather than a local file path. In PHP, include() is a func-
tion to include PHP-code from another file. This feature is disabled by default as it is con-
sidered a security risk because, depending on the implementation of the web application, it
could potentially be tricked into including harmful code from a remote source [51]. In our
case, we want the web app to be insecure so we will go ahead and enable this feature. This
is done by modifying the PHP configuration file at /etc/php/[php_version]/apache2-
/php.ini, where [php_version] is the php version that is installed. By opening this file

35

Figure 4.3: DVWA’s set up check page simplifies the initial configuration of the web app.

with root privileges using a text editor, we can find and edit the line that says allow_url-
_include = Off to allow_url_include = On. After saving the file we need to restart
the apache2 service in order for the changes to take effect. This is done by issuing the
following command:

$ sudo service apache2 restart

Once Apache has restarted and we have reloaded the page, we realise that the red Disabled
text of allow_url_include has changed to Enabled and turned green. If we had had
the same issue with allow_url_fopen on the line below, we would have had to change
the Off value to On in the php.ini file for that setting too. The next problem we see in
Figure 4.3 is related to reCAPTCHA. We won’t target reCAPTCHA vulnerabilities in this
thesis, so we will not bother addressing this issue. Lastly, we have faulty permissions on

36

two folders and a file. It seems like DVWA requires the folders and file mentioned to be
writable by Other, which in Unix systems is any other user that is not the owner of the
file or folder, nor belongs to a group that is the owner [52]. We will fix these permission
issues by issuing the three following commands:

$ sudo chmod 757 /var/www/html/DVWA/hackable/uploads

$ sudo chmod 757 /var/www/html/DVWA/config

$ sudo chmod 646 /var/www/html/DVWA/external/phpids/0.6/lib/IDS/tmp/phpids_log.txt

The command for changing the permission for the individual file as opposed to the folder
is slightly different because it is of a different type (file vs. folder). At this point we
should be seeing all green on the set up check page, apart from the reCAPTCHA part
which we intentionally skipped.

Now all that is left to do is to create the database and the database user. To do this, we
need to login to the database server as the root user. But first we have to make sure that
the MySQL service is running. This should be the case if the machine has been rebooted
in between, but if not, we need to start it manually. It must be said, however, that the auto
start feature does not work for Linux distributions running in WSL, and as our Ubuntu
virtual machine is running in WSL, we will always have to start both the Apache and
MySQL services manually. The commands for manually starting MySQL and logging in
as the root user are:

$ sudo service mysql start

$ sudo mysql -uroot

We should now be logged into the MariaDB prompt. To create the database and database
user with the default names and default password, we will issue the following commands:

$ MariaDB> create database dvwa;

$ MariaDB> create user dvwa@localhost identified by 'p@ssw0rd';

$ MariaDB> grant all on dvwa.* to dvwa@localhost;

$ MariaDB> flush privileges;

The first command creates the database named dvwa, and the second command creates
the user named dvwa and sets up its password to be p@ssw0rd. The third command grants
all privileges for the new user on the newly created database, and the last command forces
MariaDB to reload all the grant tables to ensure that the privileges become active instantly
[53].

Everything should now be done and ready to go. We can simply click the button saying
Create / Reset Database at the bottom of the set up check page and all the necessary tables
should be generated and we should be redirected to the DVWA login page. In Figure
4.4 we can see how the tables get generated, and soon after we will be automatically

37

redirected to the login page seen in Figure 4.5. We will need to log in using the default
admin credentials in order to reach the pages with the vulnerabilities that we want to
test later on. The default username is admin and the default admin password is, not
surprisingly, password.

Figure 4.4: Once we have created the database and the database user, we can have DVWA
generate all the needed tables.

Figure 4.5: After successful configuration, we will be redirected to the DVWA login page.

One last small drawback to our set up is that, as previously mentioned, WSL does not
auto start Apache and MySQL. These will both need to be started manually each time our
virtual machine has been rebooted. To make this task slightly less bothersome, we can

38

paste the two startup commands into a file and make the file executable using chmod +x
filename . Each time we want to host DVWA, we only have to run this file with root
privileges. The contents of the file should be the following:

service mysql start

service apache2 start

This concludes the set up of the Damn Vulnerable Web Application.

4.4.2 Installing FFUF

The installation of our first fuzzer, FFUF, is vastly more simple than the set up of DVWA.
FFUF is available for free from the official FFUF GitHub repository at github.com/-
ffuf/ffuf.

As FFUF is written using Go, it needs to be compiled for the architecture we want to
run it on. However, FFUF also provides prebuilt binaries for the most common architec-
tures. This leaves us with two or three options depending on how we look at it. We could
download the source code and compile the program ourselves in one go using go get
which is a feature provided by the Go compiler. Alternatively, we could clone the GitHub
repository as we normally would using git clone and then compile the downloaded
source code using the go compiler. The third and easiest option is to use the prebuilt
binary option which does not require us to download and install Go on our system. For
simplicity, we will choose the last option and download a prebuilt binary from the Re-
leases page of the GitHub repository. At the time of writing, the latest release is version
v1.2.1. We will use the terminal for every step of the installation, both because it makes
the steps easy to replicate and because WSL does not provide a desktop environment. As
our system is running a 64-bit Linux operating system, we will copy the direct link to the
ffuf_1.2.1_linux_amd64.tar.gz file. We copy the link using a web browser on our
host Windows machine. Back in the Linux terminal we can now use the wget command
to download the file to our home directory.

$ wget https://github.com/ffuf/ffuf/releases/download/v1.2.1/

ffuf_1.2.1_linux_amd64.tar.gz

Once we have the .tar.gz archive in our working directory, we need to extract its content.
This is done using the command-line tool tar. After the extraction is completed and
verified successful, we will remove the archive file using the rm command. We can verify
that the extraction process was successful by making sure we have got four new files in
our working directory using the ls command.

$ tar -xf ffuf_1.2.1_linux_amd64.tar.gz

$ rm ffuf_1.2.1_linux_amd64.tar.gz

39

https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf

The -xf flags of the tar command tells tar that we want to extract the archive file that is
given as the next argument. Out of the four files we extracted from the archive we will
only need one, the one named ffuf. This file is the compiled binary file, and it is the
one that will be executed. We therefore need to make sure that it is executable permission
wise. The file should already be marked as executable, but just to make sure, we will run
the following command:

$ chmod +x ffuf

Now we are technically ready to use FFUF by giving the path to the FFUF binary and then
arguments for our FFUF command. However, giving the full path to the binary every time
is bothersome and not desirable. To make it easier for ourselves, we will move the ffuf
binary to the /usr/local/bin directory, which is in our PATH by default. Binaries and
files that are in directories given in the PATH environment variable are globally accessible
using only their file names. In other words, after moving the binary to such a directory,
we will be able to use the simple command ffuf from any directory in the file system.
To move the binary we will need root permissions along with the mv command:

$ sudo mv ffuf /usr/local/bin

By changing directories to a folder that definitely does not contain the ffuf binary, we
can test that the installation is working as intended by running the ffuf command. As
FFUF is now globally available for usage in our system, we can consider the installation
complete.

4.4.3 Installing Wfuzz

The installation of Wfuzz differs a lot from the FFUF installation as Wfuzz is written
in Python and therefore is not a compiled program. Programs written in Python run
using the Python virtual machine. As Python can be installed on almost any operating
system, so can Wfuzz. Wfuzz does depend on external libraries, though, one of which is
Pycurl. Pycurl is known to cause issues during the installation, as Pycurl itself has some
dependencies that need to be satisfied. The installation of those dependencies may vary
between operating systems, and even between Linux distributions [54]. As we are using
Ubuntu and the APT package tool, we can easily install these dependencies using a single
command:

$ sudo apt -y libcurl4-openssl-dev libssl-dev

Having installed the dependencies, we should be good to install Wfuzz itself. The instal-
lation of Wfuzz is extremely simple as the Wfuzz package is available from the Python
package installer and command-line tool pip. In our case, Python 3 came pre-installed
on our Ubuntu machine but pip did not. To install pip for Python 3, we use the following
command:

40

$ sudo apt -y install python3-pip

With pip installed, we can now install Wfuzz globally:

$ sudo pip3 install wfuzz

To verify that our Wfuzz installation is working, we can type wfuzz in the command
prompt and hit enter. We should be greeted with the Wfuzz command line options and
usage tips.

4.4.4 The fuzzing input

All fuzzers need input data and in the case of web fuzzers, those inputs are often in the
form of word lists. For the attacks and tests that we will be doing in this thesis, we have
previously chosen to use the popular word list colllection SecLists. Seclists provides word
lists for all kinds of scenarios: passwords, usernames, real names, SQL injection phrases,
and so on. To make use of these lists though, we need to download them to our local
machine. This process is very simple, as SecLists is a free open-source publicly available
GitHub repository. The repository URL is github.com/danielmiessler/SecLists, which we
will simply clone using git clone:

$ git clone https://github.com/danielmiessler/SecLists.git

The cloning will take some time as some of the lists are quite big, but eventually we will
have all the lists downloaded, ready and available for our fuzzers to use.

The downloaded directory contains nine subdirectories: Discovery, Fuzzing, IOCs,
Miscellaneous, Passwords, Pattern-Matching, Payloads, Usernames, and Web-Shells. Most
of these directories also contain their own subdirectories, which further helps categorizing
the word lists and makes it easy for us to find what we are looking for. We will use one
username word list and one password word list from the Username and Password direc-
tories respectively for the brute-force attack. These directories contain word lists in the
form of text files which each contain many common usernames and passwords, one entry
per row in the file. These files have been put together from usernames and passwords
that have been part of data breaches and consequently leaked online. They also contain
common usernames and passwords which are often encountered, such as common default
usernames and passwords for routers.

For the SQL injection attack, we will use a word list from the Fuzzing directory’s
subdirectory called SQLi (short for SQL injection). The SQL injection word lists also
come in the form of text files. These text files contain SQL injection "phrases", one per
line. An SQL injection phrase is, in this context, a part of a query which is assumed to
be inserted into an existing query. The purpose of the phrase is to alter the meaning of

41

https://github.com/danielmiessler/SecLists.git

the existing query in some way, often aiming to output more information to the screen
than intended. The phrase insertion only works in applications that are vulnerable to SQL
injection.

Specifically what files (file names) we will be using is mentioned later when they are
needed in the Execution section. This concludes the preparation part of the experiment,
and we are now ready to define the attack implementations.

4.4.5 Implementation of attacks

Given our attack scenarios covered in Chapter 4.3.3, we need to define how we will im-
plement the attacks in practice in FFUF and Wfuzz. The implementations are often very
similar, but in some cases we may find differences.

An important thing that needs to be mentioned and explained is that DVWA requires
an initial login to reach all the individual vulnerable pages. This is not a problem when
using the app manually, and the login is simply done by providing the username and
password of the administrator account in the login form. However, when wanting to al-
low these command-line fuzzers access, we need to make sure we both login, and save
our session ID cookie. This cookie has to be included in every request we make to the
web service. Otherwise, our requests will fail as we are not authenticated and we will
not even reach the page we are targeting. There are several ways to create the authenti-
cated session and grab the required cookie, the most obvious one being manually opening
DVWA in a web browser, logging in using the default admin login, and simply grabbing
the PHPSESSID cookie using the developer tools menu of the browser. Once we have the
cookie, we just need to make sure we include it in all our requests that the fuzzer sends
out. This approach is easy to understand and adapt, so this will be the way we will tackle
this issue in this thesis.

Brute-force

As the brute-force attack implementation is probably the most simple and straightforward
one to perform using either of the tool, we will cover it first. The brute-force page in
DVWA consists of a simple login form expecting a username and a password. On the low
security level, this form can be submitted as many times as required without limitations.
It is also worth mentioning that on the low security level, there is no cross-site request
forgery (CSRF) token in use. The implementation of the attack is very similar in both
tools, with the differences being almost purely syntactical.

As mentioned, both tools accept payloads as inputs, and in this case we will make
use of predefined word lists. For each tool we will specify the URL to which we want

42

to make the request. We will also specify the two injection points in the URL or HTTP
request where the usernames and the passwords will be placed. The last things that we
have to supply the tool with are the session cookie, the security level cookie, and the two
word lists. An example of what the username and password word lists look like is seen in
Figure 4.6. Additionally, we will make use of the filter/hide flags of the tools, in order to
only see and output interesting results and not all failed login attempts.

Figure 4.6: The username and password word lists consist of one word per line.

Lastly, before we run the attack, we want to figure out how to know if a response is
of interest or not. An easy way of implementing this is to make a failed login attempt on
the brute-force page manually and make note of the characteristics of the response, such
as the response size and the number of lines in the response. Once we have all this info,
performing the attack using either tool can be done with just one command each:

$ ffuf -w usernames.txt:USR -w passwords.txt:PASSW -b "PHPSESSID=po5f...;

security=low" -u "http://localhost/DVWA/vulnerabilities/brute/?

username=USR&password=PASSW&Login=Login" -fs 4237 -c

$ wfuzz -w usernames.txt -w passwords.txt -b PHPSESSID=bpl4...

-b security=low -c --hh BBB "http://localhost/DVWA/vulnerabilities/brute/?

username=FUZZ{wrong}&password=FUZ2Z{wrong}&Login=Login"

In these two commands, we can clearly see the resemblance but also the slight differences
in syntax. In the FFUF command, the word lists are given using aliases, USR and PASSW

in this case, which are later used to indicate the injection points in the URL. Wfuzz, on
the other hand, uses predefined aliases in the form of FUZZ, FUZ2Z, FUZ3Z, ... for
the first, second, third, ... input payload. In other words, it is important to keep in mind
in what order one gives the word lists to Wfuzz, as it affects what alias should be used
where. Furthermore, it is worth mentioning that FFUF has a default alias, FUZZ, which
is used if only one payload is given and no alias is supplied. The order in which the
payloads are given in FFUF does not matter for the aliases, but it affects in what order the

43

combinations are generated. The manner in which cookies are supplied is very similar,
using the -b flag, though in Wfuzz we need to supply one cookie at a time while we can
supply all at once in FFUF.

Lastly, from inspection we know that this request is a GET request, which can be seen
from the lack of POST data and from the inclusion of query parameters, which are mostly
only seen in GET requests. Furthermore, the request type can be seen by inspecting the
raw request using, for example, Chrome developer tools. Higher security levels of the
vulnerabilities in DVWA use POST requests instead of GET requests, and in those cases
we need to explicitly tell our tools about it and also include the required POST data. If
not told explicitly, both FFUF and Wfuzz will use GET by default.

SQL injection

As the process of using our two tools is very similar independently of the attack, some
things in this section will simply be referred to the brute-force attack implementation to
reduce redundant duplication of information.

The SQL injection page in DVWA is even more simplistic than that of brute-force,
consisting only of an HTML form with one input text box. The text box expects a user
ID to be entered. Based on this user ID, the web app will search the database to find a
match. The user ID is not the same as the username, which means that entering a known
valid username of, for instance, admin, will not return anything. By entering something
into the text box and clicking submit, while the security level is set to low, we realise that
the parameters are sent via the URL. This is the same way all requests are sent on the
low security level in DVWA, via a GET request and using query parameters in the URL,
as explained in the previous attack implementation. This realisation will be useful when
running the attack, as it is clear that the data sent with the request is embedded in the
URL, implying that there is no need for a request body of any sort. As with all DVWA
requests we make using FFUF or Wfuzz, we need to send our two cookies security
and PHPSESSID along with each request. This is handled exactly the same as in the
previous attack implementation. By providing a relevant word list and filtering flags to
the command we end up with the following:

$ ffuf -w SQLi.txt -b "PHPSESSID=po5f...;security=low" -u "http://

localhost/DVWA/vulnerabilities/sqli/?id=FUZZ&Submit=Submit" -fs 4207 -c

$ wfuzz -w SQLi.txt -b PHPSESSID=bpl4... -b security=low -c --hh BBB -Z

"http://localhost/DVWA/vulnerabilities/sqli/?id=FUZZ{test}&Submit=Submit"

As can be seen, there is no need to use aliases in FFUF this time, as only a single word
list is needed. An example of what an SQL injection word list looks like is seen in Figure
4.7. In this case, FFUF defaults to searching for the FUZZ keyword in the URL. From

44

inspecting the URL, one can see that there is a parameter of Submit with a default value
of Submit. This is basically the submit button in the HTML form and this needs to be kept
untouched for the entirety of the attack. The filtering options used in the two commands
are the same as previously. As in the brute-force attack, in FFUF a static value is used to
filter for the response size, and in Wfuzz an initial request is used to figure out the filtering
value.

Figure 4.7: The SQL injection word lists contain one SQL injection phrase per line.

In this implementation Wfuzz will need a few flags which FFUF does not. The first
one of these is the -Z flag which lets the execution continue even if errors occur. This is
needed because certain characters may result in an invalid URL which in turn may result
in an error in the PycURL Python library which Wfuzz uses.

These invalid URLs could be avoided by URL encoding the strings before the requests
are made, a feature which Wfuzz actually supports. The reason why this is not wanted
in this scenario, is because the list of results will also be URL encoded, making the in-
teresting strings unreadable to humans. This is why we allow errors to happen, and URL
encoding is not used.

On the topic of URL encoding, FFUF does not include URL encoding and some
strings will cause errors. This is not a problem, however, as the default behaviour of
FFUF allows the execution to continue even if errors occur. This is why there is no
need for a corresponding flag in the FFUF command. FFUF has another behaviour worth
mentioning, too, and that is the fact that it will completely ignore "words" that include
spaces, meaning rows in the word list. This was discovered through trial and error, and is
not found in any documentation. One could imagine that this is either a bug, or a feature
that intentionally ignores these entries as it does not want to bother with encoding these

45

spaces. Encoding the spaces is not always required, however, and it depends on the back-
end implementation of the web application whether it is required. The reason why FFUF
does not handle these is unclear, and the reason mentioned is just speculation. Luckily,
the SQL injection word lists of SecLists seem to include word list entries that are already
URL encoded, such as '%20or%20''=', which means FFUF will not be useless in this
attack with this word list.

4.5 Execution

Having set up our target and our two fuzzers as well as having defined our attack scenarios
and how we will implement them in practice, we can now begin trying to exploit the web
app. This section will cover in detail each vulnerability tested from the perspective of
both the tools.

Before we get started though, we need to log in and make sure that we set the security
level to low on the DVWA Security page. As in the attack implementation section, we
will start with the logic-wise most simple vulnerability, the one which is vulnerable to
brute-force attacks.

4.5.1 Brute Force

This attack is very simple to implement in both the tools, and we even have the full
commands almost ready to be copied straight from the Implementation of attacks section.
But instead of just copying the commands, let us start from the beginning, exploring the
target HTML form and how we find out what data we actually need to provide.

By visiting the Brute-Force page of DVWA, we see that it simply is an HTML form
asking for a username and a password. If we try to login with some faulty details, we
realise the form will say "Username and/or password incorrect.". The form is seen in
Figure 4.8. We also realise that the URL in the browser’s address bar has changed and re-

Figure 4.8: A failed login the DVWA brute force login form.

46

flects the details we gave in the form, along with a default form value Login=Login. From
here we can see that we only need to replace the values of the username and password
variables repeatedly with words from our word lists to perform the brute-force attack.

http://localhost/DVWA/vulnerabilities/brute/?username=wrong&password=wrong

&Login=Login#

Furthermore, we get the full request details if we open up the Network tab in our browser
and make another failed login attempt. This reveals that the form is making a GET request
to the URL above. We can also see the Request Headers from here, and we realise that
the request sends along two cookies:

security=low; PHPSESSID=v124b78dbqqf5550ffu2emvgt1

As mentioned in Section 4.4.5, the PHPSESSID is sent along with every request to make
sure that the user making the requests is authenticated. This cookie was given to us
when we first logged into the application. The security cookie should speak for itself,
it informs the backend what security level should be used when processing the request.
Though simple, it may come in handy to know that the security level is easy to change by
just modifying the cookie.

Last but not least, we need to decide what word lists to use. We have already de-
cided to use lists from the Seclists collection but we need to define exactly which ones
we will be using. After browsing through the files, we find top-usernames-shortlist.txt in
the Usernames folder. This file only contains 17 usernames, but it will be a good start-
ing point for our attack. Seclists contains a lot of password files and we will select the
darkweb2017-top100.txt file found in the Passwords folder as our passwords word list.
Strangely enough, this file contains 99 words, not 100 as the name suggests. At this point
we have sufficient information to run our attack. We will start with FFUF.

FFUF

As can be seen in the example command in Section 4.4.5 and from reading the FFUF
"documentation", that is its GitHub page, we learn that we should use the -w flag to
provide payloads to FFUF. Furthermore, we learn that in order to supply the tool with
more than one word list at a time, we can use multiple -w flags, but then we also need
to give each word list an alias. This is required so that FFUF knows which word list to
use as source for each injection point respectively. The aliases are given by appending
:Alias_name to the word list paths. As we have realised that we are going to making
simple GET requests, we will not need any request body to be passed along with our
requests. All the data needed will be embedded in the URL. To provide FFUF with an
URL, we will need to use the -u flag. This flag expects a URL as an argument, with

47

the injection points replaced by the aliases given to the word lists. The aliases are given
as simple strings in the URL, which means we should make sure that our aliases are
unique and cannot be mixed up with any other phrase that should remain unchanged. For
example, we should avoid aliases such as username and password.

As previously mentioned, we need to pass the security and PHPSESSID cookie along
with every request. To supply FFUF with these, we use the -b flag which expects a string
given inside quotation marks as an argument. The string can consist of however many
cookies we like, each separated by a semicolon.

Finally, we need some way of filtering out all the failed login attempts, so we can
easily see what combinations have worked. The first and easiest option would be to filter
based on HTTP status codes. However, we quickly notice from the developer tools that
even failed logins give a successful status code of 200, which implies that cannot be used
as a filtering requirement. From the FFUF help we find the -fs flag which allows us to
filter out responses of a certain size. As we know that the response of a faulty login shows
some extra text, which is seen in Figure 4.8, we can hope that the text and content in the
response of a successful request is not the same size. This could happen, but the easiest
way to know is to test and see. In case they happen to be the same, we will need another
filtering requirement. There are multiple ways to get the response size of the full raw
HTTP request, but for simplicity we will just quickly run FFUF and cancel it instantly
and then grab the number from the FFUF results. Thus, the first command we execute
does not contain any filtering options:

$ ffuf -w Usernames/top-usernames-shortlist.txt:USR -w Passwords/darkweb2017-

top100.txt:PASSW -b 'PHPSESSID=v124b78dbqqf5550ffu2emvgt1;security=low'

-u 'http://localhost/DVWA/vulnerabilities/brute/?username=USR&password=PASSW

&Login=Login' -c

The -c flag is used to get a nice coloured output. Right after we see the first request go
through we cancel the command using CTRL+C. As the lists are not that large, the requests
may all go through before we have time to cancel the run. This is fine as we only need
to find the most common response size which we find to be 4237. By quickly looking
through the requests, it is obvious that this is the most common and therefore most likely
the size of a faulty login request. This could be confirmed if we chose to record the request
response characteristics of a failed login attempt manually. A few request responses can
be seen in Figure 4.9. At this point we have all the information we need to run the final
command. Apart from the filtering flag, we will also prepend the /usr/bin/time -v
command in order to record a more exact execution time, CPU utilization and memory
footprint. This consequently gives us the final command:

$ /usr/bin/time -v ffuf -w Usernames/top-usernames-shortlist.txt:USR -w

Passwords/darkweb2017-top100.txt:PASSW -b "PHPSESSID=v124b78dbqqf5550ffu

48

Figure 4.9: The most common response size is the one of a faulty login attempt.

2emvgt1;security=low" -u "http://localhost/DVWA/vulnerabilities/brute/?

username=USR&password=PASSW&Login=Login" -c -fs 4237

After FFUF has completed all the requests, we get only a single request printed to the
console as seen in Figure 4.10 It seems as if a username of admin and a password of

Figure 4.10: By filtering out failed logins we can easily see the valid login request and
the username and password combination used.

password may be a valid login combination. This is confirmed by inputting the credentials
manually in the form as seen in Figure 4.11. This is the only valid combination based on
the word lists we used, but there could be other valid logins. However, to find those we
would need to use larger word lists.

From the /usr/time/bin command output seen in Figure 4.12, we can see the speed
of FFUF as it processed 1683 requests in only 4.90 seconds. The request rate is approxi-
mately 343 requests per second, which is given by dividing the number of requests by the

49

Figure 4.11: A successful login attempt.

time (4683/4.90 = 343.469 ≈ 343). The CPU utilization given by the Percent of CPU

this job got-value was 23%, while the memory footprint given by the Maximum resident

set size-value was 24,508 kilobytes. It will be interesting to see if Wfuzz can compete
with these numbers.

Figure 4.12: /usr/bin/time is used to measure time, CPU utilization and memory foot-
print.

Wfuzz

The Wfuzz version of this attack is, as explained, very similar. Due to these similarities, a
lot of things will not need a second explanation. Starting off with the word lists, they are
also given using -w flags, as they are in FFUF. The difference here is the lack of aliases.
Instead of custom aliases, we use FUZZ, FUZ2Z, FUZ3Z, ... to indicate our injection
points, where the variable used depends on the order in which the word lists are given.
There is also a small difference in how we supply the tool with cookies, as in Wfuzz we
have to give each cookie separately using multiple -b flags.

As mentioned in Section 4.4.5, Wfuzz offers a simple and neat way for us to make
an initial request and base our filtering or matching options on the properties of the re-
sult of this request. This is probably the biggest and most useful difference between the

50

commands used. To use this functionality, we will give a value of BBB (baseline) to the
–hh flag. Filtering in Wfuzz is called hiding, which is why the relevant flags start with
an h. The –hh flag hides responses based on amount of characters in the response. This
flag expects an integer value representing the number of characters. By instead providing
the value of BBB, we tell Wfuzz to take the amount of characters in the response received
from the initial request and use that as the hiding value for all requests to follow. In short,
this functionality allows us to do everything we did in the FFUF version in one go. The
values to be used at each injection point for the initial request are given in the curly brack-
ets after the FUZZ keywords. By giving a value of, for example, wrong for both injection
points, we can be sure we get a failed login attempt response as wrong - wrong are not
valid credentials.

Regarding the URL, Wfuzz does not take a -u flag like FFUF does, but instead it
always expects the final value of the command to be the target URL. Finally, we prepend
the /usr/bin/time -v command, and also here use the -c flag to get colourized output:

$ /usr/bin/time -v wfuzz -w Usernames/top-usernames-shortlist.txt -w

Passwords/darkweb2017-top100.txt -b PHPSESSID=v124b78dbqqf5550ffu2emvgt1

-b security=low --hh BBB -c "http://localhost/DVWA/vulnerabilities/brute/

?username=FUZZ{wrong}&password=FUZ2Z{wrong}&Login=Login"

Due to the length of our word lists, this command runs very quickly and, of course, also
finds the same valid credentials. The first request seen is the initial request which indeed
has a response size (or character length) of 4237, the same as the value we used to filter
out requests with in FFUF. The only other request seen is the one that did not have the
same character amount, that is, the valid one. The output of the Wfuzz run is seen in
Figure 4.13.

Figure 4.13: Wfuzz brute force output.

From the output, we can see that Wfuzz made 1683 requests, just like FFUF. The

51

amount of processed requests includes the initial request, which is why it is 1684 and
not 1683. Interestingly enough, Wfuzz was actually faster than FFUF, needing only 2.34
seconds to finish all the requests at a rate of 1684/2.34 = 719.658 ≈ 720 requests per sec-
ond. The screenshot shows slightly different measurements, but as previously explained,
we will only consider the values given by the /usr/bin/time tool for the comparison.
The command output also reveals a CPU utilization of 134% and a memory footprint of
43,144 kilobytes. A CPU utilization above 100% may seem like a faulty reading, but it
simply means that, in a multi-core system, the program was able to utilize more than a
whole CPU core.

4.5.2 SQL injection

The SQL injection page of DVWA is even more simple than the one of brute-force. The
only thing seen on the page is an input text box asking for a user ID. This text box can be
seen in Figure 4.14.

Figure 4.14: The SQL-injection page of DVWA.

As mentioned in Section 4.4.5, the user ID and username are two different attributes of a
user. If we enter an ID that does not exist in the database, the page will simply reload and
the text box will be cleared. However, as mentioned in the implementation section, we
realise that the URL does change, and it reflects our input. Both these behaviours are of
value to us as knowing about them will simplify the filtering/hiding process of our tools.
The URL we need is simply copied from the address bar of the browser.

Using the knowledge from the implementation phase about what flags will be needed
along with our command, we only have one thing missing; an input word list. SecLists
has a few good generic SQL injection word lists that we can use. We will choose the word
list called Generic-SQLi.txt which is located in the Fuzzing/SQLi/ folder of the SecLists
folder structure. This file contains 267 "words", meaning 267 SQL injection phrases.
There are two other files in the folder, but the file mentioned will serve our purpose the
best and it will be the most thorough as it is the largest out of the three, that is, it contains
the most entries. The file named similarly, called Generic-BlindSQLi.fuzzdb.txt, is meant

52

for a slightly different purpose, so it is not relevant for us in this case. It is used for
blind SQL injection, which is very similar to what we are doing, but in the case of blind
SQL injection, nothing from the database is output to the screen. In our case, the web
application will display information about the user with the matching user ID when given
a valid ID. This can be verified by inputting a user ID of 1 into the text box and clicking
submit. We will be shown the first name and surname of the admin user account. This
information is fetched from the database and the functionality of the web app displaying
it to us is what we will make use of to see other data from the database. We now have all
the information needed to perform the attack and start looking to exploit the vulnerability
using SQL injection. We will again start with FFUF.

FFUF

Using the same logic as in the brute-force attack, and keeping in mind things mentioned
in Section 4.4.5, we should already be familiar with every part of the command we need
to use. As mentioned earlier, we will only need a single word list, and that word list
will be the Generic-SQLi.txt list. The only unknown thing at this point is what response
size to use as the filter value. Just like before, we will figure this out by first running the
command without filtering:

$ ffuf -w Fuzzing/SQLi/Generic-SQLi.txt -b "PHPSESSID=v124b78dbqqf5550ffu2e

mvgt1;security=low" -u "http://localhost/DVWA/vulnerabilities/sqli/?id=

FUZZ&Submit=Submit" -c

From the result of this command seen in Figure 4.15 we can clearly see that the most
common, and therefore also most likely the least interesting, response size is 4207. As a
calculated guess, we will filter out all these responses and see what we are left with.

Figure 4.15: The most common response size of our command is 4207.

By adding the time measuring command to the beginning of our command, and by ap-
pending the filtering flag -fs 4207 to the end, we get the following final command:

53

$ /usr/bin/time -v ffuf -w Fuzzing/SQLi/Generic-SQLi.txt -b "PHPSESSID=v124b

78dbqqf5550ffu2emvgt1;security=low"-u "http://localhost/DVWA/vulnerabilities

/sqli/?id=FUZZ&Submit=Submit" -c

The filtered list in Figure 4.16 contains 16 requests in the result, but the total number of
requests processed was 267. It took the fuzzer only 2.83 seconds to process all requests
at a rate of approximately 94 requests per second (267/2.83 = 94.346 ≈ 94). The CPU
utilization ended up being just 6% while the memory footprint was 22,548 kilobytes. We
also got two requests that caused errors in the fuzzer, but as explained in Section 4.4.5,
we expect and allow some errors.

After a quick inspection, we notice that we have three responses that stick out. These
three requests all have response sizes larger than 4000 while the rest have response sizes
in the range 100-200. Furthermore, we notice that the requests with small response sizes
also all consist of only one line each. Based on the fact that these responses are only one
line long, we can already tell that they cannot include what we are looking for, and could
be filtered out using the -fl flag with a value of 1. If we quickly make a manual request
using one of the values that give a small response size, we realise that these requests
all return a standard SQL syntax error page with the input string embedded in the error
message. This means that the difference in size of these responses is simply due to the
difference in number of characters in the input strings.

When testing these strings ourselves we have to keep in mind that most of the strings
in the results in the Figure 4.15 and Figure 4.16 are already URL encoded, and as FFUF
simply modifies the URL by inserting the string at the injection point and makes the
request, we should do it the same way if we test these manually. If we were to copy
one of these strings from the command-line output window into the input text box of the
DVWA web page, they would get encoded again, meaning that the special characters such
as % and ' would get replaced by their URL encoded counterparts which consequently
would alter the meaning of the string. This will not give us the desired behaviour, so if
we want to test the strings using the text box in the web app, we will need to translate the
encoded characters back into symbols, for example %20 would simply become a space in
our string.

54

Figure 4.16: By filtering out the most common request we end up with only 16 left.

After concluding that the requests with response sizes in the range 100-200 are of no
particular interest, we are left with the three requests with response sizes larger than 4000.
As mentioned, we could filter out the uninteresting requests in a new run of the command.
However, because of the small result set, it is not necessary.

The logical and easy thing to start with is to simply to test the remaining three requests
ourselves by modifying the URL to include one of these at a time as value of the id query
parameter. After testing all the three alternatives we see that the string 1;SELECT%20*

actually just returns the same as if we entered 1 into the input box, which means that it
only considers the number 1 in the query. The number has a semicolon appended to it,
which often in SQL syntax indicates the end of one statement, after which a new statement
can start. The remaining part of the string, SELECT * (%20 is a URL encoded space), is
incomplete and therefore probably not regarded at all by the SQL engine. In other words,
this input string did not produce an interesting result. However, the remaining strings do
produce interesting identical outputs. These outputs both cause the web app to output all
users that are stored in the system. As seen in Figure 4.17, the database has five users
stored.

From the output we can see the first name and surname of every user. This already is
a security breach as this allows anyone to read the names of all users that are registered.
However, this does not yet allow us to hijack these users’ accounts, but if we take a closer
look at the input string that allowed this to happen, we could potentially tailor it to show us
other information. Before we do that, however, we will recreate the attack using Wfuzz.

Wfuzz

To perform the SQL injection attack using Wfuzz, we will use the same logic and know-
ledge that we gained and used in the FFUF version. As known from earlier, Wfuzz allows

55

Figure 4.17: Using SQL injection we got the system to show us all the users’ names.

us to instantly filter the response based on an initial request that we define ourselves. This
simplifies the execution as we will only need to run our command once. The filtering will
again be done based on size of the response by supplying the BBB value to the –hh flag.

We know from the FFUF execution that this filtering process will not be as easy as
determining interesting versus uninteresting responses between two sizes. We will have
more than two different sizes and the distinction may not be completely clear. The filter
will only be applied to the most common and most clearly uninteresting responses, that is
to say, the ones that simply cause the web app to empty the input text box due to no user
ID match. To make sure we get such a response in our initial request, we can manually
test some strings until we find a suitable one that ultimately just causes the same blank
result page to reload. Through testing, we notice that the string wrong will again suit our
needs well.

As mentioned in Section 4.4.5, Wfuzz does not ignore errors by default, which means
that a simple malformed URL could cause our execution to abort. To avoid this, we
will add the -Z flag to our command. From the FFUF version, we remember that the
small uninteresting requests that only consisted of an SQL error message all had only one
line. Based on this, we could filter these out right from the start in order to get a cleaner
output. One interesting realisation to point out here is the fact that Wfuzz seems to report
responses with number of lines equal to 1 as being equal to 0. Whether this is a bug, or
based on some indexing, is unclear, but it is rather misleading. This was discovered by
running the command without a line filter. To hide the responses with only one line (and
probably zero lines), we give the –hl flag a value of 0.

Using the same word list, URL and cookies as in the FFUF attack, we get the following

56

Wfuzz command:

$ /usr/bin/time -v wfuzz -w Fuzzing/SQLi/Generic-SQLi.txt -b PHPSESSID=v124b

78dbqqf5550ffu2emvgt1 -b security=low -c -Z --hh BBB --hl 0 "http://localhost

/DVWA/vulnerabilities/sqli/?id=FUZZ{wrong}&Submit=Submit"

Interestingly enough, we actually get as many as 16 (not counting the initial request)
"interesting responses", compared to using FFUF where we only found 3. The Wfuzz
output is seen in Figure 4.18.

Figure 4.18: Wfuzz returns 16 unique requests of interest.

As interesting and surprising as this may seem when thinking about it, it probably
makes sense. As mentioned in Section 4.4.5, FFUF seems to completely disregard entries
in the word list that contain spaces, a feature (or a bug) which Wfuzz does not have. By
looking through the list we can see that the three requests that FFUF found interesting
are indeed included in the Wfuzz result too, along with many more. To proceed, we
could now manually test these input strings in the web app to see if we get any interesting
outputs. However, by inspecting the output of Wfuzz, and knowing the web app outputs
from the requests found using FFUF, we can conclude that there is most likely a flaw in
the web application, which makes it vulnerable to SQL injection, and that it is triggered
by these input strings. To produce this result, it took Wfuzz 0.48 seconds at a rate of 558
(268/0.48 = 558.333 ≈ 558) requests per second. The command generated a utilization
of 125% and a memory footprint of 38,408 kilobytes.

Modifying the query

Having found the vulnerabilities, it would be nice to find out some more interesting infor-
mation stored in the database. To do this, we will need to use SQL knowledge to modify
the input string to our needs.

57

In order to modify the string causing the vulnerability, we first need to try to under-
stand how and why it works. We will inspect a string that both FFUF and Wfuzz managed
to determine interesting, '%20or%20'x'='x. Only this string will be used from here on,
but the principle is the same for the other strings that triggered the vulnerability.

First and foremost we should try to imagine what the SQL query that gets executed be-
hind the scenes in the back-end could look like. A basic SQL query has the form SELECT

[comma separated list of columns] FROM [table name] WHERE [condition].
In the case of the user lookup based on ID, the ID is surely used in the condition part to
only select the row from the user table that has an ID equal to the one given in the input
box. A logical guess is that the WHERE part looks something like this: WHERE id = '[id

from text box]'. In SQL syntax, quotation marks are optional when working with in-
tegers, as we are in this case, However, the reason we believe they are used in this case, is
that the input string we are inspecting starts with a single quotation mark, and as the input
string works and executes, single quotation marks seem to be in use. Furthermore, we
can clarify this by inserting our input string into our assumed WHERE condition with the
URL encoding reversed: WHERE id = '' or 'x'='x'. As can be seen, our input string
in red closes the first quotation marks, resulting in the ID being compared to an empty
string. The trick here is what comes next. After the string is closed by our input string,
the logical or operator follows. This operator is used for specifying another condition,
and due to how or works, the whole WHERE condition will evaluate to true if either of the
conditions is true. As the condition after the or operator, 'x'='x' is always true, the
WHERE condition will be true for every row, meaning every row will be fetched. As seen
from the web app output, this trick results in every user’s first name and surname being
fetched in our case.

We now have the first name and surname of every registered user. The fact that we
were able to get the web app to output this information to us by providing a certain string
as input already proves the existence of a vulnerability, but it would be interesting to take
this even further. It is worth mentioning that these steps are not directly related to web
fuzzing, or even to fuzzing in general. We used our web fuzzer to find the vulnerability
itself, but now we will use the vulnerability along with SQL knowledge to exploit this
vulnerability further.

With the recently gained knowledge about how the SQL query probably works, we
will be able to find more sensitive information about the registered users, such as their
usernames and passwords. We will first focus on trying to output all the users’ usernames.
Thinking about what the web app currently does, one could assume that the ID lookup is
against a table in the database called users or something similar. A further guess would
be that this table includes, at least, a username column, along with the ID, first name,

58

and surname that we already know of. In terms of SQL, and based on our assumptions,
we would probably want to SELECT username FROM users, or something similar. The
SELECT statement already being executed by the web app on each ID lookup is most likely
very similar to this, though selecting the columns of first name and surname instead.
As we learnt in the last paragraph, the string we provide in the text box is inserted in
the WHERE statement, which means that we have no power over the SELECT statement
and cannot modify it. A trick we can use instead is to make our own SELECT - FROM

statement and combine it with the already existing one, using the UNION operator. In
SQL, the UNION keyword is used to combine the results of two or more queries into a
single result set [55]. This means that we can combine the existing query with a query of
our own using the UNION operator. We just have to make sure that we complete the first
query properly, make it syntactically correct, and that we select exactly as many columns
in our new query as is done in the old one. The latter requirement is very important as the
UNION operator requires the two (or more) sets to consist of the same number of columns.
In our case, we can assume that we will only be able to select two columns at a time as
the web app currently outputs two properties from the database, which indicates that the
current query probably only selects two columns.

The column name username was just a guess, and we cannot know for sure that this
is the name of the column in the table, or that it even exists. We need a way of finding out
what columns the table consists of. This can be done by using the INFORMATION_SCHEMA
database. This read-only database that exists in every MySQL instance stores metadata
about the other databases on the server. This information is divided into several tables.
Currently we are interested in finding out the names of the columns of a table, so we will
need to access the columns table to get this information. This is done using the following
query:

SELECT column_name FROM information_schema.columns WHERE table_name =

'[table name]';

The next issue we face is the fact that we need to know the name of the table we want to
select columns and fetch data from. Earlier we assumed that it could be named users or
something similar, and we could go on assuming until we find the correct name. However,
it is easier to first make the web app output all the table names. This way we will know
the names of all the tables in the database, and hopefully, based on the table name, easily
see which one we want to fetch data from. The query to get this information is equally
simple:

SELECT table_name FROM information_schema.tables WHERE table_schema =

'[database name]'

Looking at the query, we are now faced with another issue, however. We need to know
the name of the database in order to execute the query. We could leave out the WHERE part

59

and just output all the tables that exist on the server, but this would make the output hard
to read as there would be so many system tables and tables that we do not care about. We
want to run the query given above to get a simple result that is easy to read. Fortunately,
there is another simple query that will give us the name of the current database, in other
words, the database that the query is run on. The query in question looks like this:

SELECT DATABASE()

At this point, we should have everything we need to start outputting data from any table
in the database, two columns at a time. Before we begin working towards our final goal,
we will summarize our plan into brief steps, given in the order they need to be done.

1. Find the name of the database

2. List all tables in the database

(a) Find the table we want to fetch data from based on its name

3. List all the columns in the table

(a) Determine what columns are of interest

4. Select two columns (at a time) from the table

5. Read the sensitive data output to the screen

The queries needed for each of these steps have been mentioned and explained above.
It must still be explained how each query is syntactically put together in a valid form in
order to be entered into the input text box on the DVWA SQL injection page.

If we go back a a bit, we know that whatever we enter into the text box will be inserted
between the two single quotation marks in the WHERE statement of the predefined query.
The first thing we need to do in our input string is then to close the first quotation mark
with another quotation mark, thus concluding the query. The next thing needed is the
UNION keyword follow by our own query, but here we need to remember that there is still
a "closing" quotation mark that will be appended at the end of whatever we type. To keep
the syntax intact, we need to either match the last quotation mark with a quotation mark
of our own, or comment it out by inserting the MariaDB syntax for commenting out the
rest of the row. In MariaDB, single line comments can be made using either # or -- .
In the latter version, a space is required after the last hyphen in order for it to work [56].
Instead of matching the last quotation mark, we will comment it out using the # symbol,
as this will allow us to write our query syntactically correct right in the input text box,
without having to worry about what the web app back-end would add at the end.

60

At this point we do not care about outputting the first names and surnames of all the
users anymore, so we had better make the WHERE condition of the first query always be
false. This way we will get an output with less redundant information. To achieve this,
we will simply start our string with a single quotation mark ('), which makes the query
try to match rows in the table with a blank ID, and since such rows probably do not exist,
we will not get any unnecessary information from the first query. As we always need to
select two columns, we can add a dummy string in our own query to the SELECT part to
make the amount of selections equal to two, even if we only want to select one attribute
from the table. Putting all of this together, we get the following input string to complete
the first step of our plan:

' UNION SELECT 'Dummy', DATABASE() #

By entering this string into the input text box of the web page, the back-end will be tricked
into executing something similar to the following query:

SELECT first_name, last_name FROM users WHERE id = ''

UNION SELECT 'Dummy', DATABASE() #';

Because we selected DATABASE() as our second column, we expect it to be shown in
place of the surname in the web app interface. The output from the web app seen in
Figure 4.19 shows us the current database name in the surname spot, exactly as expected.
According to the output, the name of the current database is dvwadb. We record the name

Figure 4.19: The database name is output in place of the surname.

and proceed to the second step, which is to list all the tables in the database.
To perform the next step we simply take the name of the database and insert it into the

query mentioned earlier in this chapter. This gives us the following input string:

' UNION SELECT 'Dummy', table_name FROM information_schema.tables

WHERE table_schema = 'dvwadb' #

By submitting this to the server via the web app interface, we get the response we are
looking for. In Figure 4.20 we can see that the dvwadb database contains two tables,
users and guestbook. Of these two tables, we are mostly interested in the users table, as

61

Figure 4.20: The dvwa database consists of two tables.

we want to try to find out more sensitive information about the registered users.
In the next step, we want to figure out what columns the table has. Using the query

covered earlier, we compose the following input string:

' UNION SELECT 'Dummy', column_name FROM information_schema.columns

WHERE table_name = 'users' #

This input string causes each column name to be output in the surname fields, as seen
in Figure 4.21. According to the output, the eight columns of the user table are: avatar,

Figure 4.21: From the output we can see that the user table has eight columns.

failed_login, first_name, last_login, last_name, password, user, and user_id. In order to
finally get the users’ login details, we need to select the columns containing the usernames
and the passwords. Based on the column names, it is clear that these two columns are the
user and password columns.

62

As we actually want to select two columns this time, we no longer need to select a
dummy string in our query. Furthermore, we no longer need a WHERE condition as we now
want to output the details of every user. The final input string which completes the query
that exposes the sensitive information, the login details, consequently becomes:

' UNION SELECT user, password FROM users #

This input string exposes the username and "password" of all the registered users. The
reason quotation marks are used on the word password, is because, as seen in Figure 4.22,
the passwords are apparently not stored in plain text. In other words, the stored passwords
are simply hashes of the passwords that the users enter when they login. This is not too
surprising, considering no password should ever be stored in plain text in a database.
However, one could imagine that it would not have been impossible that the low security
level of DVWA would have had them stored as plain text.

Figure 4.22: The usernames are in plain text while the passwords are stored as hashes.

In the end, we did not find all the information we wanted in terms of login details.
The username + password hash combination cannot be used to login to the system, as
the password would then be hashed again, and the server-side comparison would fail as
the hashes do not match. However, using the brute-force technique covered earlier in this
thesis, along with the information gained from this attack, one could make a short list of
usernames, all of which are confirmed valid. Using this username list as an input to either
FFUF or Wfuzz, along with a large password word list, one could hope to find out the
correct passwords of all of the usernames we have found. However, this will not be done
in this thesis, but it is certainly a possibility.

4.6 Results and analysis

Ahead of the comparison, I must say I was certain FFUF would turn out to be the "su-
perior" tool in the end. FFUF is newer, it is compiled, and overall seemed more modern

63

at first glance. All these facts made me suspect that Wfuzz would not only be worse, but
even a lot worse. My findings are therefore rather surprising. In this Section, the results
will be presented and analysed briefly. All the results are summarized in Table 4.1 towards
the end of the section.

The first, and perhaps most logical, metric measured was the execution time (and the
request rate). It took FFUF 3.90 seconds to process the 1683 requests in the brute-force
attack, while it took Wfuzz only 2.34 seconds to perform the same task. These time
measurements gave the request rates of 343 requests per second and 720 requests per
second for FFUF and and Wfuzz respectively. Given my initial expectations, these results
were surprising to me.

One attack was not be sufficient to convince me, however, so it remained to be seen
if Wfuzz would take home the win in the SQL injection attack, too, or if the brute-force
measurements were just an abnormality. In the SQL injection attack, it took FFUF 2.83
seconds to complete and process all the 267 requests, resulting in a request rate of approx-
imately 94 requests per second. In turn, Wfuzz only ran for 0.48 seconds while processing
the same amount of requests. Consequently, the request rate of Wfuzz was way much bet-
ter at about 558 requests per second. Contradictory to my initial expectations, Wfuzz is
without question way faster than FFUF.

In terms of CPU utilization, FFUF utilized 23% of the CPU in the brute-force attack,
while Wfuzz managed as much as 134%, that is, one whole CPU core and 34% of another.
This trend continued in the SQL injection attack, where FFUF only managed to utilize
6% of the CPU, compared to 125% for Wfuzz. So, is a high utilization measurement
bad or good? I believe that it is a good thing that Wfuzz manages to utilize a lot of the
resources it has available. This indicates that Wfuzz is well optimized and can run a lot
of things concurrently, and even divide its workloads across multiple cores by default.
FFUF, on the other hand, which was run in the exact same environment and under the
same circumstances as Wfuzz, does not manage to utilize the CPU very well. It does not
use a lot of the CPU, and this is clearly seen in the execution times and request rates. It
never even managed to get close to utilizing a full CPU core.

The memory footprint measured was given as the maximum amount of memory used
at any instant of the execution. For the brute-force attack, FFUF used a maximum of
24,508 kilobytes and Wfuzz used as much as 43,144 kilobytes. Wfuzz used a lot more
than FFUF and the situation was similar in the SQL injection attack. There, FFUF used
a maximum of 22,548 kilobytes compared to the 38,408 kilobytes of Wfuzz. From these
measurements, it is clear that Wfuzz uses more memory during its execution. This is
logical, though, as Wfuzz most likely is able to do more things simultaneously, meaning
it will need to keep more things in memory at the same time. A notable thing is that the

64

memory foot print of the two tools did not change much between the attacks, regardless
of the payloads used. This is probably good because it means that neither tool keeps
every possible word combination in memory during the whole execution. If they did, one
would think that the maximum memory used would be much higher for the brute-force
attack than for the SQL injection attack, as we made use of two word lists there, and
both the tools were asked to generate the cross product of the lists, that is, every possible
username-password combination. All these combinations definitely take up more space
than the one single SQL injection word list.

The final measurement was the amount of vulnerabilities found. This measurement
turned out to be a bit boring and redundant in some sense. Since both the tools used the
exact same word lists for both the attacks, each tool was expected to find the same things.
In the brute-force attack, they both found the one and only correct combination that was
possible to find based on the word lists used. This was not surprising nor interesting.
However, in the SQL injection attack, something interesting was observed. When using
the same word list and filter properties for both tools, FFUF only showed 3 requests in
the result, while Wfuzz showed 16. This was both surprising and interesting, and after
some testing, I found that FFUF completely ignores word list entries that contain spaces,
which is something that Wfuzz does not. Consequently, this means that FFUF either
skipped or just did not show the requests with payloads containing spaces. This finding
is astounding and I am not sure whether this is a bug in FFUF, or if it is some kind of
feature that intentionally rejects strings that are not URL encoded. However, interestingly
enough, both the tools reportedly processed the same amount of requests, which means
that they should both have used all the word list entries. This fact indicates that FFUF
does do something with the entries that are not shown...

On the topic of potential bugs in the tools, the fact that Wfuzz reports request re-
sponses containing one line as containing zero lines was another confusing realisation. I
have given this some thought, and I cannot find any plausible reason why Wfuzz would
report zero lines when there clearly must be at least one line as there are characters in the
response! This behaviour does not affect the functionality of the tool, though, as long as
one is aware of it and takes it into consideration.

All the results are summarized in Table 4.1 below. The results are given per tool,
per attack. The request rate unit is requests per second but has been shortened to req/s.
The vulnerabilities found is only meaningful for the SQL injection attack, as the brute-
force itself is made possible by a single vulnerability, and the only way a target could be
somewhat immune to this attack would be by blocking repeated requests from the same
source. We intentionally had request throttling turned off in the attack because it was
obvious that the target was vulnerable to this attack. The number given in this column

65

for the brute-force attack is the number of valid login combinations that were found. This
number is identical for both tools because both tools were given the same payloads.

FFUF Wfuzz
Measurement Brute-force SQL injection Brute-force SQL injection
Execution time (s) 4.90 2.83 2.34 0.48
Request rate (req/s) 343 94 720 558
CPU utilization (%) 23 6 134 125
Memory footprint (KB) 2,508 22,548 43,144 38,408
Vulnerabilities found 1 3 1 16

Table 4.1: Summation of the results recorded from the comparison.

All in all, it is clear from the results that Wfuzz is the better option. Contrary to my
initial beliefs, Wfuzz is both faster and more effective than FFUF. Even though Wfuzz
runs using the Python interpreter, it manages to outperform Wfuzz in every way. Wfuzz
is a highly optimized and mature tool with a lot of useful features and extra tools included.
FFUF, on the other hand, is newer and less mature. It does not include as many features
and extras as Wfuzz does, and clearly, it still has to grow and be developed further in
order to be able to compete with its predecessor. Personally, given all my findings and
the facts mentioned, I see no reason why I would choose to use FFUF over Wfuzz in any
scenario.

66

Chapter 5

Conclusion

The aim of this thesis was to compare the two web fuzzers FFUF and Wfuzz with each
other to try and determine which one is the better alternative. These two fuzzers are very
similar, both in terms of functionality and features. FFUF is even based on Wfuzz, which
is very much reflected in their similarities.

The initial prediction was that FFUF would be considered victorious in the end. It
is newer and it is compiled and, furthermore, the assumption is supported by the ques-
tion: "Why did the developers decide to create FFUF, if not to be an improved version of
Wfuzz?" All these arguments points towards FFUF being the better alternative. Interest-
ingly enough, however, the comparison experiment proved the exact opposite.

Wfuzz exceeded expectations while FFUF proved to be rather disappointing, in the
eyes of the author. Not only did Wfuzz outperform FFUF in every department, it is also
easier to install and set up, and even includes extra tools and features which makes it more
user-friendly. For example, Wfuzz allows the user to specify an initial request, and then
based on the response characteristics of this request, to filter out requests in the result. In
FFUF, the user has to figure out the filtering values in some other way, and then apply
them to the command. This is not a groundbreaking feature, but it is small things like
these that give Wfuzz an even further advantage in terms of ease of use.

The one area where FFUF scored "better", was in terms of memory footprint. FFUF
recorded a smaller memory footprint than Wfuzz, but with reason. Wfuzz is able to get a
lot more work done at the same time than FFUF, which means that it is logical that it uses
more memory if there is more available. Therefore, I do not see that as a win for FFUF
at all, rather than another indicator of how much better Wfuzz is at utilizing the resources
available.

When I began working on this thesis I did not have a clear plan on where it would
take me. Having decided to write and learn about fuzzing, and more specifically, web
fuzzing, I did not expect the difference between "regular fuzzing" and web fuzzing to

67

be this huge... The concept of what fuzz testing is has been covered extensively in this
thesis, but to later find out that web fuzzers actually do more brute-forcing than they
do any fuzzing, was extremely surprising. In hindsight, though, a large part of fuzzing
is brute-forcing and constantly feeding a system under test with data until it eventually
gives some kind of indication of an error. How the input data is generated can vary a lot
and the theory behind it can become extremely complicated very quickly. That is why I
personally think that web fuzzing is probably the easiest way to get into the fuzzing scene
without overwhelming oneself with a lot of theory and algorithms.

Telling people about the topic of my thesis and trying to discuss it with other IT
students have made me realise how relatively unknown fuzzing really is. Most people I
have talked to have never even heard about it. The fact that a testing technique whose
basic concepts really are not advanced, and which also comes with so many benefits, is
so unfamiliar to people, even in the IT field, is astonishing.

As closing words, I would like to encourage the readers of this thesis to research
fuzzing a bit and learn more about it. It is an extremely powerful technique to know, even
though it is a bit hard to get into. This thesis is just a small introduction to what fuzzing
and web fuzzing is, but I hope that I have at least raised your curiosity as to what the fuzz
is all about.

68

Swedish Summary

En jämförelse av FFUF och Wfuzz för fuzztestning av webb-
applikationer

Webbapplikationer, datorprogram, mobilapplikationer och mjukvara i allmänhet finns
idag nästan överallt. Bilar, diskmaskiner och flera andra hushållsapparater kan innehålla
mjukvara. Vid första åtanke verkar antagligen existensen av mjukvara i dessa apparater
spännande och praktisk. Det man inte tänker på är att där det finns mjukvara, måste
också mjukvarans säkerhetsaspekter beaktas, inte bara apparatens fysiska säkerhetsaspek-
ter. Det som all mjukvara har gemensamt är buggar. Oberoende hur genomtänkt och
välplanerat ett mjukvaruprogram verkar, kommer programmet högst antagligen inte att
vara fritt från fel och brister. Dessa brister kan utnyttjas av angripare. Genom att utnyttja
brister som de hittat i mjukvaran, kan angripare få obehörig åtkomst till privata data och
annan känslig information.

Webbapplikationer är mycket vanliga idag. En webbapplikation är en applikation
som är gjord för att användas över internet med hjälp av en webbläsare. Denna definition
påminner mycket om hur man skulle definiera en webbsida. Skillnaden ligger dock i ordet
applikation. En webbsida levererar mer eller mindre alltid samma innehåll varje gång
den besöks, oberoende av vem som besöker den. En webbapplikation levererar däremot
dynamiskt innehåll som kan bero på ett flertal faktorer, såsom vem som besöker sidan, tid
på dagen eller typ av användare. Många människor använder dagligen webbapplikationer,
även om de inte tänker på det. Applikationer som Facebook, Instagram och Whatsapp är
de facto webbapplikationer i grund och botten. Även om dessa applikationer verkar vara
så kallade nativa (ursprungliga) applikationer så är de faktiskt utvecklade på samma sätt
som webbapplikationer. Att skriva applikationerna som webbapplikationer är nämligen
ett populärt sätt att skapa applikationer till ett flertal operativsystem och enheter samtidigt.
Detta möjliggörs av webbapplikationsramverk som tillåter kompilering och inpackning i
form av nativa applikationer för flera olika målsystem.

Man brukar prata om att det förekommer så kallade sårbarheter i mjukvara. Dessa
är buggar och fel som gör att mjukvaran kan användas på ett annat sätt än den är ämnad

69

att användas. Sårbarheterna kan göra det möjligt för angripare att få åtkomst till känsliga
data. Sårbarheter som dessa finns även i webbapplikationer. Det finns ett antal klassiska
sårbarheter som ofta påträffas i webbapplikationer. Det är av stort värde för utvecklare
och testare att ha kunskap om dessa sårbarheter, hur de fungerar och hur man kan undvika
dem i sina egna webbapplikationer. Bland de två mest kända sårbarheterna för webbapp-
likationer är SQL-injektion och webbkodinjektion (eng. cross-site scripting, XSS).

Även om det kan vara nästan omöjligt att utveckla felfri programvara, är målet alltid att
förhindra att sårbarheter och fel uppkommer. Det mest grundläggande sättet att förhindra
självklara fel är genom testning. Manuell testning är dock tids- och resurskrävande och
resultatet beror till stor del på testarens kunskap. Tid och resurser är inte gratis och därför
kan även testningens existens och kvalitet bero på projektets budget och prioriteringar.

Fuzztestning kan vara svaret på flera av de ovannämnda problemen. Fuzztestning är
en automatiserad testningsteknik som eliminerar den mänskliga faktorn i testning. Målet
med fuzztestning är att, med upprepade försök, förse ett målsystem med halvgiltiga indata
i avsikt att få målet att krascha, hänga sig eller avge någon annan reaktion som indikerar
att ett fel har inträffat. Mjukvaruprogrammet som utför fuzztestningen kallas en fuzzer.
Alla fuzzers fungerar mer eller mindre enligt tidigare nämnda beskrivning, dock med
varierande implementeringar beroende på deras syften, mål och pris, samt beroende på hur
intelligenta eller "smarta" de är (på engelska används vanligen uttrycket "smart fuzzers").
Ett enkelt sätt att dela in fuzzers är i smarta och dumma fuzzers. Smarta fuzzers behöver
ofta mycket kunskap om målet och dess implementering för att kunna göra sitt jobb.
Detta jobb är ofta mycket specifikt och skräddarsytt för en viss målgrupp, till exempel ett
visst protokoll. Smarta fuzzers är ofta utvecklade att lära sig av sina misstag och vissa
kan till exempel lära sig vilken typ av indata målet förväntar sig och i vilken form. Om
fuzzern tidigare försökt ge någon indata som målprogrammet inte ens tog i beaktande, kan
fuzzern lära sig från detta "misstag" och blir med tiden mera medveten om hurdan indata
som lönar sig att leverera till målet. Dumma fuzzers har däremot inte lika avancerade och
specifika implementeringar. Dessa fuzzers passar därför till en större mängd mål, men är
antagligen inte lika effektiva i sitt arbete. De beaktar ofta inte målets implementering eller
resultat från föregående körningar. De allra dummaste fuzzers kan vara så enkelt gjorda
att de helt enkelt bara skapar randomiserad data som de förser målet med, en process som
de sedan, möjligen, upprepar i all oändlighet.

Fuzztestning av webbapplikationer skiljer sig något från vanlig fuzztestning. Webb-
applikationsfuzzers utför ofta ingen klassisk "fuzzning", men de använder sig istället av
externa ordlistor som kan bestå av kända SQL-injektionssträngar, webbkodinjektions-
strängar, användarnamn, lösenord, med mera. Genom råstyrka testar fuzzern att placera
varje "ord" ur varje ordlista på förutbestämda platser i webbadressen eller i en rå HTTP-

70

begäran. Varje körning kan ta en eller flera ordlistor som indata. Testaren bestämmer själv
var vilken ordlistas ord skall sättas in och med vilken metod fuzzern skapar kombination-
erna. Efter körningen åskådliggörs resultaten i form av vilka kombinationer som gav vilka
statuskoder, svarsstorlekar, antal rader i svaret, och så vidare. Utifrån dessa karaktärsdrag
kan testaren välja att filtrera ut de begäranden som är ofta förekommande, och välja att
fokusera på de som skiljer sig från mängden. Det kan vara av intresse att vidare undersöka
det ord eller de ordkombinationer som ledde till att svaren på dessa begäranden stack ut.
När man testar SQL-injektionssträngar, kan man på detta sätt relativt enkelt hitta strängar
som orsakar problem med den SQL-förfrågan som görs i databasen. Med grundläggande
kunskaper i SQL kan man följaktligen lista ut hur man kan utnyttja detta för att utföra en
SQL-injektionsattack.

Två intressanta fuzzers för fuzztestning av webbapplikationer är FFUF och Wfuzz.
Dessa två kommandoradsverktyg liknar varandra väldigt mycket men har även skillnader.
FFUF är nyare och är inspirerad av den äldre Wfuzz, vilket förklarar varför de är så
lika. Båda verktygen använder sig av så kallade nyttolaster som indata. Nyttolasterna
är ofta i form av ordlistor enligt ovannämnda system. Både FFUF och Wfuzz erbjuder
dessutom liknande möjligheter för andra parametrar som kan anges för körningar, såsom
kakor och POST-data. Också deras filtreringsmöjligheter är väldigt likartade. Den första
skillnaden man märker när man inspekterar verktygen handlar om deras implementer-
ingsspråk. FFUF är skrivet i språket Go medan Wfuzz är skrivet i Python. Eftersom Go
är ett kompilerat språk och Python är ett så kallat tolkat språk är det rimligt att anta att
FFUF konkurrerar ut Wfuzz ur ett prestandaperspektiv. En annan skillnad är att FFUF är
enbart ett verktyg medan Wfuzz även innehåller ett antal mindre verktyg samt ett Python-
bibliotek för utveckling av repeterbara fuzzningsjobb. Det finns även andra ytliga skill-
nader men inga som i första hand sticker ut.

Efter att en grundläggande jämförelse mellan de två verktygen hade gjorts, med at-
tackerna SQL-injektion och råstyrka i fokus, erhölls intressanta resultat. Eftersom båda
verktygen utförde samma attacker med samma ordlistor som indata, är det föreståeligt
att båda verktygen producerade samma antal begäranden under respektive attack. Det
förväntades också att båda verktygen skulle hitta samma sårbarheter under vardera at-
tack. Både FFUF och Wfuzz rapporterar förbrukad tid för körningen, vilket är användbar
data för att jämföra verktygens prestanda. Wfuzz rapporterar även medelhastigheten för
begäranden för hela körningen, givet i begäranden per sekund. FFUF rapporterar dock
endast den momentana hastigheten som uppdaterar under körningens gång, men ingen
slutgiltig medelhastighet för hela körningen. Det konstaterades därför vara mest rättvist
att tiden skulle mätas av ett utomstående verktyg för båda fuzzers, varifrån sedan medel-
hastigheten för begäranden kan härledas genom att dividera antalet begäranden med tiden

71

som rapporteras från det utomstående verktyget. Det inbyggda verktyget /usr/bin/time
ansågs vara ett bra verktyg för att mäta tiden. Verktyget rapporterar också ett flertal andra
intressanta mätvärden, varav CPU-användning och minnesavtryck var av intresse. Också
dessa två mätvärden noterades för vardera verktyg för varje attack.

Efter utförandet av båda attackerna för båda verktygen kan det konstateras att det ur-
sprungliga antagandet om att FFUF skulle ha bättre prestanda än Wfuzz förvånansvärt
nog var falskt. Faktum är att det tog FFUF 4,90 sekunder att uföra alla 1 683 begäranden
medan det tog Wfuzz endast 2,34 sekunder att utföra samma uppgift. FFUF produc-
erade 343 begäranden/sekund, vilket är klart färre än Wfuzzs resultat på 720 begäran-
den/sekund. CPU-användningen var 23 % för FFUF och 134 % för Wfuzz medan min-
nesavtrycket noterades vara 24 508 kilobyte FFUF och 43 144 kilobyte för Wfuzz. Denna
trend fortsatte i SQL-injektionsattacken där FFUF endast klarade 94 begäranden/sekund
jämfört med 558 för Wfuzz. I den attacken tog det FFUF 2,83 sekunder att utföra
uppgiften medan körningen för Wfuzz endast räckte 0,48 sekunder för att behandla de
267 begärandena. FFUF noterades ha en CPU-användning på bara 6 % med ett min-
nesavtryck på 22 548 kilobyte. Wfuzz hade igen en betydligt högre CPU-användning på
125 % och den hade även ett större minnesavtryck på 38 408 kilobyte. Också i SQL-
injektionsattacken utförde båda verktygen lika många begäranden.

Som tidigare nämnts förväntades båda verktygen producera lika många begäranden i
varje attack. Det här visade sig vara sant för det totala antalet begäranden, men inte för
antalet begäranden som blev kvar efter filtrering, även om filtreringskriterierna var iden-
tiska. Denna skillnad noterades i SQL-injektionsattacken. Det visade sig att FFUF helt
ignorerar de rader i ordlistorna som innehåller mellanslag, något som Wfuzz lyckligtvis
inte gör. Det här ledde slutligen till att Wfuzz hittade flera intressanta strängar i SQL-
injektionsattacken eftersom den även beaktade strängar med mellanrum. Wfuzz hittade
16 strängar av intresse medan FFUF endast hittade 3. Båda körningarna använde samma
ordlista, men på grund av denna bugg eller avsiktliga implementering hos FFUF, blev
Wfuzz igen överlägsen.

När filtervärdena för körningarna definierades noterades en annan överraskande före-
teelse. Det verkar som om Wfuzz rapporterar svar på begäranden som består av endast en
rad som noll rader i utskriften. Detta är synnerligen underligt och det är svårt att motivera
hur denna egenskap skulle vara avsiktlig. Denna troliga bugg ledde till att filtreringskri-
teriet som i FFUF angavs som en rad motsvarades av filtreringskriteriet noll rader i Wfuzz.
Felet påverkar inte resultaten av körningarna när detta tas i beaktande, men ifall det inte
hade noterats kunde det ha lett till mycket missvisande resultat.

Utgående från de jämförelser som utförts i den här avhandlingen ses ingen orsak till
att välja FFUF framför Wfuzz. Resultatet är förvånansvärt eftersom man kan tänka sig

72

att FFUF, som är inspirerad av Wfuzz, är avsedd att vara en nyare och förbättrad version
av sin föregångare. Det faktum att FFUF är ett kompilerat program medan Wfuzz körs
i Python antogs ursprungligen vara en fördel för FFUF. Som bevisats var dock detta inte
fallet, åtminstone med avseende på prestanda. Båda verktygen erbjuder mer eller mindre
samma funktionalitet för själva fuzzern men Wfuzz inkluderar ett flertal mindre verktyg
samt ett Python-bibliotek, vilket ger den ytterligare en fördel. Som noterat påträffades
två små troliga buggar, en i vardera verktyget. Vare sig dessa är avsiktliga beteenden
eller inte, påverkar de inte verktygens funktionalitet avsevärt. Det som kan ge FFUF en
poäng är att den är kompilerad och därför inte har många externa beroenden, vilket Wfuzz
däremot har, då den kräver att både Python och externa Python-bibliotek är installerade.
Detta är dock inte ett tillräckligt argument för att välja FFUF framför Wfuzz. Det verkar
som om nytt inte alltid är bättre, och emellanåt är erfarna verktyg att föredra framför
spännande nykomlingar.

73

References

[1] (). “Article: What is... a vulnerability | f-secure,” [Online]. Available: https://
www.f-secure.com/v-descs/articles/vulnerability.shtml (visited on
12/06/2020).

[2] (). “Web app | definition of web app by oxford dictionary on lexico.com also mean-
ing of web app,” Lexico Dictionaries | English, [Online]. Available: https://www.
lexico.com/en/definition/web_app (visited on 01/08/2021).

[3] J. Clarke-Salt, SQL Injection Attacks and Defense. Elsevier, Jun. 16, 2009, 576 pp.,
Google-Books-ID: Spm7UgBwzjIC, ISBN: 978-1-59749-973-6.

[4] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross-site
scripting prevention with dynamic data tainting and static analysis,” p. 12,

[5] J. N. Buxton and B. Randell, “Software engineering techniques,” Rome, Italy, Re-
port on a conference sponsored by the NATO Science Committee, Apr. 1970, p. 16.

[6] M. E. Whitman and H. J. Mattord, Principles of Information Security. Cengage
Learning, Jan. 1, 2011, 658 pp., Google-Books-ID: xboIAAAAQBAJ, ISBN: 978-
1-133-17293-2.

[7] R. von Solms and J. van Niekerk, “From information security to cyber security,”
Computers & Security, Cybercrime in the Digital Economy, vol. 38, pp. 97–102,
Oct. 1, 2013, ISSN: 0167-4048. DOI: 10.1016/j.cose.2013.04.004. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/
S0167404813000801 (visited on 05/25/2021).

[8] (). “What is information security (InfoSec)?” Cisco, [Online]. Available: https:
//www.cisco.com/c/en/us/products/security/what-is-information-

security-infosec.html (visited on 05/25/2021).

[9] N. Mims, “Chapter 84 - cyber-attack process,” in Computer and Information Se-

curity Handbook (Third Edition), J. R. Vacca, Ed., Boston: Morgan Kaufmann,
Jan. 1, 2017, pp. 1105–1116, ISBN: 978-0-12-803843-7. DOI: 10.1016/B978-0-

74

https://www.f-secure.com/v-descs/articles/vulnerability.shtml
https://www.f-secure.com/v-descs/articles/vulnerability.shtml
https://www.lexico.com/en/definition/web_app
https://www.lexico.com/en/definition/web_app
https://doi.org/10.1016/j.cose.2013.04.004
https://www.sciencedirect.com/science/article/pii/S0167404813000801
https://www.sciencedirect.com/science/article/pii/S0167404813000801
https://www.cisco.com/c/en/us/products/security/what-is-information-security-infosec.html
https://www.cisco.com/c/en/us/products/security/what-is-information-security-infosec.html
https://www.cisco.com/c/en/us/products/security/what-is-information-security-infosec.html
https://doi.org/10.1016/B978-0-12-803843-7.00084-3
https://doi.org/10.1016/B978-0-12-803843-7.00084-3

12-803843-7.00084-3. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/B9780128038437000843 (visited on 05/25/2021).

[10] G. Tian-yang, S. Yin-sheng, and F. You-yuan, Research on Software Security Test-

ing.

[11] S. Shah and B. M. Mehtre, “An overview of vulnerability assessment and penetra-
tion testing techniques,” Journal of Computer Virology and Hacking Techniques,
vol. 11, no. 1, pp. 27–49, Feb. 1, 2015, ISSN: 2263-8733. DOI: 10.1007/s11416-
014-0231-x. [Online]. Available: https://doi.org/10.1007/s11416-014-
0231-x (visited on 01/05/2021).

[12] G. Evron and N. Rathaus, Open Source Fuzzing Tools, G. Evron and N. Rathaus,
Eds. Burlington: Syngress, Jan. 1, 2007, ISBN: 978-1-59749-195-2. DOI: 10.1016/
B978-159749195-2.00002-4. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/B9781597491952000024 (visited on 12/07/2020).

[13] Definition of FUZZ, in. [Online]. Available: https://www.merriam-webster.
com/dictionary/fuzz (visited on 12/07/2020).

[14] J. DeMott, “The evolving art of fuzzing,” p. 25, Jun. 1, 2006.

[15] (). “Basic workflow of a fuzzer,” [Online]. Available: http://9livesdata.com/
wp-content/uploads/2018/03/1.png (visited on 12/08/2020).

[16] (). “Our guide to fuzzing | f-secure | f-secure,” [Online]. Available: https://www.
f-secure.com/en/consulting/our-thinking/15-minute-guide-to-

fuzzing (visited on 12/08/2020).

[17] M. Schneider, J. Großmann, I. Schieferdecker, and A. Pietschker, “Online model-
based behavioral fuzzing,” in 2013 IEEE Sixth International Conference on Soft-

ware Testing, Verification and Validation Workshops, Mar. 2013, pp. 469–475. DOI:
10.1109/ICSTW.2013.61.

[18] M. Schneider, J. Großmann, N. Tcholtchev, I. Schieferdecker, and A. Pietschker,
“Behavioral fuzzing operators for UML sequence diagrams,” in System Analy-

sis and Modeling: Theory and Practice, Ø. Haugen, R. Reed, and R. Gotzhein,
Eds., ser. Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, 2013,
pp. 88–104, ISBN: 978-3-642-36757-1. DOI: 10.1007/978-3-642-36757-1_6.

[19] (). “Instrumenting programs for AFL — AFL 2.53b documentation,” [Online].
Available: https://afl-1.readthedocs.io/en/latest/instrumenting.
html (visited on 03/10/2021).

[20] (). “Beyond security | beSTORM version comparison,” [Online]. Available: https:
//beyondsecurity.com/comparison.html (visited on 01/20/2021).

75

https://doi.org/10.1016/B978-0-12-803843-7.00084-3
https://doi.org/10.1016/B978-0-12-803843-7.00084-3
https://www.sciencedirect.com/science/article/pii/B9780128038437000843
https://www.sciencedirect.com/science/article/pii/B9780128038437000843
https://doi.org/10.1007/s11416-014-0231-x
https://doi.org/10.1007/s11416-014-0231-x
https://doi.org/10.1007/s11416-014-0231-x
https://doi.org/10.1007/s11416-014-0231-x
https://doi.org/10.1016/B978-159749195-2.00002-4
https://doi.org/10.1016/B978-159749195-2.00002-4
http://www.sciencedirect.com/science/article/pii/B9781597491952000024
http://www.sciencedirect.com/science/article/pii/B9781597491952000024
https://www.merriam-webster.com/dictionary/fuzz
https://www.merriam-webster.com/dictionary/fuzz
http://9livesdata.com/wp-content/uploads/2018/03/1.png
http://9livesdata.com/wp-content/uploads/2018/03/1.png
https://www.f-secure.com/en/consulting/our-thinking/15-minute-guide-to-fuzzing
https://www.f-secure.com/en/consulting/our-thinking/15-minute-guide-to-fuzzing
https://www.f-secure.com/en/consulting/our-thinking/15-minute-guide-to-fuzzing
https://doi.org/10.1109/ICSTW.2013.61
https://doi.org/10.1007/978-3-642-36757-1_6
https://afl-1.readthedocs.io/en/latest/instrumenting.html
https://afl-1.readthedocs.io/en/latest/instrumenting.html
https://beyondsecurity.com/comparison.html
https://beyondsecurity.com/comparison.html

[21] (). “Beyond security | application fuzzing, black box testing, DAST,” [Online].
Available: https://beyondsecurity.com/solutions/bestorm.html?cn-
reloaded=1 (visited on 01/18/2021).

[22] (). “Burp suite,” [Online]. Available: https://tools.kali.org/web-applications/
burpsuite (visited on 02/24/2021).

[23] H. Dalziel, “Chapter 1 - web technologies,” in How to Hack and Defend your Web-

site in Three Hours, H. Dalziel, Ed., Boston: Syngress, Jan. 1, 2015, pp. 1–23,
ISBN: 978-0-12-802732-5. DOI: 10.1016/B978-0-12-802732-5.00001-2.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/B9780128027325000012 (visited on 02/24/2021).

[24] (). “Burp suite - application security testing software,” [Online]. Available: https:
//portswigger.net/burp (visited on 02/24/2021).

[25] (). “Peach fuzzer,” Peach Tech, [Online]. Available: https://www.peach.tech/
products/peach-fuzzer/ (visited on 01/19/2021).

[26] (). “GitLab acquires peach tech and fuzzit to expand its DevSecOps offering,” Git-
Lab, [Online]. Available: https://about.gitlab.com/press/releases/
2020-06-11-gitlab-acquires-peach-tech-and-fuzzit-to-expand-

devsecops-offering.html (visited on 03/01/2021).

[27] (). “Motivation behind AFL — AFL 2.53b documentation,” [Online]. Available:
https://afl-1.readthedocs.io/en/latest/motivation.html#the-afl-

approach (visited on 02/24/2021).

[28] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, “5.3.5 web fuzzing,” in
Fuzzing for Software Security Testing and Quality Assurance, Second Edition, Google-
Books-ID: tKN5DwAAQBAJ, Artech House, Jan. 31, 2018, ISBN: 978-1-63081-
519-6.

[29] (Feb. 15, 2021). “Ffuf/ffuf.” original-date: 2018-11-08T09:25:49Z, [Online]. Avail-
able: https://github.com/ffuf/ffuf (visited on 02/15/2021).

[30] (). “Honggfuzz,” honggfuzz, [Online]. Available: https : / / honggfuzz . dev/
(visited on 03/01/2021).

[31] Mseclab/PyJFuzz, original-date: 2016-10-13T09:40:49Z, Feb. 4, 2021. [Online].
Available: https://github.com/mseclab/PyJFuzz (visited on 03/01/2021).

[32] (). “Radamsa finds over a hundred browser vulnerabilities,” [Online]. Available:
https://www.oulu.fi/university/node/36242 (visited on 02/03/2021).

[33] (). “Aki helin / radamsa,” GitLab, [Online]. Available: https://gitlab.com/
akihe/radamsa (visited on 02/03/2021).

76

https://beyondsecurity.com/solutions/bestorm.html?cn-reloaded=1
https://beyondsecurity.com/solutions/bestorm.html?cn-reloaded=1
https://tools.kali.org/web-applications/burpsuite
https://tools.kali.org/web-applications/burpsuite
https://doi.org/10.1016/B978-0-12-802732-5.00001-2
https://www.sciencedirect.com/science/article/pii/B9780128027325000012
https://www.sciencedirect.com/science/article/pii/B9780128027325000012
https://portswigger.net/burp
https://portswigger.net/burp
https://www.peach.tech/products/peach-fuzzer/
https://www.peach.tech/products/peach-fuzzer/
https://about.gitlab.com/press/releases/2020-06-11-gitlab-acquires-peach-tech-and-fuzzit-to-expand-devsecops-offering.html
https://about.gitlab.com/press/releases/2020-06-11-gitlab-acquires-peach-tech-and-fuzzit-to-expand-devsecops-offering.html
https://about.gitlab.com/press/releases/2020-06-11-gitlab-acquires-peach-tech-and-fuzzit-to-expand-devsecops-offering.html
https://afl-1.readthedocs.io/en/latest/motivation.html#the-afl-approach
https://afl-1.readthedocs.io/en/latest/motivation.html#the-afl-approach
https://github.com/ffuf/ffuf
https://honggfuzz.dev/
https://github.com/mseclab/PyJFuzz
https://www.oulu.fi/university/node/36242
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa

[34] Microsoft/restler-fuzzer, original-date: 2020-07-24T21:40:11Z, Mar. 4, 2021. [On-
line]. Available: https://github.com/microsoft/restler-fuzzer (visited
on 03/04/2021).

[35] D. Aitel, “The advantages of block-based protocol analysis for security testing,”
2002.

[36] M. Sutton, A. Greene, and P. Amini, “Chapter 21 - fuzzing frameworks,” in Fuzzing:

Brute Force Vulnerability Discovery, 1st, Addison-Wesley Professional, Jun. 2007,
ISBN: 978-0-321-44611-4.

[37] (). “Cygwin,” [Online]. Available: https : / / www . cygwin . com/ (visited on
03/02/2021).

[38] (). “Wfuzz: The web fuzzer — wfuzz 2.1.4 documentation,” [Online]. Available:
https : / / wfuzz . readthedocs . io / en / latest / index . html (visited on
03/02/2021).

[39] D. Zhao, “Fuzzing technique in web applications and beyond,” Journal of Physics:

Conference Series, vol. 1678, p. 012 109, Nov. 2020, ISSN: 1742-6588, 1742-6596.
DOI: 10.1088/1742-6596/1678/1/012109. [Online]. Available: https://
iopscience.iop.org/article/10.1088/1742- 6596/1678/1/012109

(visited on 02/25/2021).

[40] (). “JSON,” [Online]. Available: https : / / www . json . org / json - en . html
(visited on 04/05/2021).

[41] (). “Extensible markup language (XML),” [Online]. Available: https://www.w3.
org/XML/ (visited on 04/05/2021).

[42] (). “OpenAPI specification - version 2.0 | swagger,” [Online]. Available: https:
//swagger.io/specification/v2/ (visited on 04/06/2021).

[43] (). “The pros and cons of programming in go | WillowTree,” [Online]. Available:
https://willowtreeapps.com/ideas/the-pros-and-cons-of-programming-

in-go (visited on 02/15/2021).

[44] (). “DVWA - damn vulnerable web application,” [Online]. Available: https://
dvwa.co.uk/ (visited on 04/06/2021).

[45] D. Miessler, Danielmiessler/SecLists, original-date: 2012-02-19T01:30:18Z, Apr. 6,
2021. [Online]. Available: https://github.com/danielmiessler/SecLists
(visited on 04/06/2021).

[46] (). “Apt - debian wiki,” [Online]. Available: https://wiki.debian.org/Apt
(visited on 04/12/2021).

77

https://github.com/microsoft/restler-fuzzer
https://www.cygwin.com/
https://wfuzz.readthedocs.io/en/latest/index.html
https://doi.org/10.1088/1742-6596/1678/1/012109
https://iopscience.iop.org/article/10.1088/1742-6596/1678/1/012109
https://iopscience.iop.org/article/10.1088/1742-6596/1678/1/012109
https://www.json.org/json-en.html
https://www.w3.org/XML/
https://www.w3.org/XML/
https://swagger.io/specification/v2/
https://swagger.io/specification/v2/
https://willowtreeapps.com/ideas/the-pros-and-cons-of-programming-in-go
https://willowtreeapps.com/ideas/the-pros-and-cons-of-programming-in-go
https://dvwa.co.uk/
https://dvwa.co.uk/
https://github.com/danielmiessler/SecLists
https://wiki.debian.org/Apt

[47] R. Wood, Digininja/DVWA, original-date: 2013-05-01T13:03:10Z, Apr. 12, 2021.
[Online]. Available: https://github.com/digininja/DVWA (visited on 04/12/2021).

[48] (). “Welcome! - the apache HTTP server project,” [Online]. Available: https:
//httpd.apache.org/ (visited on 04/12/2021).

[49] (). “PHP: What is PHP? - manual,” [Online]. Available: https://www.php.net/
manual/en/intro-whatis.php (visited on 04/12/2021).

[50] (). “About MariaDB server,” MariaDB.org, [Online]. Available: https://mariadb.
org/about/ (visited on 04/12/2021).

[51] (). “Allow_url_include,” DreamHost Knowledge Base, [Online]. Available: https:
//help.dreamhost.com/hc/en- us/articles/214205688- allow- url-

include (visited on 04/13/2021).

[52] (). “File permissions in linux/unix: How to read/write & change?” [Online]. Avail-
able: https://www.guru99.com/file-permissions.html (visited on 04/13/2021).

[53] (). “FLUSH,” MariaDB KnowledgeBase, [Online]. Available: https://mariadb.
com/kb/en/flush/ (visited on 04/15/2021).

[54] (). “Installation — wfuzz 2.1.4 documentation,” [Online]. Available: https://
wfuzz.readthedocs.io/en/latest/user/installation.html#installation-

issues (visited on 04/15/2021).

[55] cawrites. (). “UNION (transact-SQL) - SQL server,” [Online]. Available: https:
//docs.microsoft.com/en-us/sql/t-sql/language-elements/set-

operators-union-transact-sql (visited on 04/27/2021).

[56] (). “Comment syntax,” MariaDB KnowledgeBase, [Online]. Available: https://
mariadb.com/kb/en/comment-syntax/ (visited on 04/27/2021).

78

https://github.com/digininja/DVWA
https://httpd.apache.org/
https://httpd.apache.org/
https://www.php.net/manual/en/intro-whatis.php
https://www.php.net/manual/en/intro-whatis.php
https://mariadb.org/about/
https://mariadb.org/about/
https://help.dreamhost.com/hc/en-us/articles/214205688-allow-url-include
https://help.dreamhost.com/hc/en-us/articles/214205688-allow-url-include
https://help.dreamhost.com/hc/en-us/articles/214205688-allow-url-include
https://www.guru99.com/file-permissions.html
https://mariadb.com/kb/en/flush/
https://mariadb.com/kb/en/flush/
https://wfuzz.readthedocs.io/en/latest/user/installation.html#installation-issues
https://wfuzz.readthedocs.io/en/latest/user/installation.html#installation-issues
https://wfuzz.readthedocs.io/en/latest/user/installation.html#installation-issues
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/set-operators-union-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/set-operators-union-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/set-operators-union-transact-sql
https://mariadb.com/kb/en/comment-syntax/
https://mariadb.com/kb/en/comment-syntax/

	Introduction
	Vulnerabilities in web applications
	Objective

	Background
	Security concepts
	Information security
	Attacks
	Vulnerabilities and exploits
	Security testing
	Penetration testing

	Fuzzing
	The basics
	The brainpower of fuzzers
	Fuzzer types
	Black-box versus grey-box versus white-box fuzzers
	Detecting problems

	Fuzzing tools
	Available fuzzing tools
	Commercial tools
	Open-source tools

	Tools for fuzzing web-based systems

	FFUF or Wfuzz - What is the difference?
	FFUF - Fuzz Faster U Fool
	Wfuzz - The Web fuzzer
	Experiment planning
	System under test
	Payloads
	Attack scenarios
	Metrics

	Environment preparation
	Setting up DVWA
	Installing FFUF
	Installing Wfuzz
	The fuzzing input
	Implementation of attacks

	Execution
	Brute Force
	SQL injection

	Results and analysis

	Conclusion
	Swedish Summary
	References

