FuzzBeENncH: An Open Fuzzer Benchmarking Platform and Service

Jonathan Metzman
Google, USA
metzman@google.com

Read Sprabery
Google, USA
sprabery@google.com

ABSTRACT

Fuzzing is a key tool used to reduce bugs in production software. At
Google, fuzzing has uncovered tens of thousands of bugs. Fuzzing
is also a popular subject of academic research. In 2020 alone, over
120 papers were published on the topic of improving, developing,
and evaluating fuzzers and fuzzing techniques. Yet, proper evalu-
ation of fuzzing techniques remains elusive. The community has
struggled to converge on methodology and standard tools for fuzzer
evaluation.

To address this problem, we introduce FuzzBENCH as an open-
source turnkey platform and free service for evaluating fuzzers.
It aims to be easy to use, fast, reliable, and provides reproducible
experiments. Since its release in March 2020, FuzzBENCH has been
widely used both in industry and academia, carrying out more than
150 experiments for external users. It has been used by several
published and in-the-work papers from academic groups, and has
had real impact on the most widely used fuzzing tools in industry.
The presented case studies suggest that FuzzBENCH is on its way
to becoming a standard fuzzer benchmarking platform.

CCS CONCEPTS

« Software and its engineering — Application specific develop-
ment environments; Software testing and debugging; - Security
and privacy — Software security engineering; - Mathemat-
ics of computing — Hypothesis testing and confidence interval
computation; « General and reference — Evaluation; Experi-
mentation.

KEYWORDS

fuzzing, fuzz testing, benchmarking, testing, software security

ACM Reference Format:

Jonathan Metzman, Laszl6 Szekeres, Laurent Simon, Read Sprabery, and Ab-
hishek Arya. 2021. FuzzBENcH: An Open Fuzzer Benchmarking Platform
and Service. In Proceedings of the 29th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE °21), August 23-28, 2021, Athens, Greece. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3468264.3473932

This work is licensed under a Creative Commons Attribution-
NoDerivatives 4.0 International License.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3473932

Laszl6 Szekeres
Google, USA
Iszekeres@google.com

1393

Laurent Simon
Google, USA
laurentsimon@google.com

Abhishek Arya
Google, USA
aarya@google.com

1 INTRODUCTION

Fuzzing has attracted the attention of both industry and academia
because it is effective at finding bugs in real-world software, not
just in experiments. Today, fuzzing has seen high adoption among
developers [34] and is used to find bugs in widely used production
software [26, 27, 40, 42]. At Google we have found tens of thou-
sands of bugs [1] with fuzzers like AFL [45], libFuzzer [37] and
Honggfuzz [43]. Academic research on fuzzing has driven many
improvements since the inception of coverage-guided fuzzing [45]
- Google Scholar reports several thousand published papers since
2014 [28].

While fuzzing efforts have been successful in improving software
quality, proper evaluation of fuzzing techniques is still a challenge.
There is no consensus on which tools and techniques are effective
and generalize well for fuzzer comparison. This is in part due to the
lack of standard benchmarking tools, metrics, and representative
program datasets, all of which have hampered reproducibility [48].

Klees et al. [31] were the first to study the current state of fuzzing
evaluations. They analyzed 32 fuzzing research papers and found
that none provided enough “evidence to justify general claims of
effectiveness”. More specifically, some papers do not use a large
and diverse set of real-world benchmarks, have too few trials, use
short trials, or lack statistical tests. Furthermore, it is hard to cross-
compare between all papers as they typically use different evalu-
ation setup and configuration (e.g., how experiments are run and
measured), different subjects (benchmark programs) or even differ-
ent coverage metrics [41].

Another common challenge is that sound fuzzer evaluation has
a high cost, both in researcher time and computational resources. A
typical evaluation compares a large number of tools on a large num-
ber of subjects (benchmark programs). Setting up all these tools and
subjects and making sure that each tool-subject pair works together
(i.e., compiles, runs) takes significant effort. Some researchers we
talked to described spending several months working on evaluation.
A sound evaluation also needs massive computation time (on the
order of CPU-years) and resources, as each tool-subject pair needs
to run multiple times for statistical significance. In practice, it can
take up to ~ 11 CPU-years to run a well-conducted experiment
(e.g., 24 hours x 20 trials X 10 fuzzers X 20 subjects). On Google
Cloud, this experiment could cost over $2,000. Considering the re-
peated evaluations necessary during the development of a fuzzing
tool, research can require CPU-centuries and tens of thousands of
dollars.

FuzzBENCH aims to alleviate these problems by providing an
open-source fuzzer benchmarking service. We designed it following

http://creativecommons.org/licenses/by-nd/4.0/
https://orcid.org/0000-0002-7042-0444
https://orcid.org/0000-0002-9808-6484
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3468264.3473932

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

proven best practices [2, 47], with the goal of making fuzzing evalu-
ation easy, fast, rigorous, and reproducible (Section 2). FuzzBENcH
is modular and extensible, so integrating a fuzzer is easy and re-
quires about 100 LoC on average (Section 3). Even complex fuzzers
such as SymCC can be integrated into FuzzBENcH in 100 LoC [7].

The FuzzBENCH service uses Google’s compute resources. Re-
searchers can request a new evaluation experiment for free (Sec-
tion 4). By default, the service runs a large-scale experiment with
20 trials of 23 hours each, on (> 20) real-world benchmarks (Sec-
tion 2). FuzzBENCH generates reports with statistical confidence
intervals and makes the raw data available for further analysis if
needed. FuzzBENCH allows researchers to focus more of their time
on perfecting techniques and less time on setting up evaluations
and troubleshooting other fuzzers they want to compare against.

There is prior work on designing fuzzing benchmarks, most no-
tably Google’s fuzzer-test-suite [38], LAVA [20], Magma [30] and
UNIFUZZ [32]. Google’s fuzzer-test-suite can be considered the
precursor of FuzzBENCH as FuzzBENCH initially used many of the
same benchmark programs. LAVA and Magma provide a set of pro-
grams containing bugs (artificial and real-world, respectively). They
measure only the number of bugs found, without measuring code
coverage. FUzzBENCH can use either code coverage or bug discovery
for evaluation. Many fuzzing papers follow this practice [6, 9].

To the best of our knowledge, FuzzBENCH is the only fuzzer
benchmarking service. FuzzBENCH’s ease of use and techniques
such as statistical tests have helped numerous researchers raise the
bar for state-of-the-art fuzzing. Since we released it in 2020 [35],
it has been actively used at Google and by the broader fuzzing
community both in industry and academia [9, 36]. The two main
use cases of FuzzBENCH today are (1) comparing different fuzzing
tools, and (2) determining the effect of a potential improvement or
feature (i.e., comparing to a prior version of the same tool). Fuzzer
comparison is used both by researchers and by fuzzer users to de-
termine which tool might be best for them. For example, OSS-Fuzz
decided to replace AFL with AFL++ based on AFL++’s [22] perfor-
mance on FuzzBENCH. In the second use case, developers iterate on
their tools by carrying out A/B tests with FuzzBENCH for a given
change and determine the change’s impact on fuzzing effectiveness.
Popular fuzzing tools in industry - such as libFuzzer, AFL++ and
Honggfuzz— use FuzzBENCH continuously to drive development
this way.

As an example of the first use case, FuzzBENCH periodically
evaluates and compares the latest versions of the most commonly
used fuzzing tools. We discuss the latest result of this experiment
in Section 5. We also evaluate our choices of the parameters used
for this main experiment (such as experiment length and other
configurations) in Section 6, and share the insights we have gained.
We present several case studies for the second use case as well,
showing how FuzzBENCH is being used to successfully improve
fuzzing tools (Section 7), and discuss lessons we have learned.

In summary, we make the following contributions:

e We describe the design and implementation of FuzzBENCH:
the first scalable, modular, fuzzer benchmarking-as-a-service
platform.

e We present the results of our large-scale experiment on
widely-used fuzzers.

Jonathan Metzman, Laszlé Szekeres, Laurent Simon, Read Sprabery, and Abhishek Arya

1394

e We evaluate our choices of the default experiment parame-
ters (duration, set of benchmarks, seed corpus, etc.).

e We report on case studies, from across academia and industry,
on how FuzzBENCH was used to drive fuzzer development.

2 BENCHMARK METHODOLOGY

The benchmarking methodology of FuzzBencH follows best prac-
tices gathered over many years at Google through evaluation of
fuzzing tools we develop and use [37, 43, 45], and best practices
from academic research [2, 31, 47].

2.1 Real-World Benchmark Programs

To evaluate how a tool works on real-world software, we need to use
real-world software as benchmark programs. FuzzBEncH uses OSS-
Fuzz [3] projects and their fuzz targets as benchmarks. OSS-Fuzz is
a community fuzzing service that continuously fuzzes open source
projects. Today there are approximately 400 open source projects
fuzzed by OSS-Fuzz. Any OSS-Fuzz fuzz target can be easily added
to FuzzBENCH as a benchmark. We picked a large, diverse, and
representative set of fuzz targets from OSS-Fuzz (shown in Table 1)
as a default set of benchmarks in FuzzBENCH. We recommend using
this default set for a fair evaluation as these programs span a wide
range of applications and coding styles.

The default set of benchmarks was chosen with a particular
challenge in mind: how to ensure researchers don’t optimize their
tools in ways that won’t be broadly applicable beyond the particular
evaluation. The set contains 22 different benchmarks that process a
wide variety of input formats, and are some of the most commonly
used open source projects. We believe that even if a tool is optimized
to do well on this set of benchmarks, it will likely do well in general
due to the size and diversity of the benchmarks.

Table 1: Benchmark programs.

Benchmark Dictionary Format Seeds Edges

94
31

89530
62523
19056

ELF/DWARF/Mach-O
HTTP response
TTF, OTF, WOFF

bloaty_fuzz_target
curl_curl_fuzzer_http
freetype2-2017

harfbuzz-1.3.2 TTE, OTF, TTC 58 10021
jsoncpp_jsoncpp_fuzzer JSON 5536
lems-2017-03-21 ICC profile 6959
libjpeg-turbo-07-2017 JPEG 9586

PCAP
PNG
XML

custom 1
DER certificate 2241
custom
PHP

libpeap_fuzz_both
libpng-1.2.56
libxml2-v2.9.2
mbedtls_fuzz_dtlsclient
openssl_x509
openthread-2019-12-23
php_php-fuzz-parser
proj4-2017-08-14
re2-2014-12-09
sqlite3_ossfuzz
systemd_fuzz-link-parser
vorbis-2017-12-11
‘woff2-2016-05-06
Zlib_zlib_uncompress_fuzzer

8149
2991
50461
10942
45989
17932
12376
6156
6547
45136
53453
5022
10923
875

cmomr~o

2782
custom 44
custom
custom
custom
0GG 1
‘WOFF 62

Zlib compressed 0

1258

R I N N N N N N N)

2.2 Metrics

Code and bug coverage. FuzzBENCH measures both code cover-
age and bug coverage (unique bugs found). However, FuzzBENCH
uses code coverage as its primary evaluation metric for two rea-
sons. A fuzzer can only detect a bug if first it manages to cover the
code where the bug is located. The primary challenge fuzzers try
to solve is creating inputs that exercise new program states. In fact,

FuzzBENcH: An Open Fuzzer Benchmarking Platform and Service

most coverage-guided fuzzers do not even implement any specific
“bug detection” capabilities, but rely on independent sanitizers [39],
such as ASAN, MSAN, UBSAN. Second, comparing fuzzers based on
bug coverage can be misleading since real-world bugs in programs
are sparse. Even Magma benchmarks where bugs were manually
“forward-ported” have between 7-22 bugs each [30]. This is a small
number compared to the many thousands of code locations (e.g.,
lines/branches) where bugs can be introduced in real-world pro-
grams (Table 1). Therefore, if we reported only number of bugs
found, without reporting code coverage, it might lead to biased
results that do not generalize. This is why we advocate for using
the combination of code and bug coverage. Note that beyond code
and bug coverage, we allow tool integrators to export their own
custom metrics (e.g., number of executions, RAM usage).

Independent code coverage metric. One approach to measuring
code coverage is using the coverage reported by each fuzzer be-
ing benchmarked. However, this approach is flawed as different
fuzzers use different coverage metrics (e.g., basic block, edge, line,
etc.). Even if they use the same metric, say edge coverage, different
implementations will give different results. For example, AFL uses
a fixed size edge counter map, which means that certain edges may
be missed due to hash collisions. Another approach is to pick the
coverage metric and implementation of one of the fuzzers (e.g., Sani-
tizerCoverage used by libFuzzer) and measure the corpus generated
by each fuzzers with that. However this is biased towards the fuzzer
whose coverage metric is used. Thus, FuzzBENcH uses Clang’s
source-based coverage, an independent coverage implementation
that is not used by any fuzzer. Clang’s source-based coverage is
collision-free, provides easy-to-read coverage reports, and is part
of Clang’s tooling suite.

Differential coverage. Not only does FuzzBENCH measure the

number of code locations covered and its growth over time, FuzzBENCH

is aware of which parts of the code (e.g., lines) each fuzzer covers.
FuzzBENCH uses this information to generate “differential coverage”
which it presents in reports. FuzzBENCH presents this information
through coverage reports and graphs that show how many unique
regions are found by each fuzzer. The plots show how much code
was covered by one fuzzer relative to any other fuzzer (e.g., how
much code was covered by libFuzzer and not AFL). They also show
how much code was covered by each fuzzer that no other fuzzer
covered. This is useful information e.g., to determine how to better
combine fuzzers to improve results [29].

2.3 Reproducibility and Version Tracking

Reproducibility is important for a benchmarking platform so that
results can be validated. In the FuzzBENcH source code, fuzzers
and benchmarks are pinned to specific versions of that software.
FuzzBENCH reports include the version (the git commit hash) of the
FuzzBENCH source code that was used to produce the experiment.
Thus, it is possible to reproduce an experiment by checking out
the FuzzBENCH commit and using the same experiment parameters
(e.g., trial duration).

1395

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

2.4 Reporting and Statistical Tests

To help researchers analyze experiment results, FuzzBENCH offers
several options for experiment reports. The automatically gener-
ated default report is easy to understand and provides readers with
insight into fuzzer performance across all benchmarks and on indi-
vidual benchmarks. FuzzBENCH can also provide alternative, more
detailed reports that are easy to customize. All reports make the raw
data available so researchers can do their own custom analysis. For
custom analyses, researchers can use FuzzBENCH’s analysis library
for generating their own plots, tables, and statistical tests [23]. In
the following section, we discuss the default report. Past experiment
reports are available online at fuzzbench.com and more information
about experiment reports is available in the documentation.

To get statistically sound results, we run each fuzzer 20 times
for each benchmark. Each of these runs is a “trial”, which is 23
hours long by default. We selected these parameters based on prior
research guidelines [31]. We show in Section 6 that these default
settings are sufficient in practice. The reports show results for each
benchmark and “experiment level” results which compare fuzzers
across all benchmarks. We run the same types of analyses and
generate the same types of plots for code and bug coverage. In the
text below, “coverage” means both code or bug coverage, as we
generate the same plots/tables for both.

Benchmark-level results. The benchmark-level results in the re-
port show multiple plots, tables and statistical test results for each
benchmark. For each benchmark, they contain a plot of the growth
of code coverage or bugs discovered over time (aggregated over
individual trials), and a box plot of the final coverage distribution
(including min, 25%, median, 75%, max). They also contain differen-
tial coverage plots mentioned earlier, showing pairwise and globally
unique coverage numbers. Finally, they link to a browsable code
coverage report for each fuzzer on each benchmark.

As for benchmark-level statistical tests, by default, the report
includes pairwise fuzzer tests of effect size and null hypothesis
significance. The effect size is determined using the Vargha-Delaney
A12 measure and the null hypothesis is rejected with the two-
tailed Mann-Whitney U test (example provided in Figure 1), as
recommended by Arcuri et al. [4].

Experiment-level results. The report includes “top level” exper-
iment results, comparing fuzzers on all benchmarks. The most
important of these is a “critical difference diagram”. An example is
shown in Figure 3. This diagram was introduced by Demsar [14],
and is often used in the field of machine learning to compare algo-
rithms over multiple benchmarks (data sets). The diagram compares
fuzzers across all benchmarks by visualizing both their average rank
and the statistical significance between them. The average ranks
are computed based on the medians of the reached coverage of
each fuzzer on each benchmark. First it ranks each fuzzer on each
benchmark, then averages these rankings across all benchmarks.
The groups of fuzzers that are connected with bold lines are not
significantly different from each other. The statistical significance
is computed using a post-hoc Nemenyi test performed after the
Friedman test. To the best of our knowledge, FuzzBENCH is the only
platform that provides holistic “experiment-level” statistical tests.

https://www.fuzzbench.com/reports/

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

afl 4
aflfast
aflplusplus -
aflsmart 4 NS
eclipser - b <005
entropic
fairfuzz p<001
honggfuzz p < 0.001
lafintel
libfuzzer

mopt

vewsje
Jasdipa _
sidonua
19zZNyq _
jdow _

snidsnidjye _
2zny66uoy

Figure 1: Mann-Whitney U-test result for libxml in
fuzzbench.com/reports/paper/Main Experiment. Green cells
indicate that the reached coverage distribution of a given
fuzzer pair is significantly different.

Our analysis library offers several alternative cross-benchmark
ranking methods. In addition to an “average rank” result, the default
report also includes a “top level” result based on “average score”.
The “average score” defines a fuzzer’s score on a given benchmark
as the percentage of the highest reached median code-coverage
on that benchmark. In the cross-benchmark ranking we take the
averages of these scores. While it is unclear which ranking system
is “better”, we have found both rankings useful in developing and
debugging fuzzers (see Section 7).

3 PLATFORM DESIGN

The FuzzBENcH platform design is divided into two major parts: a
user-facing frontend for adding benchmarks and fuzzers, and a back-
end for running experiments. The frontend provides the interface
for benchmark integrations and fuzzer integrations. An important
goal of the fronted is to make these integrations easy. Benchmark
integrations consist of a Dockerfile and bash script (build. sh)
for each benchmark. Each of these is used to build fuzz targets using
the compiler and compiler flags specified by the fuzzer-specific in-
tegration. The fuzzer integrations consist of separate Dockerfiles
for building and running a fuzzer, as well as a fuzzer.py script.
The fuzzer.py uses FuzzBENcH’s API to specify which compiler
and compiler flags to use when building benchmarks. In addition,
the fuzzer.py implements a fuzz () function that runs the fuzzer
on a specified binary and saves the corpus to a specified directory.
Fuzzer integrations consist of modular Python code instead of bash
scripts as is common in other platforms. This means integrations
can often be reused by similar fuzzers. For example, all AFL-based
fuzzers import functionality from AFL’s fuzzer.py rather than
reimplement the same functionality. A typical fuzzer integration
can be done in less than 100 lines of code. Once a fuzzer is integrated,
it can run any OSS-Fuzz target out of the box.

Important goals of the backend are (1) scalability, (2) fair re-
source allocation, and (3) platform independence. The high-level
architectural design of the backend is shown in Figure 2.

The backend of FuzzBENCH consists of a dispatcher, and workers
for building docker images, running trials, and measuring corpus

Jonathan Metzman, Laszl6 Szekeres, Laurent Simon, Read Sprabery, and Abhishek Arya

1396

Push tasks /
Monitor progress

Pop task /
Return results

Job Queue
(e.g., Redis)

Logical host Logical host (1 CPU)

> Write Docke
Database results .
(e.9., ~ Main
PostgreSQL) dispatcher

Figure 2: High level-architecture.

File Store
(e.g., Cloud
Storage)
Write / read
corpus snapshots

Builder

Runner

Measurer

snapshots. The dispatcher is the most important part of the backend
as it is the “brain” of an experiment. When an experiment is started,
a dispatcher instance is created, by default, on Google Compute
Engine. The dispatcher first spawns jobs to build the docker image
for each fuzzer-benchmark pair (by default using Google Cloud
Build). During the build stage, the dispatcher also builds a Clang-
coverage build of each benchmark that it will use for measuring
coverage.

Next, the dispatcher starts Google Compute Engine instances to
run trials. In a typical experiment, tens of thousands of Google Com-
pute Engine instances called “runners” are started, which makes
experimentation scalable. These instances have one core and 3.75
GB of RAM available. This ensures each fuzzer gets access to the
same amount of resources. Each trial runs the docker container of
a given fuzzer-benchmark pair, using the fuzz() function defined
by fuzzer.py. While running the fuzzer on the benchmark target,
the runner saves the corpus of the fuzzer to Google Cloud Storage
at a specific interval (fifteen minutes, by default). The coverage
of these corpus “snapshots” is measured by measurer workers to
provide results in real-time and provide data on coverage growth
throughout the experiment.

The dispatcher starts the measurer workers to measure the cov-
erage of each trial throughout the experiment. Each time a corpus
snapshot is saved, a measurer measures its coverage and stores the
result in a central SQL database. The dispatcher also periodically
regenerates the report based on the results measured so far. This
means that a somewhat real-time view of an experiment is available
while it is in-progress.

We designed FuzzBENCH to be as platform independent as pos-
sible. This means that not only can users run it on Google Cloud,
which some users choose to do, but they can also run experiments
locally on their own machines. Local support allows researchers test
their tool/benchmark integrations and run small-scale experiments.
We are planning to improve support for other cloud platforms and
local clusters.

4 THE FUZZBENCH SERVICE

The FuzzBENCH service works as follows: first a user integrates a
fuzzer with the FuzzBENcH APL This enables the fuzzer to build
and fuzz FuzzBENCH benchmarks (i.e., any OSS-Fuzz target). When
submitting a pull request with this integration, the developer also
submits an experiment request specifying which fuzzers and bench-
marks to benchmark via a YAML file. While the pull request is

https://www.fuzzbench.com/reports/paper/Main Experiment

FuzzBENcH: An Open Fuzzer Benchmarking Platform and Service

reviewed by the FuzzBENCH maintainers, FuzzBENCH’s continuous
integration tests that the fuzzer can build and run every benchmark.
Once the pull request is merged, FuzzBENCH automatically runs
the experiment requested by the user. FuzzBENcH then publishes a
report comparing the performance of the fuzzer to other fuzzers.
This service-like process is well liked and is used frequently by
fuzzer developers, e.g., to improve Honggfuzz [44], libFuzzer [19],
and AFL++ [22].

However, public experiment requests present a problem for aca-
demic research or other research that cannot be conducted in the
open. Academic researchers typically want evaluations of their
fuzzer and its source code to be kept private until publication. There-
fore we also support private experiments where researchers can

send a request to the FuzzBENCH mailing list (fuzzbench@google.com).

In this case, the source code of the fuzzer is kept private, as are
the results, which are shared only with the researchers. We store
all experiment data in our internal database so that we can make
the results public at the time of paper publication to then allow
independent analysis and reproduction. Several research groups
have used this private service, and some of this research has been
published [9, 36].

5 EVALUATION OF POPULAR FUZZERS

In this section we evaluate commonly used fuzzers with FuzzBENcH.
The full results from this experiment (ID: Main Experiment) can
be viewed online.! In general, the report, data and all details of
any experiment referenced in this paper can be viewed by going
to fuzzbench.com/reports/paper/<experiment_ID>. For this exper-
iment we benchmarked 11 fuzzers that are important academic
works and/or are popular in industry, and are commonly used
for comparison in academic papers. Namely, we evaluated AFL,
AFLFast AFL++, AFLSmart, Eclipser, Entropic, FairFuzz, Hongg-
fuzz, libFuzzer, MOpt-AFL, and lafintel. Although FuzzBENCH can
benchmark other fuzzers, we have chosen this set to highlight the
features of the platform.

We benchmarked the fuzzers on our default benchmark set, con-
taining 22 different open source projects and their fuzz targets
from OSS-Fuzz. Table 1 lists the benchmarks and describe some of
their characteristics, including dictionary presence, input format,
number of seed inputs, and the number of program edges. These
benchmarks represent a wide range of userspace programs com-
monly fuzzed today. They take a variety of input formats, such as
XML, JPEG and ELF. There is also variety in whether they come
with seed inputs and/or dictionaries. This is useful because not
every target that is fuzzed in the real world has dictionaries or seed
inputs, as we have learned through OSS-Fuzz [3]. We ran 20 trials
for each fuzzer-benchmark pair. Each trial lasted approximately 23
hours. The total runtime was approximately 111,320 CPU hours
or a little less than 13 CPU years. We answer a number of research
questions (RQ) based on the results.

RQ: Are the evaluated fuzzers significantly different from
each other?

The experiment level critical difference diagram is shown in Fig-
ure 3. AFL++ came out to be the best, having the highest average
rank (3.68), followed by Honggfuzz, Entropic, and Eclipser. Based

!fuzzbench.com/reports/paper/Main Experiment

1397

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

CcD
P
1 2 3 4 5 6 7 8 9 10 11
L 1 1)
aflplusplus aflfast
honggfuzz lafintel
entropic fairfuzz
eclipser libfuzzer
afl mopt
aflsmart

Figure 3: Critical difference diagram from Main Experiment.

on the statistical test results that the diagram depicts, there’s no sta-
tistically significant difference between the seven highest ranking
fuzzers. This is indicated by the bold line connecting these fuzzers.
AFL++, however, is significantly better than the last four fuzzers,
Honggfuzz is better than the last three, and so on.

RQ: Do different fuzzers cover different parts of the bench-
marks?

FuzzBENCH keeps track of which code region was covered by
each fuzzer. This allows users to answer questions such as whether
anything is lost switching from one fuzzer to another, or whether
one fuzzer complements another by covering code that the other
does not. For each benchmark in the reports, FuzzBENCH provides
a unique coverage plot (such as Figure 4) and a table of pairwise
comparisons of the coverage covered by one fuzzer but not another
(example provided in Figure 5). Of the 2,182,118 regions covered by
any fuzzer, just 3,566 regions, or .163% were covered by only one
fuzzer. No fuzzer found many regions that other fuzzers couldn’t

find.

o EY e
Figure 4: Unique coverage plot from freetype2-2017 in Main
Experiment.

30000

25000

20000

15000

10000

Reached unique edge coverage

5000

423 2712

0

N <
e P
o o

<
(o
o o

o° o o
<@ o A’
o o o

®
g
o
oo

Fuzzer (highest coverage on the left)

Fuzzers that did well in general (see Figure 3) tended to cover
more unique regions. Table 2 shows the ranking of each fuzzer
based on their unique regions covered per benchmark, as well as
the total number of unique regions covered by each fuzzer (across
all benchmarks). The average benchmark rank based on unique
regions covered follows the same trend as the average benchmark
rank based on median regions covered. These two rankings have a
Pearson correlation of .660 with a p-value of .026.

Comparisons of different fuzzers also produced interesting find-
ings. For example, Entropic, an academic improvement on libFuzzer,
discovers almost a superset of the regions discovered by libFuzzer.

mailto:fuzzbench@google.com
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
fuzzbench.com/reports/paper/<experiment_ID>
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

honggfuzz- 0 756 7 347 395 268 185 255 196 260 178 8000
aflplusplus - 787 0 375 78 138 343 296 348 316 367 288 7000
aflfast 0 4541 104 403 212 3421 254 149
nnfuzzer— ‘ 911 0 1801 920 1102 1021 | 3041 1081 821 | 600
entropic - 3096 2808 661 135 0 657 592 624 2240 793 598 - 5000

mopt 96 @ o 402 219 3422 192 140 _ 4000

aflsmart 126 “m

eclipser —m 110
fairfuzz 159
Iafintel m 168

Not covered by

-3000

119 33 103 0 194 102 -2000

105 468 264 3410 0 206 - 1000

lafintel - ©

5 v

a
] 5
2 £
2 S

honggfuzz
aflplusplus

Covered by

Figure 5: Pairwise coverage comparison plot from freetype2-
2017 in Main Experiment.

Table 2: Fuzzer Rankings Based on Unique Regions.

Average Rank Total Unique Regions

honggfuzz: 1121
entropic: 1119
aflplusplus: 870
fairfuzz: 113
libfuzzer: 69
eclipser: 65

honggfuzz: 1.73
aflplusplus: 2.14
entropic: 2.77
mopt: 3.41
eclipser: 3.45
fairfuzz: 3.5

libfuzzer: 3.59 mopt: 49
afl: 3.64 afl: 47
aflsmart: 3.73 aflfast: 46
lafintel: 3.77 lafintel: 38
aflfast: 3.82 aflsmart: 29

Based on the experiment results, we already know that Entropic is
better than libFuzzer. But do we know if switching to Entropic from
libFuzzer causes us to lose coverage? Initially on ClusterFuzz [5] —
the system behind OSS-Fuzz — both Entropic and vanilla libFuzzer
were used, with similar amount of resources provided for them.
The reason for this approach was to increase diversity, even if it
meant using fuzzer configurations considered less than optimal.
Diversity might improve results compared to when only “optimal”
configurations were used, as other configurations may be beneficial
in particular scenarios. According to the coverage data from this
experiment, however, Entropic covered more unique regions than
libFuzzer on 18 benchmarks and covered 10,964 regions not covered
by libFuzzer; libFuzzer covered more unique regions than Entropic
on just one benchmark and covered only 446 regions not covered by
Entropic. This implies the approach ClusterFuzz initially took for
Entropic and libFuzzer was incorrect. There is almost no coverage
missed when using Entropic instead of libFuzzer (446 regions is just
over 1 region per trial run in this experiment). Entropic covered
almost everything covered by libFuzzer and much more.

5.1 UNIFUZZ Comparison

It’s worth comparing these results to those found by other pa-
pers that evaluate fuzzers. Table 3 compares the experiments used
by papers introducing FuzzBENcH and other benchmark suites:
UNIFUZZ and Magma. Li et al. used UNIFUZZ [32] to benchmark

Jonathan Metzman, Laszl6 Szekeres, Laurent Simon, Read Sprabery, and Abhishek Arya

fuzzers in 2020. The following fuzzers are benchmarked by both
FuzzBeENcH and UNIFUZZ: AFL, AFLFast, Honggfuzz, and MOpt-
AFL. The ranking of these fuzzers according to either metric offered
by FuzzBeNcH is Honggfuzz, AFL, MOpt-AFL, AFLFast. Li et al.
evaluates fuzzer performance using number of unique bugs, bug
severity, bug rareness, speed of finding bugs, and coverage. Table 3
compares the fuzzer rankings according to FuzzBENcH and UNI-
FUZZ. UNIFUZZ doesn’t provide a ready-made aggregate result
for number of unique bugs; instead, they do qualitative analysis of
results on each benchmark. Their analysis is that (1) no fuzzer does
better on every benchmark, (2) Honggfuzz, MOpt-AFL, AFL, and
AFLFast perform best on 3, 3, 1, and 0 benchmarks, respectively.
They also find that Honggfuzz, MOpt-AFL and AFLFast perform
better than AFL on 11, 17, and 4 benchmarks, respectively. This
seems to align with FuzzBENCH's ranking of Honggfuzz over AFL
over AFLFast. However, UNIFUZZ’s ranking of MOpt-AFL as best
or second best contradicts FuzzBENCcH's findings that it performs
worse than AFL. This could be for a variety of reasons.

Table 3: Comparison of benchmark suites.

Suite Trials Duration Benchmarks Fuzzers
FuzzBench 20 23 hours 22 11
UNIFUZZ 30 24 hours 24
Magma 20 7 days 26 7

Table 4: Fuzzers ranked by FuzzBENcH and UNIFUZZ.

FuzzBENcH ~ UNIFUZZ (unique bugs) ~ UNIFUZZ (rare) ~ UNIFUZZ (rare bugs)
Honggfuzz Honggfuzz- MOpt-AFL MOpt-AFL MOpt-AFL
AFL Honggfuzz Honggfuzz
MOpt-AFL AFL AFLFast AFL
AFLFast AFLFast AFL AFLFast

One likely reason for this different ranking is how FuzzBENcH
invokes AFL-based fuzzers. As described in Section 7.1, FuzzBENCH
uses AFL-based fuzzers with the -d option to skip deterministic
steps. In early experiments, such as AFL Deterministic Experiment,
FuzzBENcH did not use this option to invoke AFL. When this was
changed in AFL non-Deterministic Experiment, AFL started doing
better than MOpt-AFL. We think using -d is the right choice for
benchmarking AFL, and we justify this more in Section 7.1.

5.2 Magma Comparison

We also compare our results with Magma’s [30], reported in 2020.
The following fuzzers are benchmarked by both FuzzBENcH and
Magma: AFL, AFL++, AFLFast, FairFuzz, Honggfuzz, and MOpt-
AFL. Magma uses unique bug discovery as the metric for evaluating
fuzzer performance. They found that Honggfuzz and MOpt-AFL did
far better than other fuzzers. Honggfuzz and MOpt-AFL did better
on 4 and 3 benchmarks, respectively. They also found that AFL,
AFLFast, and AFL++ “performed similarly against most targets”.
The findings of Hazimeh et al. regarding AFL++ and MOpt-AFL
appear to contradict ours. We found that AFL++ does better than
most fuzzers that we both evaluated, while MOpt-AFL does not

1398

https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/AFL Deterministic Experiment/index.html
https://www.fuzzbench.com/reports/paper/AFL non-Deterministic Experiment/index.html

FuzzBENcH: An Open Fuzzer Benchmarking Platform and Service

Table 5: Ranking by average score on reproduced experi-
ments.

Main Experiment Reproduce Experiment 1 Reproduce Experiment 2

AFL++: 97.35
Honggfuzz: 97.30
Eclipser: 96.02
Entropic: 95.63
libFuzzer: 91.26
lafintel: 90.85
AFL: 90.47
AFLSmart: 90.33
MOpt-AFL: 90.17
AFLFast: 88.41
FairFuzz: 85.70

Honggfuzz: 97.76
AFL++: 96.53
Eclipser: 95.79
Entropic: 95.47
libFuzzer: 91.10
AFLSmart: 90.73
lafintel: 90.59
AFL: 90.59
MOpt-AFL: 90.48
AFLFast: 88.25
FairFuzz: 85.86

Honggfuzz: 97.05
AFL++: 96.47
Eclipser: 96.13
Entropic: 95.51
libFuzzer: 90.88
AFLSmart: 90.76
lafintel: 90.51
AFL: 90.30
MOpt-AFL: 90.23
AFLFast: 88.32
FairFuzz: 86.24

do much better than the fuzzers we both evaluated. We found this
with both code and bug coverage (see Bug Experiment). There are
several potential reasons for these differences. First, we evaluated
slightly different versions of these tools. Second, FuzzBENCH uses
AFL-based fuzzers with the -d flag to skip deterministic steps. As
we discussed earlier in this section and address more in Section
7, removing this flag can significantly improve performance of
AFL-based fuzzers other than MOpt-AFL. This includes AFL++.
Third, AFL++ did not use the cmplog feature in Hazimeh et al.,
yet it did use the feature in our evaluation. We found improved
performance in AFL++ relative to MOpt-AFL when this feature
was enabled (compare AFL++ non-Cmplog Experiment to AFL++
Cmplog Experiment).

6 EVALUATION OF METHODOLOGY AND
EXPERIMENT PARAMETERS

This section evaluates whether FuzzBENCH experiments give sound
and reproducible results. In FuzzBENcH, different parameters of an
experiment (such as the number of benchmarks, number of trials,
length of trials, use of seed inputs, dictionaries, etc.) can be easily
configured. However, beyond flexibility, it is important to provide
good defaults. In this section, we look at the impact of different
parameter choices.

RQ: Are FuzzBENCH experiments reproducible?

First we look at whether running an experiment again gives
us the same results. We ran two experiments, Reproduce Experi-
ment 1 and Reproduce Experiment 2, with the same parameters
used in the previous section (Main Experiment). Rankings based
on average score (Table 5) and average rank (Table 6) are similar
across all experiments. Note that the slight changes in order are
expected, as they are due to the closeness of average score/rank
values. Considering the clusters of statistically significantly dif-
ferent (or similar) fuzzers, reported in Figure 3, we get the same
results every time. Therefore, we can conclude that the results are
consistent and reproducible.

RQ: Is 23 hours enough?

The first experimental parameter we look at is the duration of
the experiment. Klees et al. [31] suggest running trials for 24 hours.
The FuzzBENCH service by default uses 23-hour trials so we can
use Google Compute Engine’s preemptible instances, which cannot
run for longer than 24 hours, but are 5 times cheaper than standard
instances. To validate our default 23-hour choice, we compared the
result from our Main Experiment, which had 23-hour trials, with

1399

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

CcD
|
1 2 3 4 5 6 7 8 9 10 11
L . . . 1 .) 1 1))
entropic aflfast
honggfuzz fairfuzz
aflplusplus mopt
libfuzzer aflsmart
eclipser afl
lafintel

Figure 6: Critical difference diagram from No Seed Experi-
ment.

the results of an experiment with 7-day (168-hour) trials: 7 Day
Experiment. As can be seen in Table 6 the average ranks are mostly
similar. In fact, average rank in Main Experiment and average rank
in 7 Day Experiment has a Pearson correlation of .927, meaning
they are strongly correlated. However, there are some differences
in ranking and some greater differences on individual benchmarks.
Because of the strong correlation between the two rankings, we
think this confirms prior work [31] and mostly validates that 23-
hour trials strikes a good balance between result accuracy and the
price of the experiments. However, more research is needed here.

ROQ: Should example inputs be used as seed corpus?

Another experimental parameter we evaluate is the impact of the
seed corpus. In the main experiment we use a mix of benchmarks
with and without seed corpora. This makes sense because in real-
world settings, such as on OSS-Fuzz, some fuzz targets do not come
with a seed corpus, while some do. Previous research has found that
observed fuzzer performance can vary significantly based on the
seed corpus [31]. To see how this impacts our evaluation of fuzzers,
we did an experiment where no seed corpora were used, even for
benchmarks that provide them: No Seed Experiment. As can be
seen in Table 6, Honggfuzz, Entropic, and AFL++ still perform at the
top in this experiment. However libFuzzer does much better in this
experiment. In fact, it ranks higher than Eclipser, which is the fifth
ranked fuzzer in this experiment. Every one of the fuzzers that rely
on AFL’s traditional instrumentation (AFL, MOpt-AFL, FairFuzz,
AFLFast, lafintel, Eclipser, and AFLSmart) ranks below the fuzzers
that use different instrumentation (Entropic, Honggfuzz, AFL++,
libFuzzer). As Figure 6 shows, Entropic, Honggfuzz and AFL++
perform statistically significantly better than all of the AFL-based
fuzzers (including AFL) except Eclipser.

To understand the underlying reason for the change in ranking,
we examined results at the benchmarks level. In the benchmarks:
bloaty_fuzz_target, freetype2-2017, libpcap_fuzz_both, proj4-2017-
08-14, systemd_fuzz-link-parser, and vorbis-2017-12-11, the fuzzers:
MOpt-AFL, FairFuzz, AFLSmart, AFLFast, and AFL make little
progress in covering code throughout the experiment. In some of
these benchmarks, Eclipser and lafintel can make progress, but in
others, they cannot. A similar pattern can be seen in the benchmark
libpcap_fuzz_both (which has no seeds) in Main Experiment. We
believe the cause of this pattern is likely the same. All fuzzers that
can make progress in the above benchmarks add special instrumen-
tation for comparisons, with the exception of Eclipser. AFL++, lib-
Fuzzer, Entropic, and Honggfuzz instrument functions like strcmp

https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/Reproduce Experiment 1/index.html
https://www.fuzzbench.com/reports/paper/Reproduce Experiment 2/index.html
https://www.fuzzbench.com/reports/paper/Bug Experiment/index.html
https://www.fuzzbench.com/reports/paper/AFL++ non-Cmplog Experiment/index.html
https://www.fuzzbench.com/reports/paper/AFL++ Cmplog Experiment/index.html
https://www.fuzzbench.com/reports/paper/AFL++ Cmplog Experiment/index.html
https://www.fuzzbench.com/reports/paper/Reproduce Experiment 1/index.html
https://www.fuzzbench.com/reports/paper/Reproduce Experiment 1/index.html
https://www.fuzzbench.com/reports/paper/Reproduce Experiment 2/index.html
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/No Seed Experiment/index.html
https://www.fuzzbench.com/reports/paper/No Seed Experiment/index.html
https://www.fuzzbench.com/reports/paper/7 Day Experiment/index.html
https://www.fuzzbench.com/reports/paper/7 Day Experiment/index.html
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/7 Day Experiment/index.html
https://www.fuzzbench.com/reports/paper/No Seed Experiment/index.html
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Jonathan Metzman, Laszlé Szekeres, Laurent Simon, Read Sprabery, and Abhishek Arya

Table 6: Average rank from various experiments.

Main Experiment 7 Day Experiment ~ No Seed Experiment

0OSS-Fuzz Corpus Experiment

No Dictionary Experiment Reproduce Experiment 1 Reproduce Experiment 2

AFL++: 3.68
Honggfuzz: 4.45

Entropic: 3.84
AFL++:3.93

Entropic: 2.43
Honggfuzz: 3.23

Entropic: 4.50 Eclipser: 4.09 AFL++:3.70
Eclipser: 4.77 AFLSmart: 4.80 libFuzzer: 4.61
AFL: 4.82 Honggfuzz: 5.05 Eclipser: 5.48
AFLSmart: 5.34 AFL: 5.34 lafintel: 7.05
MOpt-AFL: 5.98 MOpt-AFL: 6.32 AFL: 7.30
libFuzzer: 7.86 lafintel: 6.91 AFLSmart: 7.43

libFuzzer: 7.89
AFLFast: 8.80
FairFuzz: 9.05

FairFuzz: 8.00
lafintel: 8.27
AFLFast: 8.32

MOpt-AFL: 7.64
FairFuzz: 7.70
AFLFast: 9.43

AFL++: 4.10
AFL: 4.78
AFLSmart: 4.88
Eclipser: 4.88
Entropic: 5.60
MOpt-AFL: 5.72
Honggfuzz: 5.98
AFLFast: 6.70
libFuzzer: 7.00
lafintel: 7.68
FairFuzz: 8.70

AFL++:3.43
Eclipser: 4.30
Honggfuzz: 4.50
Entropic: 4.73

AFL++:3.18
Honggfuzz: 4.07
Entropic: 4.64
Eclipser: 4.70

AFL++: 3.55
Eclipser: 4.25
Entropic: 4.41
Honggfuzz: 4.82

AFL: 5.16 AFLSmart: 5.07 AFL: 5.09
AFLSmart: 5.41 AFL: 5.32 AFLSmart: 5.27
MOpt-AFL: 6.59 MOpt-AFL: 6.73 MOpt-AFL: 6.64

libFuzzer: 7.30 FairFuzz: 7.68 libFuzzer: 7.61
FairFuzz: 8.11 libFuzzer: 7.68 FairFuzz: 7.77

lafintel: 8.39 lafintel: 8.11 AFLFast: 8.32
AFLFast: 8.45 AFLFast: 8.39 lafintel: 8.34

and add compared string constants to a dictionary. Lafintel instru-
ments comparisons by breaking down multi-byte comparisons into
multiple basic blocks so the fuzzer can tell when it gets further into
a comparison than before. Eclipser does not instrument compar-
isons but tries to solve for them using symbolic execution, and its
ability to outperform fuzzers which do not instrument comparisons
has been noted by its authors [12]. The fuzzers that do not make
progress here do not instrument comparison functions. Results
from other experiments confirm that comparison instrumentation
is responsible for progress in libpcap_fuzz_both. In AFL++ non-
Cmplog Experiment and every experiment before it, AFL++ made
no progress on libpcap_fuzz_both. But, in AFL++ Cmplog Experi-
ment it made progress on covering the benchmark. What changed
is that AFL++’s “cmplog” feature, which instruments comparison
functions, was enabled. FuzzBENcH highlights effective techniques
by allowing these types of comparisons across a large number of
fuzzers.

In summary, we can confirm that results will be different with
and without seeds. Evaluating without seeds can be useful, as it
brings out the differences between fuzzers that can or cannot break
through some comparisons/branches. On the other hand, fuzzer
users who typically use seed inputs might be more interested in
results from Main Experiment, since it used seeds.

RQ: Should an existing, well-established, saturated corpus
be used as seed corpus?

After realizing that the starting corpus significantly affects re-
sults, we wanted to perform another experiment that reflects a
common real-world scenario. In the real world, it is actually rare
that a fuzzer is started from no corpus. Most of the time when
fuzzing a target in OSS-Fuzz, a fuzzer is starting from a corpus
that was created by many CPU years of fuzzing effort by AFL(++),
libFuzzer and Honggfuzz.

We conducted an experiment OSS-Fuzz Corpora Experiment
using corpora from OSS-Fuzz to explore this scenario. As one might
expect, most fuzzers performed similarly to one another, and made
only minimal progress relative to the well-established existing cor-
pus. The worst performing fuzzer in this experiment on average
found 97.11% of the regions found by the best performing fuzzer
on each benchmark. In contrast, in Main Experiment the worst
performing fuzzer found 85.86% of the regions found by the best
fuzzer on each benchmark. On most benchmarks, fuzzers performed
virtually identically. No fuzzer appears a lot better at finding more
coverage than others when starting from OSS-Fuzz corpora. AFLS-
mart ranks noticeably better than it did in Main Experiment. How-
ever the difference is non-significant, and is likely due to random

1400

chance. Another reason to be skeptical of this difference is bias in
the experiment. Because the seed corpora were generated by spend-
ing multiple CPU-centuries running AFL, AFL++ (which OSS-Fuzz
switched to in January 2021), libFuzzer, and Honggfuzz, the experi-
ment is biased against them and favors fuzzers such as AFLSmart
which are not run on OSS-Fuzz. In summary, we do not think a
saturated corpus should be used for a first evaluation, because it is
very hard for fuzzers to augment it. However, if a fuzzer is found
to perform well, that result is quite useful, since real-word fuzzing
(e.g., OSS-Fuzz) does run fuzzers with saturated corpora.

RQ: Should dictionaries be used?

Dictionaries are a feature supported by most coverage guided
fuzzers. They allow someone using a fuzzer to provide the fuzzer
with tokens to insert during fuzzing. Like seed corpora, these are
optional for fuzzing and in OSS-Fuzz, there is a mix of fuzz tar-
gets with and without dictionaries. Thus, FuzzBENCH has a mix
of benchmarks with and without dictionaries. To explore how dic-
tionaries affect our results, we ran an experiment (No Dictionary
Experiment) without dictionaries. As can be seen in Table 6, the
rankings of fuzzers relative to one another is only slightly impacted
by removing this parameter. In summary, the choice of whether to
enable dictionaries does not have a significant impact on our overall
results. Note that researchers are free to adjust all of the parameters
discussed above, if needed over the course of their research. But
overall, based on these experiments, FuzzBENCH's default configu-
ration appears to provide a reliable standard for most evaluations.

7 CASE STUDIES OF TOOL DEVELOPMENT
WITH FUZZBENCH

This section discusses specific case studies where FuzzBENCH was
used to improve fuzzers.

7.1 AFL Configuration Insights

AFL’s default behavior is to start with “deterministic fuzzing steps”,
which includes mutations such as flipping bits to trigger integer
arithmetic errors. These steps can be skipped with the -d flag. The
downside is that the deterministic stage “can take several days” [46]
and may not show coverage improvements right away. The upside
is that with this stage, coverage overall is supposed to better even
if it is initially less broad. After this step is complete, AFL moves
on to its ordinary mode of fuzzing that randomly mutates inputs
(splicing, bitflips, insertions, etc.). Most evaluations of fuzzers [31]
(including most in this paper) evaluate them for only 24 hours
or less. This violates an underlying assumption of deterministic

https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/7 Day Experiment/index.html
https://www.fuzzbench.com/reports/paper/No Seed Experiment/index.html
https://www.fuzzbench.com/reports/paper/OSS-Fuzz Corpus Experiment/index.html
https://www.fuzzbench.com/reports/paper/No Dictionary Experiment/index.html
https://www.fuzzbench.com/reports/paper/Reproduce Experiment 1/index.html
https://www.fuzzbench.com/reports/paper/Reproduce Experiment 2/index.html
https://www.fuzzbench.com/reports/paper/AFL++ non-Cmplog Experiment/index.html
https://www.fuzzbench.com/reports/paper/AFL++ non-Cmplog Experiment/index.html
https://www.fuzzbench.com/reports/paper/AFL++ Cmplog Experiment/index.html
https://www.fuzzbench.com/reports/paper/AFL++ Cmplog Experiment/index.html
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/OSS-Fuzz Corpora Experiment/index.html
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/Main Experiment/index.html
https://www.fuzzbench.com/reports/paper/No Dictionary Experiment/index.html
https://www.fuzzbench.com/reports/paper/No Dictionary Experiment/index.html

FuzzBENcH: An Open Fuzzer Benchmarking Platform and Service

2

\; afl_deterministic

Figure 7: Critical difference diagram from experiment with
AFL with -d (afl) and AFL without -d (afl_deterministic).

steps: that a lot of time can be spent up front so that fuzzing is
more efficient later on. Another reason to skip deterministic steps
is because it isn’t used very often when fuzzing in the real world.
For example, in OSS-Fuzz, a heuristic was used so that fuzzing
with -d was done only once, right after the fuzzer was added to
OSS-Fuzz. Similarly, when using AFL in parallel, only the primary
instance runs the deterministic stage, while secondary instances do
not. These facts raise the question of whether it makes more sense
to benchmark AFL with -d or not. In many ways, using -d is more
likely to represent real-world settings where AFL is used. We ran
an experiment (AFL non-Deterministic Experiment) to investigate
differences in performance between AFL with and without using
the deterministic steps (by using the -d command line option). As
can be seen in Figure 7, skipping the deterministic stage caused
AFL to perform statistically significantly better than AFL with the
deterministic stage (afl_deterministic). This suggests that if runs are
short (e.g., 24 hours), deterministic steps should be disabled. Thus,
in the experiments above FuzzBENCH uses the -d option when in-
voking AFL-based fuzzers. However, this is not what most other
research papers do. For example, we found that MOpt-AFL does
no better than AFL without deterministic steps even though it per-
forms statistically significantly better than AFL with deterministic
steps. This may be explained by the fact that MOpt-AFL imple-
ments a “pacemaker fuzzing mode which selectively avoids the
time-consuming deterministic stage” [33]. Based on FuzzBENCH's
findings on deterministic steps, AFL++ skips them by default, which
improves fuzzing in many real-world scenarios.

7.2 Libfuzzer Improvements

LLVM'’s libFuzzer is one of the most widely-used fuzzing engines.
It is run on tens of thousands of cores continuously by ClusterFuzz
and OSS-Fuzz [5]. Because of libFuzzer’s widespread use, improve-
ments to libFuzzer have a large positive impact on software security,
while regressions have a large negative impact. FuzzBENCH has
detected weaknesses in libFuzzer, driven improvements, and veri-
fied the lack of regressions. Furthermore, FuzzBENCH has improved
fuzzing effectiveness by non-expert users, since making the default
settings better improves fuzzing for users that don’t change them.
We highlight select examples of these improvements here.

A first example is related to libFuzzer’s CrossOver mutation,
which mixes two test cases. When libFuzzer developers noticed
libFuzzer performed worse on FuzzBENCHs sqlite3_ossfuzz bench-
mark they investigated and determined that libFuzzer was produc-
ing considerably larger test cases than AFL. They determined that
this was caused by a bug in the CrossOver implementation, which
they fixed [17].

1401

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

A second example is related to seed pruning, the process of delet-
ing seeds which produce the same coverage as other, smaller seeds,
allowing fuzzers to ignore what were previously considered useless
inputs and reducing storage space. FuzzBENCH demonstrated that
initial seeds, which in many cases are handpicked by users because
they are interesting, can still be useful in helping drive new cover-
age. Thus, an option for keeping these seeds was changed to reflect
this finding [15].

A third example is related to the run time replacement of memory-
related functions. This is common practice in the fuzzing commu-
nity, with the compiler injecting calls to sanitizer runtimes when
invoking functions like memcmp and strcmp. Previously, libFuzzer
required the AddressSanitizer be linked in to provide these func-
tions, but FuzzBENcH identified the need for libFuzzer to have a
dedicated runtime when no LLVM sanitizer was being used [18].
FuzzBENCH results showed an issue with coverage, leading to the
discovery and remediation of this flaw.

A final example highlights how FuzzBENCH can be used to
drive optimal defaults, improving coverage for non-experts who
may not know how to tune the behavior of libFuzzer. FuzzBENcH
showed that the entropic seed-scheduler in libFuzzer outperforms
the vanilla scheduler [9]; thus, the entropic seed-scheduler was
made the default [16].

7.3 AFL++ Improvements

AFL++ is another popular production-ready fuzzer (1,604 stars on
Github). The authors of AFL++ not only used FuzzBENcH to evalu-
ate their tool in their published paper [22], they have also been us-
ing FuzzBENCH extensively to evaluate features and improvements
and thus drive the tool’s development. Part of AFL++’s success is
due to complex integrations of code bases and fuzzing concepts
from the literature. One such integration ported the concept of
“power schedules” from AFLFast [10] by integrating parts of the
AFLFast code base, which inadvertently introduced a performance
regression when using non-AFLFast enhanced runs. FuzzBENCH
helped identify the discrepancy between regular AFL and AFL++
after this code change, indicating a regression. Without this insight,
this subtle bug would have gone unnoticed. Having adopted power
schedules in AFL++, Boehme et al. [10] focused their efforts on
power schedule improvements on the AFL++ version and used
FuzzBENCH to verify the improvements.

FuzzBENCH is also driving better defaults, helping to reduce the
barrier to entry and improve results for those who adopt AFL++.
As mentioned earlier in this section, data from FuzzBENCH led to
AFL++ disabling deterministic steps by default in AFL++ 3.0.

AFL++ also developed and tested an improved seed selection
schedule in version 3.0 which was benchmarked against vanilla AFL
over many FuzzBENCH runs. For example, when the discovery of
new coverage-increasing inputs decreases, more splicing mutations
can improve coverage. Additionally, it is better not to trim newly
found inputs. It can be hard to quantify these improvements and
understand the impact against different types of software without
a comprehensive test suite.

FuzzBENCH also helped AFL++ researchers avoid dead ends by
providing an easy way to test proposed improvements. For ex-
ample, weight havoc mutations in AFL++ appeared to have little

https://www.fuzzbench.com/reports/paper/AFL non-Deterministic Experiment/index.html

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

benefit in practice. This early identification of limitations has en-
abled the research community to focus on fuzzing mechanisms that
can meaningfully improve fuzzing effectiveness.

7.4 Honggfuzz Improvements

The author of Honggfuzz published a series of these improvements
on the groups.google.com/g/fuzzing-discuss mailing list. These im-
provements included things such as adding strings/memory passed
to comparison functions to the dynamic dictionary, or adding a mu-
tation to change ASCII integers. An interesting thing about some
of these improvements is that many of these features were initially
implemented by libFuzzer. Thanks to FuzzBENCH, the developer
of Honggfuzz was able to find features from other fuzzers, prove
they were useful, and then add the features to Honggfuzz. Not
only does this have the benefit of improving Honggfuzz, it also
demonstrates the validity of techniques used by libFuzzer and thus
benefits libFuzzer as well.

8 RELATED WORK

Klees et al. [31] studied the evaluations of recent academic fuzzing
papers. They found a lack of scientific rigor which made results
unreproducible, leading to “wrong or misleading assessments”. As
a result of their work, they released guidelines for the fuzzing com-
munity. FuzzBENcH follows these guidelines to provide statistically
sound, reproducible results: run multiple trials, deduplicate bugs,
supports flexible parameter selections, and provide a diverse set of
real-world programs.

FuzzBENCH is not the first attempt to create a benchmarking
platform for fuzzers. The Competition on Software Testing [8] is an
annual competition to test software techniques. The benchmarks
are small (a few 100 LoC) and are intended to test the ability of tools
to adapt to specific code patterns (e.g., arrays, loops, etc.). Their
work and ours are complementary, as it is useful to consider both
micro and macro behavior of tools to understand their character-
istics. Another benchmark suite is Google Fuzzer Test Suite [25],
which was an early prototype by Google. It was primarily a carefully
selected set of real-world software for fuzzer evaluation. However,
it did not have the advanced features of the FuzzBENcH platform
and service that reduce the cost of integration and evaluation.

There are also several benchmark suites that use artificially in-
troduced bugs. LAVA [20] is an automated bug injection technique,
and also set of benchmark programs containing synthetic bugs
injected with the technique. Rode0Oday [21] is another service that
uses the LAVA technology to create artificially buggy binaries. The
DARPA CGC [13] benchmark suite also uses artificial vulnerabil-
ities. All of these benchmarks, however, are much smaller than
the real-world programs used in FuzzBENcH. Further, it has been
shown that generalizing from synthetic bug benchmarks to real-
world programs seems to be hard. Geng et al. [24] and Bundt et
al. [11] studied artificially injected bug benchmarks. They found
that the bugs “significantly differ from real bugs”, and that fuzzers
performing well on synthetic benchmarks do not “find any organic
bugs”. This implies fuzzing techniques benchmarked with these
datasets may not generalize to real-world software. To mitigate
these problems, FuzzBENCH uses real-word benchmarks containing
real bugs from OSS-Fuzz, the largest open-source fuzzing initiative.

Jonathan Metzman, Laszlé Szekeres, Laurent Simon, Read Sprabery, and Abhishek Arya

1402

Magma [30] is a collection of widely used open-source programs
with a long history of security-critical bugs. Like FuzzBENCH, the
authors target real-world software but they focus on bug finding
as the only metric. FuzzBENCH provides both code coverage and
bug finding as metrics out of the box. This is important because
bugs are sparse, so a fuzzer’s ability to cover more of the code
where bugs exist may go unnoticed [32]. UNIFUZZ [32] is a recent
benchmarking work that uses real-world software, considers both
bugs and coverage as metrics and suggests additional metrics such
as the speed to find bugs. Although FuzzBENCcH does not provide all
the metrics used by UNIFUZZ by default, there is support for them
and we have enabled them for certain academic groups already.
A major difference between FuzzBENcH and UNIFUZZ, and the
previously mentioned benchmark suites, is that FuzzBENCH was
designed primarily with users in mind: the focus is on running
experiments as easily as possible.

To the best of our knowledge, FuzzBENCH is the only fuzzer
benchmarking service. Due to the scalability of the FuzzBencH
service, it can provide results within a day, and thus reduce the
barrier to entry for researchers and help them quickly iterate over
ideas. Since we released FuzzBENCH in 2020 [35], it has been actively
used at Google and by the broader fuzzing community both in
industry and academia [9, 36].

9 CONCLUSION

We created FuzzBENCH with the goal of facilitating open science,
rigorous evaluation, and reproducibility. The service not only makes
unbiased, large-scale evaluations easy, it also makes these evalua-
tions free for researchers. Since its release in the past year, FuzzBENCH
has already been used by dozens of researchers from academia and
industry to run more than 150 experiments. Further, FuzzBENcH
is a fully open, community driven platform. It has also already re-
ceived many great contributions, and we continue to encourage the
community to continue to improve the platform and the techniques
used to evaluate testing tools. With the success stories described in
this paper behind it, FuzzBENCH is in our opinion poised to become
the gold standard for fuzzer evaluation. We hope that better evalu-
ations leads to better science, more adoption, and greater impact
for fuzzing research and tools.

ACKNOWLEDGMENTS

FuzzBench would not be possible without the help of many contrib-
utors. We would like to thank coworkers who implemented features
and contributed ideas: Oliver Chang, Franjo Ivanc¢i¢, Kostya Sere-
bryany, Matt Morehouse, Martin Barbella, Ammar Askar, Zhicheng
Cai, Dokyung Song, Ruikang Shi, and Tanishq Rupal. We would
also like to thank community members who have contributed valu-
able ideas and features, particularly: Marc Heuse, Marcel Bohme,
and Josh Bundt. Thank you to Kara Olive who provided important
editing of this paper. Lastly, we would like to thank our reviewers

for their feedback.

REFERENCES

[1] 2021. OSS-Fuzz Bugs. https://bugs.chromium.org/p/oss-fuzz/issues/list?q=-
status%3Aduplicate%2Cwontfix%20label %3 Aclusterfuzz%20opened%3C2021-
04-06&can=1

https://groups.google.com/g/fuzzing-discuss
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=-status%3Aduplicate%2Cwontfix%20label%3Aclusterfuzz%20opened%3C2021-04-06&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=-status%3Aduplicate%2Cwontfix%20label%3Aclusterfuzz%20opened%3C2021-04-06&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=-status%3Aduplicate%2Cwontfix%20label%3Aclusterfuzz%20opened%3C2021-04-06&can=1

FuzzBENcH: An Open Fuzzer Benchmarking Platform and Service

(2]

3

=

[4

o

[10]

(1

[12]

[13]
[14]

[15

[16]

[17

(18]

[19

[20]

[21]
[22]

[23]

[24

ACM SIGPLAN. 2018. Empirical Evaluation Guidelines. http://www.sigplan.
org/Resources/EmpiricalEvaluation/

Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Meredith
Whittaker. 2016. Announcing OSS-Fuzz: Continuous Fuzzing for Open Source
Software. Google Testing Blog. (Dec. 2016). https://testing.googleblog.com/
2016/12/announcing-oss-fuzz-continuous-fuzzing html

Andrea Arcuri, Muhammad Zohaib Igbal, and Lionel Briand. 2011. Random
testing: Theoretical results and practical implications. IEEE Transactions on
Software Engineering 38, 2 (2011), 258-277.

Abhishek Arya and Chang Oliver. 2019. ClusterFuzz: ClusterFuzz.
https://www.blackhat.com/eu-19/briefings/schedule/index html#clusterfuzz-
fuzzing-at-google-scale-17505 Black Hat Europe.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In NDSS, Vol. 19. 1-15.

FuzzBench Authors. 2021. FuzzBench. https://github.com/google/fuzzbench/
tree/d51da57¢c211af226dd7854085d9fc80070205738/fuzzers/symcc_afl.

Dirk Beyer. 2020. Competition on Software Testing. https://test-comp.sosy-
lab.org/2020/

Marcel Bhme, Valentin J. M. Manés, and Sang Kil Cha. 2020. Boosting Fuzzer
Efficiency: An Information Theoretic Perspective. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 678-689. https://doi.org/10.1145/
3368089.3409748

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-
based greybox fuzzing as markov chain. IEEE Transactions on Software Engineering
45,5 (2017), 489-506.

Joshua Bundt, Andrew Fasano, Brendan Dolan-Gavitt, William Robertson, and
Tim Leek. 2021. Evaluating Synthetic Bugs. Hong Kong (2021), 14.

Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. 2019. Grey-box
Concolic Testing on Binary Code. In Proceedings of the International Conference
on Software Engineering. 736-747.

DARPA. 2016. DARPA Cyber Grand Challenge Final Event Archive.
//www.lungetech.com/cgc-corpus/

Janez Demsar. 2006. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine Learning Research 7 (2006), 1-30.

Song Dokyung. 2020. Add an option to keep initial seed inputs around. https:
//reviews.llvm.org/D86577

Song Dokyung. 2020. Enable entropic by default.
D87476

Song Dokyung. 2020. Fix arguments of InsertPartOf/CopyPartOf calls
in CrossOver mutator. https://github.com/llvm/llvm- project/commit/
¢10e63677f5d20£18010{8{68c631ddc97546{7d

Song Dokyung. 2020. Link libFuzzer’s own interceptors when other compiler
runtimes are not linked. https://reviews.llvm.org/D83494

Song Dokyung. 2020. Scale energy assigned to each input based on
input execution time. https://github.com/llvm/llvm- project/commit/
5cdaddc7bad28fcd11307d4234¢5131f779alc6f

B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,
and R. Whelan. 2016. LAVA: Large-Scale Automated Vulnerability Addition. In
2016 IEEE Symposium on Security and Privacy (SP). 110-121. https://doi.org/10.
1109/SP.2016.15

Andrew Fasano. 2019. Rode0day: A Year of Bug-Finding Evaluations.

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++ :
Combining Incremental Steps of Fuzzing Research. In 14th {USENIX} Workshop on
Offensive Technologies ({WOOT} 20). https://www.usenix.org/conference/woot20/
presentation/fioraldi

FuzzBench. 2021. The report — FuzzBench. https://google.github.io/fuzzbench/
reference/report/

Sijia Geng, Yuekang Li, Yunlan Du, Jun Xu, Yang Liu, and Bing Mao. 2020. An
Empirical Study on Benchmarks of Artificial Software Vulnerabilities. (March
2020). https://arxiv.org/abs/2003.09561v1

http:

https://reviews.llvm.org/

1403

[25

[26

[27

[28

[29

(32

[33

[34

@
i

[36

[37

[38

[39

=
=

~
fla’

=
N

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Google. 2017. Fuzzer Test Suite. Google. https://github.com/google/fuzzer-test-
suite

Google. 2021. Automate your workflow from idea to production. https://github.
com/google/fuzzing/actions

Google. 2021. Coverage Guided Fuzz Testing. https://docs.gitlab.com/ee/user/
application_security/coverage_fuzzing/

Google. 2021. fuzzing - Google Scholar. https://scholar.google.com/scholar?q=
fuzzing&hl=en&as_sdt=0%2C5&as_ylo=2014&as_yhi=

Emre Giiler, Philipp Gérz, Elia Geretto, Andrea Jemmett, Sebastian Osterlund, Her-
bert Bos, Cristiano Giuffrida, and Thorsten Holz. 2020. Cupid : Automatic Fuzzer
Selection for Collaborative Fuzzing. In Annual Computer Security Applications
Conference. ACM, Austin USA, 360-372. https://doi.org/10.1145/3427228.3427266
Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Proceedings of the ACM on Measurement and Analysis of

Cnmputinlg Systems 4, 3 (Nov. 2020), 49:1-49:29. https://doi.org/10.1145/3428334
George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, Toronto Canada, 2123-2138.
https://doi.org/10.1145/3243734.3243804

Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen,
Chenyang Lyu, Chunming Wu, Raheem Beyah, Peng Cheng, Kangjie Lu, and
Ting Wang. 2020. UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform
for Evaluating Fuzzers. arXiv:2010.01785 [cs] (Oct. 2020). arXiv:2010.01785 [cs]
http://arxiv.org/abs/2010.01785

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. {MOPT }: Optimized mutation scheduling for fuzzers. In
28th {USENIX} Security Symposium ({USENIX} Security 19). 1949-1966.
Jonathan Metzman and Asra Ali. 2021. Developers are Buzzing on Fuzzing.
https://thenewstack.io/developers-are-buzzing-on-fuzzing/

Jonathan Metzman, Abhishek Arya, and Laszl6 Szekeres. 2020. FuzzBench: Fuzzer
Benchmarking as a Service. https://security.googleblog.com/2020/03/fuzzbench-
fuzzer-benchmarking-as-service.html

Sebastian Poeplau and Aurélien Francillon. 2021. SymQEMU: Compilation-Based
Symbolic Execution for Binaries. In Proceedings 2021 Network and Distributed
System Security Symposium. Internet Society, Virtual. https://doi.org/10.14722/
ndss.2021.24118

Kostya Serebryany. 2015. libFuzzer - a Library for Coverage-Guided Fuzz Testing.
https://llvm.org/docs/LibFuzzer.html

Kostya Serebryany. 2021. Fuzzer Test Suite. https://github.com/google/fuzzer-
test-suite.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceed-
ings of the 2012 USENIX Conference on Annual Technical Conference (USENIX
ATC’12). USENIX Association, USA, 28.

Paras Shah. 2021. Continuous Fuzzing with Go at Dgraph. https://dgraph.io/
blog/post/continuous-fuzzing-with-go/

L. Simon and A. Verma. 2020. Improving Fuzzing through Controlled Compilation.
In 2020 IEEE European Symposium on Security and Privacy (EuroS P). 34-52.
https://doi.org/10.1109/EuroSP48549.2020.00011

Adith Sudhakar, Mohit Arora, and Souheil Moghnie. 2021. Focus on Fuzzing:
Fuzzing Within the SDLC. https://safecode.org/focus-on-fuzzing-fuzzing-
within-the-sdlc/

Robert Swiecki. 2015. Honggfuzz. https://honggfuzz.dev/

Robert Swiecki. 2020. Improving honggfuzz for fuzzbench part 3.
//groups.google.com/g/fuzzing- discuss/c/rv59P0svXjI

Michat Zalewski. 2014. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/
Michat Zalewski. 2014. Fuzzing with Afl-Fuzz — AFL 2.53b Documentation.
https://afl-1.readthedocs.io/en/latest/fuzzing.html

Andreas Zeller. 2019. Andreas Zeller’s Old Blog: When Results Are All That
Matters: Consequences. https://andreas-zeller.blogspot.com/2019/10/when-
results-are-all-that-matters.html

Andreas Zeller. 2019. Andreas Zeller’s Old Blog: When Results Are All That
Matters: The Case of the Angora Fuzzer. https://andreas-zeller.blogspot.com/
2019/10/when-results-are-all-that-matters-case. html

https:

http://www.sigplan.org/Resources/EmpiricalEvaluation/
http://www.sigplan.org/Resources/EmpiricalEvaluation/
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://www.blackhat.com/eu-19/briefings/schedule/index.html#clusterfuzz-fuzzing-at-google-scale-17505
https://www.blackhat.com/eu-19/briefings/schedule/index.html#clusterfuzz-fuzzing-at-google-scale-17505
https://github.com/google/fuzzbench/tree/d51da57c211af226dd7854085d9fc80070205738/fuzzers/symcc_afl
https://github.com/google/fuzzbench/tree/d51da57c211af226dd7854085d9fc80070205738/fuzzers/symcc_afl
https://test-comp.sosy-lab.org/2020/
https://test-comp.sosy-lab.org/2020/
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3368089.3409748
http://www.lungetech.com/cgc-corpus/
http://www.lungetech.com/cgc-corpus/
https://reviews.llvm.org/D86577
https://reviews.llvm.org/D86577
https://reviews.llvm.org/D87476
https://reviews.llvm.org/D87476
https://github.com/llvm/llvm-project/commit/c10e63677f5d20f18010f8f68c631ddc97546f7d
https://github.com/llvm/llvm-project/commit/c10e63677f5d20f18010f8f68c631ddc97546f7d
https://reviews.llvm.org/D83494
https://github.com/llvm/llvm-project/commit/5cda4dc7b4d28fcd11307d4234c513ff779a1c6f
https://github.com/llvm/llvm-project/commit/5cda4dc7b4d28fcd11307d4234c513ff779a1c6f
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://google.github.io/fuzzbench/reference/report/
https://google.github.io/fuzzbench/reference/report/
https://arxiv.org/abs/2003.09561v1
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzing/actions
https://github.com/google/fuzzing/actions
https://docs.gitlab.com/ee/user/application_security/coverage_fuzzing/
https://docs.gitlab.com/ee/user/application_security/coverage_fuzzing/
https://scholar.google.com/scholar?q=fuzzing&hl=en&as_sdt=0%2C5&as_ylo=2014&as_yhi=
https://scholar.google.com/scholar?q=fuzzing&hl=en&as_sdt=0%2C5&as_ylo=2014&as_yhi=
https://doi.org/10.1145/3427228.3427266
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3243734.3243804
https://arxiv.org/abs/2010.01785
http://arxiv.org/abs/2010.01785
https://thenewstack.io/developers-are-buzzing-on-fuzzing/
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://doi.org/10.14722/ndss.2021.24118
https://doi.org/10.14722/ndss.2021.24118
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://dgraph.io/blog/post/continuous-fuzzing-with-go/
https://dgraph.io/blog/post/continuous-fuzzing-with-go/
https://doi.org/10.1109/EuroSP48549.2020.00011
https://safecode.org/focus-on-fuzzing-fuzzing-within-the-sdlc/
https://safecode.org/focus-on-fuzzing-fuzzing-within-the-sdlc/
https://honggfuzz.dev/
https://groups.google.com/g/fuzzing-discuss/c/rv59P0svXjI
https://groups.google.com/g/fuzzing-discuss/c/rv59P0svXjI
https://lcamtuf.coredump.cx/afl/
https://afl-1.readthedocs.io/en/latest/fuzzing.html
https://andreas-zeller.blogspot.com/2019/10/when-results-are-all-that-matters.html
https://andreas-zeller.blogspot.com/2019/10/when-results-are-all-that-matters.html
https://andreas-zeller.blogspot.com/2019/10/when-results-are-all-that-matters-case.html
https://andreas-zeller.blogspot.com/2019/10/when-results-are-all-that-matters-case.html

	Abstract
	1 Introduction
	2 Benchmark Methodology
	2.1 Real-World Benchmark Programs
	2.2 Metrics
	2.3 Reproducibility and Version Tracking
	2.4 Reporting and Statistical Tests

	3 Platform design
	4 The FuzzBench service
	5 Evaluation of popular fuzzers
	5.1 UNIFUZZ Comparison
	5.2 Magma Comparison

	6 Evaluation of methodology and experiment parameters
	7 Case studies of tool development with FuzzBench
	7.1 AFL Configuration Insights
	7.2 Libfuzzer Improvements
	7.3 AFL++ Improvements
	7.4 Honggfuzz Improvements

	8 Related work
	9 Conclusion
	References

