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1. Abstract 

Various methods for obtaining high resolution time stamping on Windows have been 

described. The most promising implementations have been proposed by W. Nathaniel 

Mills: "When microseconds matter" (2002) and Johan Nilsson: "Implement a 

Continuously Updating, High-Resolution Time Provider for Windows" (2004). 

Suggested auxiliary initial reading: Keith Wansbrough: "Obtaining Accurate Timestamps 

under Windows XP" (2003), msdn: "Guidelines for Providing Multimedia Timer Support", 

and Chuck Walbourn: "Game Timing and Multicore Processors" (2005). 

A substantial amount of time and effort has been spent on the attempt to get a proper 

high resolution time service implemented for Windows. However, the performance of 

these implementations is still not satisfactory. The complexity arises from the variety of 

Windows versions running on an even greater variety of hardware platforms. 

Proper implementation of an accurate time service for Windows will be discussed and 

diagnosed within the Windows Timestamp Project. Test code will be released to prove 

functionality on a broader range of hardware platforms. Besides the timestamp 

functionality, high resolution (microsecond) timer functions are also discussed. 

2. Resources 

Time resources on Windows are mostly interrupt controlled entities. Therefore, they show 

a certain granularity. Typical interrupt periods are 10 ms to 20 ms. The interrupt period 

can also be set to be 1 ms or even a little below 1 ms by using API calls to 

NTSetTimerResolution or timeBeginPeriod. However, for several reasons they can and 

shall never be set to anything near the 1 μs regime. The best resolution to observe by 

means of Windows time services is therefore in the 1 ms regime.  

The best resource for retrieving the system time is the GetSystemTimeAsFileTime API. It 

is a fast access API that is able to hold sufficiently accurate (100 ns units) values in its 

arguments. The alternative API is GetSystemTime, which is 20 times slower, has double 

the structure size, and does not provide a well-suited data format.  

An interrupt independent system resource is used to extend the accuracy into the 

microsecond regime i.e., the performance counter. The performance counter API 

provides the asynchronous calls QueryPerformanceCounter and 

QueryPerformanceFrequency. A virtual counter delivers a performance counter value, 

which increases by a performance counter frequency. The frequency is typically a few 

MHz and can therefore open the microsecond regime. The counter parameters are 

typically backed by a physical counter, but they are not necessarily independent of the 

version of the operating system. A hardware platform can deliver different performance 

frequencies when running Windows 7 or Windows Vista, for example. 

http://web.archive.org/web/20111105021250/http:/www.ibm.com/developerworks/library/i-seconds/
http://msdn.microsoft.com/en-us/magazine/cc163996.aspx
http://msdn.microsoft.com/en-us/magazine/cc163996.aspx
http://www.lochan.org/2005/keith-cl/useful/win32time.html
http://www.lochan.org/2005/keith-cl/useful/win32time.html
http://web.archive.org/web/20140213124142/http:/msdn.microsoft.com/en-us/windows/hardware/gg463347.aspx
http://msdn.microsoft.com/en-us/library/ee417693(VS.85).aspx
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The Sleep() API and the WaitableTimer API are further timing resources in the context of 

this project. Their functionality and their habit also need to be looked at. 

2.1. GetSystemTimeAsFileTime API 

The GetSystemTimeAsFileTime API provides access to the system time in file time 

format. It is stated as 

void WINAPI GetSystemTimeAsFileTime(OUT LPFILETIME lpSystemTimeAsFileTime); 

with its argument of type 

typedef struct _FILETIME { 

   DWORD dwLowDateTime; 

   DWORD dwHighDateTime; 

} FILETIME; 

A 64-bit FILETIME structure receives the system time as FILETIME in 100 ns units, which 

have been expired since Jan 1, 1601. After some 400 years about 1.28×1010 seconds or 

1.28×1017 100 ns slices have been accumulated. The 64-bit value can hold almost 

2×1019 100 ns time slices. The remaining time before this scheme wraps would be about 

58,000 years from now. The call to GetSystemTimeAsFileTime typically requires 10 ns to 

15 ns. 

In order to investigate the real accuracy of the system time provided by this API, the 

granularity that comes along with the time values needs to be discussed. In other words: 

How often is the system time updated? A first estimate is provided by the hidden API 

call: 

NTSTATUS NtQueryTimerResolution( 

  OUT PULONGMinimumResolution, 

  OUT PULONGMaximumResolution, 

  OUT PULONGActualResolution); 

NtQueryTimerResolution is exported by the native Windows NT library NTDLL.DLL. The 

ActualResolution reported by this call represents the update period of the system time in 

100 ns units, which obviously do not necessarily match the interrupt period. The value 

depends on the hardware platform. Common hardware platforms report 156,250 or 

100,144 for ActualResolution; older platforms may report even larger numbers. This is 

one of the heartbeats controlling the system. The MinimumResolution and the 

ActualResolution are relevant for the multimedia timer configuration. Two common 

hardware platform configurations are discussed here to highlight the details to be dealt 

with: 

 Platform configuration A 

- MinimumResolution: 156,250 

- MaximumResolution: 10,000 

- ActualResolution: 156,250 

 Platform configuration B 

- MinimumResolution: 100,144 

- MaximumResolution: 10,032 

- ActualResolution: 100,144 
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Platform A simply has 64 timer interrupts per second (64 x 156,250 x 100 ns = 1 s) but 

when looking at platform B the difficulties become more obvious: 99.856 interrupts per 

second? Answer: The full second interrupt is not available on all platforms. 

However, the system time may be updated at these interrupt events. An API call to 

BOOL WINAPI GetSystemTimeAdjustment( 

  OUT PDWORD lpTimeAdjustment, 

  OUT PDWORD lpTimeIncrement, 

  OUT PBOOL lpTimeAdjustmentDisabled); 

will disclose the time adjustment and time increment values. The actual purpose of this 

call is to query the status of the system time correction, which is active when 

TimeAdjustmentDisabled is FALSE. When TimeAdjustmentDisabled is TRUE, no 

adjustment takes place and TimeAdjustemt and TimeIncrement are equal and do report 

exactly what was read as ActualResolution before. For a platform A type system the call 

will report that the system time has incrementally increased by 156,250 100 ns units 

every 156,250 100 ns units. Within this description, this is considered the granularity of 

the system time. 

Knowing the system time granularity raises doubts about its accuracy. Certainly, the 

TimeIncrement will be applied, thus changes of the system time will always be one 

TimeIncrement, but does the interrupt period or any multiple of it always match the time 

increment? 

Even when the standard setting of ActualResolution corresponds to the 

MinimumResolution, the ActualResolution may have a setting different from 

MinimumResolution (see table below). In fact, it may be configured to values in the 

range from MinimumResolution to MaximumResolution. The ActualResolution determines 

the interrupt period of the system. That is the period after which the timer generates an 

interrupt to let the system react. The ActualResolution can be set by using the API call 

NTSTATUS NtSetTimerResolution( 

  IN ULONG RequestedResolution, 

  IN BOOLEAN Set, 

  OUT PULONG ActualResolution); 

or via the multimedia timer interface 

MMRESULT timeBeginPeriod(UINT uPeriod); 

with the value of uPeriod derived from the range allowed by 

MMRESULT timeGetDevCaps(LPTIMECAPS ptc, UINT cbtc ); 

which fills the structure 

typedef struct { 

 UINT wPeriodMin; 

   UINT wPeriodMax; 

} TIMECAPS; 

Typical values are 1 ms for wPeriodMin and 1,000,000 ms for wPeriodMax. The 1,000 s 

period for wPeriodMax is somewhat meaningless within the context of this description. 

However, the possibility of setting the timer resolution to 1 ms requires a more detailed 

investigation. When the multimedia timer interface is used to set the multimedia timer to 
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wPeriodMin, the ActualResolution received by a call to NtQueryTimerResolution will show 

a new value. For the two platform configurations discussed, the examples are as follows: 

Platform configuration A B 

MinimumResolution 156,250 100,144 

MaximumResolution 10,000 10,032 

ActualResolution 156,250 100,144 

ActualResolution varies according to the varying multimedia timer periods uPeriod 

applied by the timeBeginPeriod() API: 

Platform configuration A B uPeriod 

ActualResolution 9,766 10,032 1 ms 

ActualResolution 19,532 20,064 2 ms 

ActualResolution 19,532 30,096 3 ms 

ActualResolution 39,063 39,952 4 ms 

ActualResolution 39,063 49,984 5 ms 

ActualResolution 39,063 60,016 6 ms 

ActualResolution 39,063 70,048 7 ms 

ActualResolution 156,250 80,080 8 ms 

ActualResolution 156,250 89,936 9 ms 

ActualResolution 156,250 100,144 10 ms 

ActualResolution 156,250 100,144 11 ms 

ActualResolution 156,250 100,144 12 ms 

… … … … 

ActualResolution 156,250 100,144 100 ms 

This list shows the supported interrupt periods for platforms of type A and B in 100 ns 

units. Platform A only supports four different interrupt heartbeat frequencies, while 

platform B has a better approximation to the desired period. The specific numbers are 

relevant for the procedures described here and thus need a detailed interpretation. 

Note: TimeIncrement provided by GetSystemTimeAdjustment and ActualResolution 

provided by NtQueryTimerResolution are not necessarily identical. Platform A operates 

with an ACPI PM timer and platform B operates with a PIT timer. More modern platforms 

do not show "unsupported" values of uPeriod.  

2.1.1. ActualResolution on Platform Type A 

The timer intervals are given with 100 ns accuracy in the last digit. Since the true 

ActualResolution cannot be expressed correctly, rather than reporting the true 

ActualResolution of 0.9765625 ms, the call to NtQueryTimerResolution reports the 

rounded value of 0.9766 ms. The other values are also rounded (shall be 1.953125 ms 

and 3.90625 ms respectively). 
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A quick test using the Sleep(dwMilliseconds) API confirms this assumption: 

Sleep(1) = 1.9531 ms = 2 x 0.9765625 ms 

Sleep(2) = 2.9295 ms = 3 x 0.9765625 ms 

Sleep(3) = 3.9062 ms = 4 x 0.9765625 ms 

The Sleep() will only return when n x ActualResolution exceeds the desired duration. The 

required accuracy for the interval specification would have to extend to 0.5 ns, in other 

words show the 100 ps digit. The number would be 156,250,000 for the 

MinimumResolution and 9,765,625 for the MaximumResolution (in 100 ps or 10-10 s 

units). 

Note: Sleep(1) measurements (10000, with 100 ahead) result in a mean delay of 

1953.163824 μs. This is 2.0000397 times the interrupt time slice (should have been 

1953.125 μs, so the measurement was off by 0.04 μs). 

2.1.2. ActualResolution on Platform Type B 

An interrupt timer period of 1.0032 ms will accumulate 10.032 ms after 10 interrupts and 

change the system time by 10.0144 ms. A time change of 10.0144 ms after 10.032 ms 

means that the time is behind by 176 μs. At the 57th of such periods, the deviation has 

accumulated to 1.0032 ms, which is exactly one timer interrupt period and the time will 

be updated after just 9 interrupts (9.0288 ms). This way the time is updated by 10.0144  

ms 56 times after 10.032 ms and one time after 9.0288 ms, which is a total elapsed time 

of 570.8208 ms with an adjustment of 57*10.0144 ms = 570.8208 ms. This corresponds 

to a total number of interrupts of 569 (57*100,144 = 569*10,032). As a result, the time 

will lose 176 μs for each of the 56 consecutive system time updates and then gain 9.856 

ms in the 57th interrupt interval. 

2.1.3. Changes of System File Time 

The system time changes according to the described mechanisms after a certain period 

of time. Additional time changes do happen if time corrections are caused by periodic 

time changes, which are continuously applied to the system time over a longer period of 

time to adjust to an external time reference. The occurrence and the parameters of this 

adjustment can be gathered by a call to GetSystemTimeAdjustment. Sudden time 

changes, for example, introduced by using the clock GUI or SetSystemTime(…), are not 

announced or predictable; they happen spontaneously. 

Changes of the system time will have no influence on the expiration of Sleep periods or 

waitable timer periods. The actual change will be taken over by the routines here. 

Nevertheless, system time changes are discontinuities in time, whether they are sudden 

or spread over a longer period of time. What is an accurate time stamp supposed to 

deliver when the system inserts several hundred seconds at an interval of 1.0000032 s? 

The system will assume that the seconds are that long (elongated) for the time being. 

This can be accomplished by the temporary adaptation of the performance counter 

frequency to the applied granular time correction. 
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2.1.4. Windows 7/8/8.1/10 and Server 2008 R2/2012/2012 R2/2016 

Time services on windows have undergone changes with any new version of Windows. 

Considerable changes are to be reported beyond VISTA and Server 2008. The 

synchronous progress in hardware and software development requires the software to 

stay compatible with a whole variety of hardware platforms. On the other hand new 

hardware enables the software to conquer better performance. Today's hardware 

provides the High Precision Event Timer (HPET) and an invariant Time Stamp Counter 

(TSC). The variety of timers is described in "Guidelines For Providing Multimedia Timer 

Support". The "IA-PC HPET Specification" is now more than 10 years old and some of the 

goals have not yet been reached (e.g. aperiodic interrupts). While 

QueryPerformanceCounter benefited using the HPET/TSC when compared to ACPI PM 

timer, these days the HPET is outdated by the invariant TSC for many applications. 

However, the typical HPET signature (TimeIncrement of the function 

GetSystemTimeAdjustment() and MinimumResolution of the function 

NtQueryTimerResolution() are 156001) disappeared with Windows 8.1. Windows 8.1 

goes back to the roots; it goes back to 156250. The TSC frequency is calibrated against 

HPET periods to finally get proper timekeeping. 

An existing invariant TSC influences the behavior of GetSystemTimeAsFileTime() 

noticeable. The influence to the functions QueryPerformanceCounter() and 

QueryPerformanceFrequency() is described in sections 2.4.3. and 2.4.4. Windows 8 

introduces the function GetSystemTimePreciseAsFileTime() "with the highest possible 

level of precision (<1us)." This seems the counterpart to the linux gettimeofday() 

function. 

2.1.4.1. Resolution, Granularity, and Accuracy of System Time 

Since Windows 7, the operating system runs tests on the underlying hardware to see 

which hardware is best used for timekeeping. When the processors Time Stamp Counter 

(TSC) is suitable, the operating system uses the TSC for timekeeping. If the TSC cannot 

be used for timekeeping the operating system reverts to the High Precision Event Timer 

(HPET). If that does not exist it reverts to the ACPI PM timer. For performance reasons it 

shall be noted that HPET and ACPI PM timer cause IPC overhead, while the use of the 

TSC does not. The evolution of TSC shows a variety of capabilities: 

 Constant: The TSC does not change with CPU frequency changes, however it does 

change on C state transitions. 

 Invariant: The TSC increments at a constant rate in all ACPI P-, C- and T-states. 

 Nonstop: The TSC has the properties of both Constant and Invariant TSC. 

Details of the TSC capabilities are described in "Intel® 64 and IA-32 Architectures 

Software Developer’s Manual". Chapter 16.12.1 of this documentation releases the key 

for using the TSC for wall clock timer services:  

"The time stamp counter in newer processors may support an enhancement, referred to 

as invariant TSC. Processor’s support for invariant TSC is indicated by 

CPUID.80000007H:EDX[8].  

The invariant TSC will run at a constant rate in all ACPI P-, C--, and T-states. This is the 

architectural behavior moving forward. On processors with invariant TSC support, the OS 

http://msdn.microsoft.com/en-us/windows/hardware/gg463347.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463347.aspx
http://web.archive.org/web/20070315153153/http:/www.intel.com/hardwaredesign/hpetspec_1.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/hh706895(v=vs.85).aspx
http://download.intel.com/design/processor/manuals/253668.pdf
http://download.intel.com/design/processor/manuals/253668.pdf
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may use the TSC for wall clock timer services (instead of ACPI or HPET timers). TSC 

reads are much more efficient and do not incur the overhead associated with a ring 

transition or access to a platform resource." 

An invariant TSC enables QueryPerformanceCounter(), QueryPerformanceFrequency(), 

and GetSystemTimeAsFileTime() to be served by the same hardware. Deviations, as 

described in 2.4.3 are non existing when the performance counter values and the wall 

clock are supported by the same counter (TSC). 

More information can be obtained in "Intel 64® and IA-32 Architectures Software 

Developer's Manual, Volume 3B: System Programming Guide, Part 2". 

Polling system time changes by repeated call of GetSystemTimeAsFileTime() discloses a 

new behavior on Windows 8: Examples given in 2.1.1. and 2.1.2. are typical timekeeping 

schemes for systems running with a ACPI PM timer a PIT timer respectively. System time 

changes occurred at some regular base. This is not the case on Windows 8; a whole 

bunch of varying file time increments is observed when polling on file time transition. A 

truly periodic cycle can only be approximated by a "mean increment". However, this 

mean increment matches the result given by ActualResolution. Despite these little 

hiccups, resolution, granularity, and accuracy of GetSystemTimeAsFileTime() are 

comparable to earlier Windows versions. 

2.1.4.2. Desktop Applications: GetSystemTimePreciseAsFileTime() 

This new Windows 8 API is restricted to desktop applications. 
 

 VOID WINAPI GetSystemTimePreciseAsFileTime( 

_Out_ LPFILETIME lpSystemTimeAsFileTime); 

GetSystemTimePreciseAsFileTime() uses the performance counter to achieve the 

microsecond precision. Depending on the hardware platform and Windows version, a call 

to QueryPerformanceCounter may be expensive or not (HPET, ACPI PM timer, or TSC, 

see "MSDN: Acquiring high-resolution time stamps."). Consecutive calls may return the 

same result. The call time is less than the smallest increment of the system time. The 

granularity is in the sub-microsecond regime. The function may be used for time 

measurements but some care has to be taken: Time differences may be ZERO. 

The function shall also be used with care when a system time adjustment is active. 

Current Windows versions treat the performance counter frequency as a constant. The 

high resolution of GetSystemTimePreciseAsFileTime() is derived from the performance 

counter value at the time of the call and the performance counter frequency. However, 

the performance counter frequency should be corrected during system time adjustments 

to adapt to the modified progress in time. Current Windows versions don't do this. The 

obtained microsecond part may be severely affected when system time adjustments are 

active. Seconds may consist of more or less than 1.000.000 microseconds. Microsoft may 

or not fix this in one of the next updates/versions. 

GetSystemTimePreciseAsFileTime() works on all platforms. 

 

As of Windows 10 (Build 10240), the inaccuracy of GetSystemTimePreciseAsFileTime() 

during system time adjustments persists. 

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
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2.1.4.3. Timer Periods with Invariant TSC 

Using the processors invariant time stamp counter for timekeeping requires a calibration 

of timer periods. The TSC is used as a measure for the progress in time. However, the 

periodic update of the system time is still done by timer hardware because the TSC does 

not produce periodic events. Such periodic event may be generated by the HPET. 

Querying the timer resolutions on such a platform as described in section 2.1 will produce 

a pattern like this: 

 

ActualResolution uPeriod 

1,0007 1 ms 

2,0001 2 ms 

3,0008 3 ms 

4,0002 4 ms 

5,0009 5 ms 

6,0003 6 ms 

7,0010 7 ms 

8,0005 8 ms 

9,0012 9 ms 

10,0006 10 ms 

11,0000 11 ms 

12,0007 12 ms 

13,0001 13 ms 

14,0008 14 ms 

15,0003 15 ms 

15,6351 16 ms 

 

The values of ActualResolution are accompanied by small offsets which may vary from 

boot to boot but they stay constant during operation. This clearly indicates that the timer 

periods are calibrated during boot time. Consequently, system time updates are done a 

those periods with a mean progress of ActualResolution.  

The calibration of the performance counter frequency during boot is described in section 

2.4. The tiny deviations seen in the list above are a result of the calibration accuracy. 

Again: The TSC frequency is calibrated against HPET timer periods. This is to be done in 

a reasonable short time to not extend the boot time too much. The remaining deviations 

are small but noticeable (e.g. 1.2 µs in 9,0012 for a 9 ms period corresponds to 

840ppm!).      

2.2. The Sleep API 

The Sleep function suspends the execution of the current thread for a specified interval. 

VOID Sleep(DWORD dwMilliseconds); 

This would indeed be a very useful function if it were doing what it is supposed to do. 

Unfortunately, a detailed view discloses some artifacts, some of which are helpful, and 

others that are not. The Sleep() function is backed up by the system’s interrupt services. 

As described in section 2.1., the interrupt period can be configured to some extent. This 



 9 

has a direct impact on Sleep(). The call to Sleep() passes the parameter dwMilliseconds 

to the system and expects the function to return after dwMilliseconds. In practice, the 

Sleep() only returns when two conditions are met: Firstly, the requested delay must be 

expired and secondly an interrupt has occurred (the test to see if the requested delay 

has expired is only done with an interrupt). A simple Sleep(1) call may therefore have a 

number of different results. The results also depend on the time at which the call was 

made with respect to the interrupt period phase. 

Say the ActualResolution is set to 156,250, the interrupt heartbeat of the system will run 

at 15.625 ms periods or 64 Hz and a call to Sleep is made with a desired delay of 1 ms. 

Two scenarios are to be looked at:  

 The call was made < 1 ms (ΔT) ahead of the next interrupt. The next interrupt will 

not confirm that the desired period of time has expired. Only the following interrupt 

will cause the call to return. The resulting sleep delay will be ΔT + 15.625 ms. 

 The call was made >= 1 ms (ΔT) ahead of the next interrupt. The next interrupt will 

force the call to return. The resulting sleep delay will be ΔT. 

The observed delay heavily depends on the time at which the call was made. This 

matters particularly when the desired delay is shorter than the ActualResolution. 

However, when the ActualResolution is set to MaximumResolution, the system runs at its 

maximum interrupt frequency and the deviations are in the order of one interrupt period. 

This behavior can be used to synchronize code with the interrupt period in an easy way 

by simply calling two or more consecutive sleeps. Regardless of what ΔT is, the first will 

end at the time of an interrupt. Consequently, the following sleep call will start at the 

interrupt time (or at least so close to it that the system will assume that it happened at 

the same time). As a result, a ΔT = 0 applies and the sleep will return when N x 

ActualResolution becomes larger than the desired period. Right after the return of a sleep 

the system has just processed an interrupt. Conditional latency may be on board due to a 

priority and/or task/process switching delay or due to interrupt handler CPU capture 

reasons. Typical latencies of a few μs can be observed with very little implementation 

effort. 

A special case is the call Sleep(0). It looks meaningless, but it is a very powerful tool 

since it relinquishes the reminder of the thread’s time slice. That means that other 

threads of equal priority level will take over when ready to run. When a number of 

threads are running at the same priority level and all of them are very responsive, all of 

them will make frequent calls to Sleep(0) whenever they can afford it. As a result, a task 

switch can be forced to happen in just a few μs. 

2.3. The WaitableTimer API 

Another important mechanism for performing timed operations is provided by the 

waitable timer interface: 

 HANDLE WINAPI CreateWaitableTimer( 

   IN LPSECURITY_ATTRIBUTES lpTimerAttributes, 

   IN BOOL bManualReset, 

   IN LPCTSTR lpTimerName); 
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The returned handle is used to setup a timer function: 

 BOOL WINAPI SetWaitableTimer( 

   IN HANDLE hTimer, 

   IN const LARGE_INTEGER* pDueTime, 

   IN LONG lPeriod, 

   IN PTIMERAPCROUTINE pfnCompletionRoutine, 

   IN LPVOID lpArgToCompletionRoutine, 

   IN BOOL fResume); 

 

This tool can be used in a variety of ways. Below are just a few things that need to be 

mentioned within the scope of this description: 

 The LARGE_INTEGER structure DueTime specifies when the timer is to be set signaled 

for the first time. This is basically a file time, but formatted as LARGE_INTEGER to 

allow signed values. The sign is used by the system to allow input of absolute times 

(positive) or relative times (negative). The system time only changes in steps of 

TimeIncrement and the DueTime is only compared when an interrupt occurs. This 

effectively means that the timer can only reach a signaled state for the first time 

when a system time transition occurs. 

 The Period parameter specifies whether the timer will be a single shot timer or a 

periodic timer. With Period = 0, the timer will only get signaled once when the system 

time has reached the DueTime. With Period > 0, the period specifies a timer period in 

ms, resulting in a timer heartbeat of Period ms. Similar to the Sleep, the periodic 

waitable timer will be set signaled when Period expires. But this is only tested when 

an interrupt occurs. Real cyclic periods can only be observed if Period is a multiple of 

ActualResolution (the interrupt period) or when the overshoot remains constant. An 

example for the first case can be easily described for a platform configuration of type 

A. A timer Period of 1,000 ms hosts exactly 1,024 interrupt intervals of 0.9765625 

ms. Such a periodic timer will be truly cyclic. 

If, on such a platform, Period is setup to 995 ms, the timer will expire after 1,019 

interrupt periods, resulting in a delay of 995.1171875 ms. However, the waitable 

timer uses the system file time and those overshoots will show deviations when a 

Period hits a system time transition. In other words: A non-truly cyclic timer setup 

will suffer from a beat frequency with the system file time increment frequency. The 

detailed discussion of this behavior falls outside the scope of this description. 

Evidently, a truly cyclic timer interval can also be set up when the beat frequency 

stays in phase with the system file time update. A typical scenario can be described 

for a platform configuration B type system:  

Assuming the ActualResolution is set to MaximumResolution (10,032 100 ns units); 

the TimeIncrement (100,144 100 ns units) is not a multiple of the 

ActualResolution. In order to set up a truly cyclic timer, the least common multiple 

of 100,144 and 10,032 has to be found. The value of 5,708,208 suits this need 

here; it hosts 57 periods at MinimumResolution or 569 periods at ActualResolution. 

The first truly cyclic timer period is therefore 570.8208 ms. It will be setup by a 

Period value of 570 and will expire after 569 interrupt periods. At the time of 

expiration the system will have done 57 system time updates. More truly cyclic 

timer setups can be created at any multiple of 5,708,208 for this type of platform. 

(Example: Period= 1,141, the timer will expire after 1,138 interrupt periods or 

1141.6416 ms and the system time will have progressed by 114 x 10.0144 ms 

which is 1141.6416 ms too.) 
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 An optional asynchronous CompletionRoutine (APC) with an optional pointer to 

arguments ArgToCompletionRoutine can be passed to the timer. However, the calling 

thread needs to be in the alertable state to allow execution of the APC. The only 

advantage of the scheme with a completion routine is that this routine is 

automatically supplied with the systems FILETIME at which the timer was signaled. 

Calling the APC unfortunately results in a considerable extension of the observed 

cyclic interval. When the system file time is needed, it can be queried as described in 

2.1). The extra time required to do this is a tiny fraction (1/2,000) of the time added 

to the timer period by calling the APC. 

The expired (signaled) timer can be handled by means of an asynchronous procedure call 

(APC) or by means of a call to WaitForSingleObject, for example. According to the last 

point above, the former is useless when high accuracy is required. The latter suits the 

needs of the mechanisms described here much better. The API needs the handle of the 

object to wait for and allows specifying a timeout dwMilliseconds, which can be optionally 

set to INIFINTE. 

  DWORD WINAPI WaitForSingleObject( 

    IN HANDLE hHandle, 

    IN DWORD dwMilliseconds); 

Waitable timers synchronize to the rhythm of the system interrupt period 

(ActualResolution). This has to be kept in mind because it has severe implications to the 

system’s overall performance. All of the tasks waiting for a Sleep() or an object to reach 

signaled state will continue after the interrupt has occurred. The system’s load tends to 

reach peaks at interrupts. 

2.4. The QueryPerformanceCounter and QueryPerformanceFrequency API 

This API is backed by a virtual counter running at a "fixed" frequency started at boot 

time. The following two basic calls are used to explore the microsecond regime: 

QueryPerformanceCounter() and QueryPerformanceFrequency(). The counter values are 

derived from some hardware counter, which is platform dependent. However, the 

Windows version also influences the results by handling the counter in a version specific 

manner. Windows 7, in particular, has introduced a new way of supplying performance 

counter values. 

2.4.1. QueryPerformanceCounter 

The call to 

BOOL QueryPerformanceCounter(OUT LARGE_INTEGER *lpPerformanceCount); 

will update the content of the LARGE_INTEGER structure PerformanceCount with a count 

value. The count value is initialized to zero at boot time. 

2.4.2. QueryPerformanceFrequency 

The call to 

  BOOL QueryPerformanceFrequency(OUT LARGE_INTEGER *lpFrequency); 

will update the content of the LARGE_INTEGER structure PerformanceFrequency with a 

frequency value. The frequency is treated by the system as a constant. From Windows 
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7/Server 2008 R2 onwards the result of QueryPerformanceCounter() may be calibrated 

at boot time and may therefore return varying results. This depends on  the underlying 

hardware (see 2.1.4.1.), But QueryPerformanceCounter() never reports any changes of 

the frequency during operation; its result remains constant. The following chapter 

describes deviations on systems on which the underlying hardware neither provides an 

invariant TSC nor provides a HPET for time services. 

2.4.3. Performance of the Performance Counter 

The range in time that can be held by the LARGE_INTEGER structure PerformanceCount 

depends on the update rate or the Frequency at which the count will incrementally 

increase. Depending on the hardware platform, the counter may be an Intel 8245 at 

1,193,000 Hz or an ACPI Power Management Timer chip with an update frequency of 

3,579,545 Hz or even another source. A number of platforms do not have these timers at 

all; they mimic the timer by providing the CPU clock. As a result of the latter, the 

frequency can get into the GHz range. PerformanceCount.QuadPart (signed) will change 

sign after 263 increments. At a frequency of say 1GHz (109 s-1) such a system can run for 

about 290 years without reaching the sign bit. Even for multi-GHz platforms, there does 

not seem to be a serious limit.  

However, apart from the system’s treatment, the frequency cannot be considered as 

constant. Firstly, the frequency generating hardware will deviate from the specified value 

by an offset and secondly the frequency may vary (i.e., due to thermal drift). The impact 

of these deviations is not negligible. Oscillators do have tolerances in the range of a few 

ppm and would consequently introduce errors of a few μs/s in the measured time period. 

Within this description, the performance counter will be used to predict time intervals 

over a few seconds at accuracies better than 1μs. If an accuracy of 0.1 μs shall be 

reached after 10s, the frequency needs to be known to 0.01 ppm, which corresponds to 

0.035 Hz at a nominal frequency of 3,579,545 Hz. Obviously, that value is not provided 

by the system and needs to be calibrated. A first estimate of the true frequency can be 

gathered by querying two counter values at a certain (known) time apart from each 

other. The code snippet uses the API call 

  DWORD timeGetTime(VOID); 

and could look like this: 

DWORD ms_begin,ms_end; 

LARGE_INTEGER count_begin, count_end; 

double ticks_per_second; 

ms_begin = timeGetTime(); 

QueryPerformanceCounter(&count_begin); 

Sleep(1000); 

ms_end = timeGetTime(); 

QueryPerformanceCounter(&count_end); 

ticks_per_second = (double)(count_end−count_begin)/(ms_end−ms_begin); 

However, due to artifacts described in 2.2 timeGetTime() is accompanied by an 

inaccuracy of up to 2 ms; thus a Sleep(1,000) would give an accuracy for 

ticks_per_second of 0.002 (2,000ppm) at most. An accuracy of 2 ppm would be 

achievable when the Sleep extends to 1,000,000 ms or 1,000 s. In order to obtain 0.01 

ppm the Sleep would have to cover more than 55 hours. This is obviously a hopeless 

approach. It also averages temporary changes of the frequency and it will not forgive 

frequency changes due to thermal drifts.  
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The thermal drift of the performance counter frequency can be severe: 

 

  
Fig. 2.4.3.1: Calibrated Performance Counter Offset on ACPI PM timer hardware.  

This graph shows an older system with heavy thermal drift. At boot time (~8:00), the 

measured performance counter frequency is off by about 60 Hz. The system reports the 

performance counter frequency as 3,579,545 Hz. In fact, it is already at 3,579,605 Hz 

when it is "cold". After many hours of doing nothing, the system seems to reach a 

thermal equilibration. At ~14:00 (six hours after boot), the system was heavily loaded 

for about 45 minutes and consequently warmed up. The load has increased the main 

board temperature by 5 deg. (centigrade scale) only, but the influence to the measured 

performance counter frequency is quite considerable. It rose to an offset of almost 100 

Hz or a true performance counter frequency of 3,579,645 Hz. A 100 Hz offset at a base 

frequency of 3,579,605 Hz is a deviation of about 28 ppm or an error in time of 28μs/s. 

The calibration procedure used for the time stamp mechanism described here uses a 

repeated averaging period evaluation and reaches an accuracy of better than 0.05 ppm 

after about 100 s. Thermal drifts can be captured reasonably well and can be applied 

without much delay. (Note: The declaration of ticks_per_second as a 64-bit float in the 

code snippet above enables the ticks_per_second to hold a number with an accuracy of 

15 digits. A value of 3,579,545.12 Hz shows the 0.01 ppm accuracy in the last digit.) 

The use of QueryPerformanceCounter on multi-processor platforms implies that the call is 

made on the same processor all the time. The SetThreadAffinityMask API and its 

associated calls are used to ensure this. This rule only applies to systems using non 

invariant TSC hardware. The system analyzed in this chapter operates time services 

based on ACPI PM hardware. 

 

http://www.windowstimestamp.com/thermal_drift.png
http://www.windowstimestamp.com/thermal_drift.png
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2.4.4. Is the CPU Time Stamp Counter an Alternative? 

The RDTSC specifies a call to query the time stamp counter of the CPU. The advent of 

multi processor platforms or muti-core processors highly recommends not using RDTSC 

calls. Newer processors also support adaptive CPU frequency adjustments. This is just 

another reason to not use RDTSC calls for the purpose discussed here. Microsoft strongly 

discourages using the TSC for high-resolution timing ("Game Timing and Multicore 

Processors"). However, the introduction of invariant Time Stamp Counters has changed 

the situation. Starting with Windows 7/Server 2008 R2, Windows has a clear preference: 

Look for invariant TSCs, see whether they can be synchronized on different cores and use 

them for wall clock and performance counter whenever possible ("MSDN: Acquiring high-

resolution time stamps.").  

2.5. Discussion of Resources 

Some of the resources discussed show platform-specific behavior. They may deliver 

results depending on the hardware and/or on Windows version. The precision time 

functions developed within the windows timestamp project mainly rely on four function 

suites provided by the operating system: 

 GetSystemTimeAsFileTime 

 QueryPerformanceCounter with QueryPerformanceFrequency 

 Sleep 

 The WaitableTimer function together with WaitForSingleObject 

The complexity of the system time update with respect to the interrupt settings was 

explained and is understood. A complex automatic diagnosis of the system has to 

establish proper settings in order to obtain the desired accuracy. Particularly, the 

continuous calibration of the performance counter frequency described in 2.4.3 is of 

utmost importance to obtain a high accuracy. In addition, the proper interrupt period 

setting to obtain truly cyclic timer behavior (e.g., as described for example in 2.1) is very 

important. Another set of APIs is used to establish functionality: 

 Pipes 

 Events 

 Shared Memory 

 Mutexes (mutual exclusions) 

The description of these functions falls outside the scope of this description. 

 

 

 

 

 

 

http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
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3. Goals 

The Windows timestamp project provides the tools to enable access to time at 

microsecond resolution and accuracy. Furthermore, it provides timer functions at the 

same resolution and accuracy. The high accuracy and microsecond resolution are 

archived by synchronizing the system time with the performance counter. In fact, the 

performance counter is phase locked to the system time. A diagnosis determines the 

system’s specific parameters and establishes a "truly cyclic" timer interval for updating 

the phase of the performance counter value. The drift of the performance counter is 

permanently evaluated and taken into account while the system is running. 

The code runs in a real-time priority process providing time information. An auxiliary IO 

process builds the interface to an optional graphical user interface. Nonblocking IO 

enables proper performance testing and debugging. 

3.1. Time Support 

Any time providing mechanism needs time for its internals. Thus, the following question 

arises with respect to time: Is the time requested at the time the call is made or shall the 

time be reported at the time in which the call returns? This may sound strange, but 

considering the level of resolution and accuracy aimed for here, it matters. Example: 

 Something just happened and you want to assign a timestamp to it. In this case, you 

would want the time at the time you are asking for it. 

 You want to do something at a specific time. In this case, you would want the time at 

the time that you are getting the answer. 

Two time functions are implemented to fulfill these two needs: 

3.1.1. GetTimeStamp 

The function GetTimeStamp, declared as 

  void GetTimeStamp(TimeStamp_TYPE * TimeStamp); 

fills the argument pointed to by TimeStamp with numbers according to the TimeStamp 

structure definition: 

typedef struct { 

   long long Time; 

   long long ScheduledTime; 

   double RefinedPerformanceCounterFrequency; 

   long Accuracy; 

   int State; 

TimeStamp_TYPE;  

The 64-bit value Time represents the number of elapsed 100-nanosecond intervals 

elapsed since January 1, 1601. ScheduledDueTime reports the system file time at which 

the next reference time is scheduled for an attempt to update the phase. This value 

should primarily be used to verify the operation of the precision time mechanism. If 

ScheduledDueTime is noticeable behind the current system file time, the scheduled 

update of the time reference must have failed for a number of consecutive attempts. 

Finally the 32-bit value of Accuracy gives an estimate of the assumed accuracy (rms) of 

the time stamp in 1 ns units (error in ns/s). 
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RefinedPerformanceCounterFrequency returns the calibrated frequency of results from 

QueryPerformanceCounter(). GetTimeStamp() may be called at any time, thus it provides 

information about the state of the calibration. States can be the following:  

 TIME_STAMP_OFFLINE (1): Time calibration service is offline. 

 TIME_STAMP_AWAITING_CALIBRATION (2): Calibration service just started but time 

service not yet calibrated. 

 TIME_STAMP_CALIBRATED (3): Time service calibrated. 

 TIME_STAMP_LICENSE_EXPIRED (4): License expired during runtime. 

The call to GetTimeStamp is fast and it reports the time at the time it is called. As of 

version 2.01, this call is done in 10 to 20 ns on current platforms. 

3.1.2. Time 

A simple function is stated as 

  long long Time(void); 

The function is as fast as GetTimeStamp and it returns the time at the time the call 

returns. With the need for a few thousand CPU cycles, the call will require very few μs 

with the current hardware. The Time() can be used to compare times or to wait until a 

certain time is observed. The 64-bit return value represents the number of elapsed 100-

nanosecond intervals since January 1, 1601. 

3.2. Timer Support 

A set of timer functions: 

 Creating a timed named event: 

HANDLE CreateTimedEvent( 

  BOOL bManualReset,  

  LPCTSTR lpTimerName); 

bManualReset [in] 

If this parameter is TRUE, the function creates a manual reset event object, which 

requires the use of the ResetEvent function to set the event state to non-signaled. If 

this parameter is FALSE, the function creates an auto reset event object, and the 

system automatically resets the event state to non-signaled after a single waiting 

thread has been released. 

lpTimerName [in, optional] 

The name of the event object. The name is limited to MAX_PATH characters. Name 

comparison is case sensitive. If lpTimerName matches the name of an existing 

named event object, this function will fail. If lpTimerName is NULL, the event object 

is created without a name. If lpTimerName matches the name of another kind of 

object in the same namespace (such as an existing semaphore, mutex, waitable 

timer, job, or file-mapping object), the function fails and the GetLastError function 

returns ERROR_INVALID_HANDLE. This occurs because these objects share the 

same namespace. The name can have a "Global\" or "Local\" prefix to explicitly 

create the object in the global or session namespace. The remainder of the name 

can contain any character except the backslash character (\). For more information, 
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see Kernel Object Namespaces. Fast user switching is implemented using Terminal 

Services sessions. Kernel object names must follow the guidelines outlined for 

Terminal Services so that applications can support multiple users. The object can be 

created in a private namespace. For more information, see Object Namespaces. 

Return value 

If the function succeeds, the return value is a handle to the event object. If the 

named event object existed before the function call, the function returns NULL and 

GetLastError returns ERROR_ALREADY_EXISTS. If the function fails, the return value 

is NULL. To get extended error information, call GetLastError. 

 Setting the timed event with a DueTime in 100 ns units and an optional Period in 100 

ns units: 

int SetTimedEvent( 

  HANDLE hTimerEvent, 

  long long TimerDueTime, 

  long long TimerPeriod); 

hTimerEvent [in] 

A handle to a named timed event. The CreateTimedEvent() function returns this 

value. 

TimerDueTime [in] 

The time after which the state of the timer is to be set to signal, in 100 nanosecond 

intervals. Positive values indicate absolute time. Be sure to use a UTC-based 

absolute time since the system uses UTC-based time internally. Negative values 

indicate relative time. 

TimerPeriod [in] 

The period of the timer in 100ns intervals. If TimerPeriod is zero, the timer is 

signaled once. If TimerPeriod is greater than zero, the timer is periodic. A periodic 

timer automatically reactivates each time the period elapses, until the timer is 

canceled using the CancelTimedEvent function or reset using SetTimedEvent. If 

TimerPeriod is less than zero, the function fails. 

Return value 

If the function succeeds, the return value is nonzero. If the function fails, the return 

value is zero. To get extended error information, call GetLastError. 

 Canceling the timed event: 

int CancelTimedEvent(HANDLE hTimerEvent); 

hTimerEvent [in] 

A handle to a named timed event. The CreateTimedEvent() function returns this 

value. 

Return value 

If the function succeeds, the return value is nonzero. If the function fails, the return 

value is zero. To get extended error information, call GetLastError. 

 Opening a timed event: 
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HANDLE OpenTimedEvent(LPCTSTR lpTimerName); 

lpTimerName [in] 

The timed event name used when the timed event was created. 

Return value 

If the function succeeds, the return value is the handle to the named timed event. If 

the function fails, the return value is NULL. To get extended error information, call 

GetLastError. 

 Deleting the timed event: 

int DeleteTimedEvent(HANDLE hTimerEvent); 

hTimerEvent [in] 

A handle to a named timed event. The CreateTimedEvent() function returns this 

value. 

Return value 

If the function succeeds, the return value is nonzero. If the function fails, the return 

value is zero. To get extended error information, call GetLastError. 

These timer functions are based on timed events. The handle returned by 

CreateTimedEvent() is in fact a handle to a named event of which signaled state is 

supervised by a time service routine. Standard wait functions like WaitForSingleObject or 

WaitForMultipleObjects can be used to wait for the high resolution timer events. 

4. Implementation 

Only two hardware platforms were described here to highlight some of the problems to 

bear in mind when implementing reliable time services for Windows. Many more 

configurations need to be diagnosed to ensure platform independent functionality to a 

large extent. However, a flexible and automatic evaluation of hardware specific behavior 

may result in hardware independence.  

The implementation of all the above into a time service is done by careful separation into 

different processes and threads. The time critical parts are hosted by a process running 

at real-time priority class. Some of the threads inside this process are even running at 

time-critical priority level. In the case of a multi-processor or multi-core system, certain 

threads are assigned to a specific CPU/core. This is the Kernel and hosts the time service 

routines. For testing and debugging the Kernel process has some IO capabilities shared 

with the IO process. A later version may not need this additional functionality. The high 

priority class requires the Kernel process to run with administrator privileges. 

A second process hosts all kinds of less time-critical service threads. It shares some IO 

services with the Kernel process by means of piped IO between these two processes. 

Furthermore, it provides pipe services to the graphical user interface (GUI). 

The third process is a graphical user interface (GUI), which runs optionally and helps in 

the current stage of the development to get an insight into what is going on. 

The GUI and the IO process are development tools only. The only process that needs to 

run to access the time functions discussed here is the Kernel process. 
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4.1. The Real-time Priority Class Process: Kernel 

The Kernel is the heart of the time service described here. It provides the important link 

between the system file time and the performance counter value. The idea in this context 

is to provide data triplets of system file time, performance counter, and performance 

counter frequency. Knowing the performance counter value at a certain system file time 

allows the extrapolation of the system file time to the actual time by applying the 

performance counter value and the performance counter frequency. As discussed, the 

performance counter frequency is of insufficient accuracy; a refined performance counter 

frequency is supplied in format double (64-bit float). There is also some internal 

information which allows a refinement of the performance counter value itself (as a result 

of some self calibration). Thus, it is also represented in double (64-bit float) format. 

A typical result of such a data triplet could be: 

 int64 FileTime: 129,737,733,817,343,750 (some value captured on Feb. 15, 2012) 

 double PerformanceCounter: 20,918,865,472.23 

 double PerformanceCounterFrequency: 3,579,515.24 

This information is sufficient to establish time services. Querying the current performance 

counter value gives the difference to the value calculated to match the last captured file 

time. This difference is divided by the performance counter frequency and the result is 

the elapsed time since the last file time capture. This data triplet is, besides other 

parameters, written to a mutex protected shared memory section. Other 

processes/threads have access to this data triplet. As of version 2.02 the mutex scheme 

has been replaced by a read-copy-update (RCU) scheme to improve the performance.  

As described in sections 2.1 and 2.3, the important part is to get the file time updated 

correctly. It proves best to gather the data triplet exactly when the file time transits or 

just transited. Difficulties archiving this have been described for platform examples A and 

B. At startup, a complex diagnosis of the interrupt timing structure and file time 

update/transition structure is performed. This results in a timing scheme for updating the 

data triplet. The desired update period is in the range of 1 to 10 seconds. As discussed, 

the period duration influences the accuracy. Algorithms are looking for patterns and beat 

frequencies in the file time update and interrupt timing structure. As a result, a periodic 

timer is set up to run the data triplet generation and the calibration in parallel. Once 

exact ∆T file time periods occur, the true performance counter frequency can be 

measured and averaged over a number of consecutive measurements. A running average 

over the last n captures is maintained at all times to provide information about the true 

(calibrated) performance counter frequency. When the accuracy of the average reaches a 

certain quality, the phase locking of file time change and performance counter is 

considered as established and timestamp requests are accompanied by information about 

their accuracy. 

Running all of this at utmost priority ensures that there is very little overhead after an 

interrupt. Remember: Many processes/threads are waiting for interrupts. Therefore, 

systems have a workload peak at the occurrence of an interrupt. Even running at such 

priority settings, it is unavoidable to be influenced by the load of other processes. 

However, the accuracy of this scheme easily stays below a few microseconds, even with 

heavy load on the system. 
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The routines Time() and GetTimeStamp() are applying the extrapolation scheme 

described here. Both calls are done in far less than a few 10 ns, even on older systems. 

The functionality of the timer routines listed in 3.2 is handled in this real-time process as 

well. Timed events are registered in a timer event queue. They are monitored with 

respect to their due time/period. When there is less than one interrupt period left before 

the due time expires, the timer service polls the timed event queue for the precise time 

to set the event. This may happen for a number of timed events, even within the same 

interrupt period. However, it should be noted that the time service thread is running at a 

high priority level and the signaled event may not be accessible to other 

processes/threads when there is just one CPU. A single CPU/core system simply cannot 

cope with multiple timed events setup to signal within the same interrupt period. 

4.2. Less critical services: The IO-Process 

In order to implement the kernel as small as possible, much of the functionality is 

performed by a second process. The IO, in particular, matters. The IO process 

establishes pipe services to release the kernel from blocking IO. All IO done by the kernel 

is queued into the IO processes pipe service. These operations are non-blocking. A 

complex fprintf() can be queued in just a few microseconds. This allows extensive output 

for diagnosis. Furthermore, output is logged into a file. 

4.3. The Optional GUI-Process 

The current GUI is mainly created for developing the time service. Meanwhile, it has 

become a valuable tool for diagnosing platforms. It runs optionally. 

 
Fig. 4.3.1: The Graphical User Interface (Version 1.70). 

 

http://www.windowstimestamp.com/GUI_170.png
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The output is split into four tabs: the all output tab, the error messages tab, the 

Calibrated Performance Counter Frequency Offset tab, and the NTP Offset tab. The text 

output within the first two tabs is produced using the queued qfprintf(...) function. This 

function makes its message time stamped and shows also some other parameters of the 

output piping thread: 

The output line format is: 

yyyy-mm-dd hh:ii:ss.μμμμμμ.n (s/a)[PID.THID.Processor,Priority]: Message 

 yyyy-mm-dd hh:ii:ss: Year-Month-Day Hour:Minute:Second  

 μμμμμμ: 6 digits microseconds 

 n: The 100ns units field 

 s/a: Shows "ftime" while calibration is not ready, otherwise accuracy in 

microseconds/second 

 PID: Identifier of the process  

 THID: Identifier of the thread 

 Processor: The number of the core or processor the thread runs on (0...n) 

 Priority: A combination of thread priority level and process priority class (1...31) 

 Message: The message 

As already mentioned, the GUI runs optionally and any number of GUI can be started 

and ended at anytime. Ending a GUI will neither end the kernel process nor end the IO 

process. In order to terminate the whole group of processes, the Kernel process has to 

be stopped. The Stop Kernel button (lower right corner) stops the kernel. By doing so, 

queued messages that are supposed to be processed are stuck. A few message windows 

will pop up to show the contents of the unprocessed parts of the queues of all involved 

processes. These popup windows are not error messages; they just report what was 

happening while the Kernel was stopped. 

The plot at the left lower corner shows the history of the accuracy in μs/s during the last 

600 seconds. The GUI produces this information by means of GetTimeStamp() imported 

from the time service DLL. 

It also provides a tiny test of the timer functionality: A single shot timer can be setup. 

The due time setting here is absolute, thus the time has to be in the future. Hint: Use the 

Update Date/Time Fields button to get the actual time into the fields and than 

incrementally change the minute field by 1. Press the Create Timed Event button quickly 

before the due time expires. Progress of the timed event approaching its due time is 

shown next to the button, which has now converted into a Stop Timed Event Button to 

allow cancellation of the timed event. A message window will popup when the timed 

event has signaled. It shows the precise time at which the signaled state was detected 

and how much it deviates from the requested due time. 

The output can be stopped for the all output tab (Hold Output Button). All output will be 

queued and the button converts into a Continue Output button until the Continue Output 

button is pressed. An optional auto cont. check box lets the GUI continue automatically 

when the queue buffer reaches a critical stage. The auto cont. check box can only be 

checked when the output is hold. 

The Calibrated Performance Counter Frequency Offset tab shows the offset of the 

calibrated performance counter frequency. The graph shown in 2.4.3 was created within 

this tab. The graphs context menu (right mouse button) allows saving the graph or 
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clearing the graph's data. Clearing the data will not stop further recording; creation of 

the graph will continue. Version 1.2 introduced the NTP Offset tab, the NTO/autoadjust 

status lines, and the NTP/autoadjust check boxes. Details about these items are given in 

"Part II: Adjustment of System Time". 

4.4. The Libraries 

The functions described above are accessible to other processes/threads through a static 

library (LIB) or a dynamic link library (DLL). 

5. Results 

Microsecond resolution time stamps are possible on Windows systems. Resolution in the 

microsecond regime can be observed at accuracies of a few microseconds without 

distracting the system too much. Timer functions at the same resolution and accuracy 

are implemented and tested. Handling many timed events created by those timer 

functions set up to fire within the same millisecond is tricky but possible. The evaluation 

at the startup of the services may sometimes take a few seconds and needs all the CPU 

time. Doing this at utmost priority will freeze single core/processor systems for a 

moment. 

Fine granularity time services are established with the tools described above. System 

time adjustment following an NTP time server relies on fine granularity of time keeping. 

The accuracy obtained when synchronizing to an NTP server is determined by the 

accuracy of the system time. Granularities of 15.625 ms are way to poor to achieve 

reasonable NTP synchronization. The time keeping has improved with newer windows 

versions. The function GetSystemTimePreciseAsFileTime() was described in 2.1.4.2. It is 

proposed to have very fine granularity. Unfortunately GetSystemTimePreciseAsFileTime() 

shows a misbehavior when a Windows system time adjustment is active. This is 

counterproductive when the goal is precise synchronization of the system time to an NTP 

server. 

The following second part "Adjustment of System Time" deals with  high accuracy system 

synchronization. 

 

... 

 

 

Note: Don't miss more details described on the "News" page. A pdf version of the News 

History can be downloaded here. 

 

 

 

Note: Windows is a registered trademark of Microsoft Corporation in the United States and other countries. The 
Windows Timestamp Project is an independent publication and is not affiliated with, nor has it been authorized, 

sponsored, or otherwise approved by Microsoft Corporation. 
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