
 1

Microsecond Resolution Time Services for

Windows

Arno Lentfer, June 2012

Last update: Version 3.10, May 2019

1. Abstract

Various methods for obtaining high resolution time stamping on Windows have been

described. The most promising implementations have been proposed by W. Nathaniel

Mills: "When microseconds matter" (2002) and Johan Nilsson: "Implement a

Continuously Updating, High-Resolution Time Provider for Windows" (2004).

Suggested auxiliary initial reading: Keith Wansbrough: "Obtaining Accurate Timestamps

under Windows XP" (2003), msdn: "Guidelines for Providing Multimedia Timer Support",

and Chuck Walbourn: "Game Timing and Multicore Processors" (2005).

A substantial amount of time and effort has been spent on the attempt to get a proper

high resolution time service implemented for Windows. However, the performance of

these implementations is still not satisfactory. The complexity arises from the variety of

Windows versions running on an even greater variety of hardware platforms.

Proper implementation of an accurate time service for Windows will be discussed and

diagnosed within the Windows Timestamp Project. Test code will be released to prove

functionality on a broader range of hardware platforms. Besides the timestamp

functionality, high resolution (microsecond) timer functions are also discussed.

2. Resources

Time resources on Windows are mostly interrupt controlled entities. Therefore, they show

a certain granularity. Typical interrupt periods are 10 ms to 20 ms. The interrupt period

can also be set to be 1 ms or even a little below 1 ms by using API calls to

NTSetTimerResolution or timeBeginPeriod. However, for several reasons they can and

shall never be set to anything near the 1 μs regime. The best resolution to observe by

means of Windows time services is therefore in the 1 ms regime.

The best resource for retrieving the system time is the GetSystemTimeAsFileTime API. It

is a fast access API that is able to hold sufficiently accurate (100 ns units) values in its

arguments. The alternative API is GetSystemTime, which is 20 times slower, has double

the structure size, and does not provide a well-suited data format.

An interrupt independent system resource is used to extend the accuracy into the

microsecond regime i.e., the performance counter. The performance counter API

provides the asynchronous calls QueryPerformanceCounter and

QueryPerformanceFrequency. A virtual counter delivers a performance counter value,

which increases by a performance counter frequency. The frequency is typically a few

MHz and can therefore open the microsecond regime. The counter parameters are

typically backed by a physical counter, but they are not necessarily independent of the

version of the operating system. A hardware platform can deliver different performance

frequencies when running Windows 7 or Windows Vista, for example.

http://web.archive.org/web/20111105021250/http:/www.ibm.com/developerworks/library/i-seconds/
http://msdn.microsoft.com/en-us/magazine/cc163996.aspx
http://msdn.microsoft.com/en-us/magazine/cc163996.aspx
http://www.lochan.org/2005/keith-cl/useful/win32time.html
http://www.lochan.org/2005/keith-cl/useful/win32time.html
http://web.archive.org/web/20140213124142/http:/msdn.microsoft.com/en-us/windows/hardware/gg463347.aspx
http://msdn.microsoft.com/en-us/library/ee417693(VS.85).aspx

 2

The Sleep() API and the WaitableTimer API are further timing resources in the context of

this project. Their functionality and their habit also need to be looked at.

2.1. GetSystemTimeAsFileTime API

The GetSystemTimeAsFileTime API provides access to the system time in file time

format. It is stated as

void WINAPI GetSystemTimeAsFileTime(OUT LPFILETIME lpSystemTimeAsFileTime);

with its argument of type

typedef struct _FILETIME {

 DWORD dwLowDateTime;

 DWORD dwHighDateTime;

} FILETIME;

A 64-bit FILETIME structure receives the system time as FILETIME in 100 ns units, which

have been expired since Jan 1, 1601. After some 400 years about 1.28×1010 seconds or

1.28×1017 100 ns slices have been accumulated. The 64-bit value can hold almost

2×1019 100 ns time slices. The remaining time before this scheme wraps would be about

58,000 years from now. The call to GetSystemTimeAsFileTime typically requires 10 ns to

15 ns.

In order to investigate the real accuracy of the system time provided by this API, the

granularity that comes along with the time values needs to be discussed. In other words:

How often is the system time updated? A first estimate is provided by the hidden API

call:

NTSTATUS NtQueryTimerResolution(

 OUT PULONGMinimumResolution,

 OUT PULONGMaximumResolution,

 OUT PULONGActualResolution);

NtQueryTimerResolution is exported by the native Windows NT library NTDLL.DLL. The

ActualResolution reported by this call represents the update period of the system time in

100 ns units, which obviously do not necessarily match the interrupt period. The value

depends on the hardware platform. Common hardware platforms report 156,250 or

100,144 for ActualResolution; older platforms may report even larger numbers. This is

one of the heartbeats controlling the system. The MinimumResolution and the

ActualResolution are relevant for the multimedia timer configuration. Two common

hardware platform configurations are discussed here to highlight the details to be dealt

with:

 Platform configuration A

- MinimumResolution: 156,250

- MaximumResolution: 10,000

- ActualResolution: 156,250

 Platform configuration B

- MinimumResolution: 100,144

- MaximumResolution: 10,032

- ActualResolution: 100,144

 3

Platform A simply has 64 timer interrupts per second (64 x 156,250 x 100 ns = 1 s) but

when looking at platform B the difficulties become more obvious: 99.856 interrupts per

second? Answer: The full second interrupt is not available on all platforms.

However, the system time may be updated at these interrupt events. An API call to

BOOL WINAPI GetSystemTimeAdjustment(

 OUT PDWORD lpTimeAdjustment,

 OUT PDWORD lpTimeIncrement,

 OUT PBOOL lpTimeAdjustmentDisabled);

will disclose the time adjustment and time increment values. The actual purpose of this

call is to query the status of the system time correction, which is active when

TimeAdjustmentDisabled is FALSE. When TimeAdjustmentDisabled is TRUE, no

adjustment takes place and TimeAdjustemt and TimeIncrement are equal and do report

exactly what was read as ActualResolution before. For a platform A type system the call

will report that the system time has incrementally increased by 156,250 100 ns units

every 156,250 100 ns units. Within this description, this is considered the granularity of

the system time.

Knowing the system time granularity raises doubts about its accuracy. Certainly, the

TimeIncrement will be applied, thus changes of the system time will always be one

TimeIncrement, but does the interrupt period or any multiple of it always match the time

increment?

Even when the standard setting of ActualResolution corresponds to the

MinimumResolution, the ActualResolution may have a setting different from

MinimumResolution (see table below). In fact, it may be configured to values in the

range from MinimumResolution to MaximumResolution. The ActualResolution determines

the interrupt period of the system. That is the period after which the timer generates an

interrupt to let the system react. The ActualResolution can be set by using the API call

NTSTATUS NtSetTimerResolution(

 IN ULONG RequestedResolution,

 IN BOOLEAN Set,

 OUT PULONG ActualResolution);

or via the multimedia timer interface

MMRESULT timeBeginPeriod(UINT uPeriod);

with the value of uPeriod derived from the range allowed by

MMRESULT timeGetDevCaps(LPTIMECAPS ptc, UINT cbtc);

which fills the structure

typedef struct {

 UINT wPeriodMin;

 UINT wPeriodMax;

} TIMECAPS;

Typical values are 1 ms for wPeriodMin and 1,000,000 ms for wPeriodMax. The 1,000 s

period for wPeriodMax is somewhat meaningless within the context of this description.

However, the possibility of setting the timer resolution to 1 ms requires a more detailed

investigation. When the multimedia timer interface is used to set the multimedia timer to

 4

wPeriodMin, the ActualResolution received by a call to NtQueryTimerResolution will show

a new value. For the two platform configurations discussed, the examples are as follows:

Platform configuration A B

MinimumResolution 156,250 100,144

MaximumResolution 10,000 10,032

ActualResolution 156,250 100,144

ActualResolution varies according to the varying multimedia timer periods uPeriod

applied by the timeBeginPeriod() API:

Platform configuration A B uPeriod

ActualResolution 9,766 10,032 1 ms

ActualResolution 19,532 20,064 2 ms

ActualResolution 19,532 30,096 3 ms

ActualResolution 39,063 39,952 4 ms

ActualResolution 39,063 49,984 5 ms

ActualResolution 39,063 60,016 6 ms

ActualResolution 39,063 70,048 7 ms

ActualResolution 156,250 80,080 8 ms

ActualResolution 156,250 89,936 9 ms

ActualResolution 156,250 100,144 10 ms

ActualResolution 156,250 100,144 11 ms

ActualResolution 156,250 100,144 12 ms

… … … …

ActualResolution 156,250 100,144 100 ms

This list shows the supported interrupt periods for platforms of type A and B in 100 ns

units. Platform A only supports four different interrupt heartbeat frequencies, while

platform B has a better approximation to the desired period. The specific numbers are

relevant for the procedures described here and thus need a detailed interpretation.

Note: TimeIncrement provided by GetSystemTimeAdjustment and ActualResolution

provided by NtQueryTimerResolution are not necessarily identical. Platform A operates

with an ACPI PM timer and platform B operates with a PIT timer. More modern platforms

do not show "unsupported" values of uPeriod.

2.1.1. ActualResolution on Platform Type A

The timer intervals are given with 100 ns accuracy in the last digit. Since the true

ActualResolution cannot be expressed correctly, rather than reporting the true

ActualResolution of 0.9765625 ms, the call to NtQueryTimerResolution reports the

rounded value of 0.9766 ms. The other values are also rounded (shall be 1.953125 ms

and 3.90625 ms respectively).

 5

A quick test using the Sleep(dwMilliseconds) API confirms this assumption:

Sleep(1) = 1.9531 ms = 2 x 0.9765625 ms

Sleep(2) = 2.9295 ms = 3 x 0.9765625 ms

Sleep(3) = 3.9062 ms = 4 x 0.9765625 ms

The Sleep() will only return when n x ActualResolution exceeds the desired duration. The

required accuracy for the interval specification would have to extend to 0.5 ns, in other

words show the 100 ps digit. The number would be 156,250,000 for the

MinimumResolution and 9,765,625 for the MaximumResolution (in 100 ps or 10-10 s

units).

Note: Sleep(1) measurements (10000, with 100 ahead) result in a mean delay of

1953.163824 μs. This is 2.0000397 times the interrupt time slice (should have been

1953.125 μs, so the measurement was off by 0.04 μs).

2.1.2. ActualResolution on Platform Type B

An interrupt timer period of 1.0032 ms will accumulate 10.032 ms after 10 interrupts and

change the system time by 10.0144 ms. A time change of 10.0144 ms after 10.032 ms

means that the time is behind by 176 μs. At the 57th of such periods, the deviation has

accumulated to 1.0032 ms, which is exactly one timer interrupt period and the time will

be updated after just 9 interrupts (9.0288 ms). This way the time is updated by 10.0144

ms 56 times after 10.032 ms and one time after 9.0288 ms, which is a total elapsed time

of 570.8208 ms with an adjustment of 57*10.0144 ms = 570.8208 ms. This corresponds

to a total number of interrupts of 569 (57*100,144 = 569*10,032). As a result, the time

will lose 176 μs for each of the 56 consecutive system time updates and then gain 9.856

ms in the 57th interrupt interval.

2.1.3. Changes of System File Time

The system time changes according to the described mechanisms after a certain period

of time. Additional time changes do happen if time corrections are caused by periodic

time changes, which are continuously applied to the system time over a longer period of

time to adjust to an external time reference. The occurrence and the parameters of this

adjustment can be gathered by a call to GetSystemTimeAdjustment. Sudden time

changes, for example, introduced by using the clock GUI or SetSystemTime(…), are not

announced or predictable; they happen spontaneously.

Changes of the system time will have no influence on the expiration of Sleep periods or

waitable timer periods. The actual change will be taken over by the routines here.

Nevertheless, system time changes are discontinuities in time, whether they are sudden

or spread over a longer period of time. What is an accurate time stamp supposed to

deliver when the system inserts several hundred seconds at an interval of 1.0000032 s?

The system will assume that the seconds are that long (elongated) for the time being.

This can be accomplished by the temporary adaptation of the performance counter

frequency to the applied granular time correction.

 6

2.1.4. Windows 7/8/8.1/10 and Server 2008 R2/2012/2012 R2/2016

Time services on windows have undergone changes with any new version of Windows.

Considerable changes are to be reported beyond VISTA and Server 2008. The

synchronous progress in hardware and software development requires the software to

stay compatible with a whole variety of hardware platforms. On the other hand new

hardware enables the software to conquer better performance. Today's hardware

provides the High Precision Event Timer (HPET) and an invariant Time Stamp Counter

(TSC). The variety of timers is described in "Guidelines For Providing Multimedia Timer

Support". The "IA-PC HPET Specification" is now more than 10 years old and some of the

goals have not yet been reached (e.g. aperiodic interrupts). While

QueryPerformanceCounter benefited using the HPET/TSC when compared to ACPI PM

timer, these days the HPET is outdated by the invariant TSC for many applications.

However, the typical HPET signature (TimeIncrement of the function

GetSystemTimeAdjustment() and MinimumResolution of the function

NtQueryTimerResolution() are 156001) disappeared with Windows 8.1. Windows 8.1

goes back to the roots; it goes back to 156250. The TSC frequency is calibrated against

HPET periods to finally get proper timekeeping.

An existing invariant TSC influences the behavior of GetSystemTimeAsFileTime()

noticeable. The influence to the functions QueryPerformanceCounter() and

QueryPerformanceFrequency() is described in sections 2.4.3. and 2.4.4. Windows 8

introduces the function GetSystemTimePreciseAsFileTime() "with the highest possible

level of precision (<1us)." This seems the counterpart to the linux gettimeofday()

function.

2.1.4.1. Resolution, Granularity, and Accuracy of System Time

Since Windows 7, the operating system runs tests on the underlying hardware to see

which hardware is best used for timekeeping. When the processors Time Stamp Counter

(TSC) is suitable, the operating system uses the TSC for timekeeping. If the TSC cannot

be used for timekeeping the operating system reverts to the High Precision Event Timer

(HPET). If that does not exist it reverts to the ACPI PM timer. For performance reasons it

shall be noted that HPET and ACPI PM timer cause IPC overhead, while the use of the

TSC does not. The evolution of TSC shows a variety of capabilities:

 Constant: The TSC does not change with CPU frequency changes, however it does

change on C state transitions.

 Invariant: The TSC increments at a constant rate in all ACPI P-, C- and T-states.

 Nonstop: The TSC has the properties of both Constant and Invariant TSC.

Details of the TSC capabilities are described in "Intel® 64 and IA-32 Architectures

Software Developer’s Manual". Chapter 16.12.1 of this documentation releases the key

for using the TSC for wall clock timer services:

"The time stamp counter in newer processors may support an enhancement, referred to

as invariant TSC. Processor’s support for invariant TSC is indicated by

CPUID.80000007H:EDX[8].

The invariant TSC will run at a constant rate in all ACPI P-, C--, and T-states. This is the

architectural behavior moving forward. On processors with invariant TSC support, the OS

http://msdn.microsoft.com/en-us/windows/hardware/gg463347.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463347.aspx
http://web.archive.org/web/20070315153153/http:/www.intel.com/hardwaredesign/hpetspec_1.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/hh706895(v=vs.85).aspx
http://download.intel.com/design/processor/manuals/253668.pdf
http://download.intel.com/design/processor/manuals/253668.pdf

 7

may use the TSC for wall clock timer services (instead of ACPI or HPET timers). TSC

reads are much more efficient and do not incur the overhead associated with a ring

transition or access to a platform resource."

An invariant TSC enables QueryPerformanceCounter(), QueryPerformanceFrequency(),

and GetSystemTimeAsFileTime() to be served by the same hardware. Deviations, as

described in 2.4.3 are non existing when the performance counter values and the wall

clock are supported by the same counter (TSC).

More information can be obtained in "Intel 64® and IA-32 Architectures Software

Developer's Manual, Volume 3B: System Programming Guide, Part 2".

Polling system time changes by repeated call of GetSystemTimeAsFileTime() discloses a

new behavior on Windows 8: Examples given in 2.1.1. and 2.1.2. are typical timekeeping

schemes for systems running with a ACPI PM timer a PIT timer respectively. System time

changes occurred at some regular base. This is not the case on Windows 8; a whole

bunch of varying file time increments is observed when polling on file time transition. A

truly periodic cycle can only be approximated by a "mean increment". However, this

mean increment matches the result given by ActualResolution. Despite these little

hiccups, resolution, granularity, and accuracy of GetSystemTimeAsFileTime() are

comparable to earlier Windows versions.

2.1.4.2. Desktop Applications: GetSystemTimePreciseAsFileTime()

This new Windows 8 API is restricted to desktop applications.

 VOID WINAPI GetSystemTimePreciseAsFileTime(

Out LPFILETIME lpSystemTimeAsFileTime);

GetSystemTimePreciseAsFileTime() uses the performance counter to achieve the

microsecond precision. Depending on the hardware platform and Windows version, a call

to QueryPerformanceCounter may be expensive or not (HPET, ACPI PM timer, or TSC,

see "MSDN: Acquiring high-resolution time stamps."). Consecutive calls may return the

same result. The call time is less than the smallest increment of the system time. The

granularity is in the sub-microsecond regime. The function may be used for time

measurements but some care has to be taken: Time differences may be ZERO.

The function shall also be used with care when a system time adjustment is active.

Current Windows versions treat the performance counter frequency as a constant. The

high resolution of GetSystemTimePreciseAsFileTime() is derived from the performance

counter value at the time of the call and the performance counter frequency. However,

the performance counter frequency should be corrected during system time adjustments

to adapt to the modified progress in time. Current Windows versions don't do this. The

obtained microsecond part may be severely affected when system time adjustments are

active. Seconds may consist of more or less than 1.000.000 microseconds. Microsoft may

or not fix this in one of the next updates/versions.

GetSystemTimePreciseAsFileTime() works on all platforms.

As of Windows 10 (Build 10240), the inaccuracy of GetSystemTimePreciseAsFileTime()

during system time adjustments persists.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx

 8

2.1.4.3. Timer Periods with Invariant TSC

Using the processors invariant time stamp counter for timekeeping requires a calibration

of timer periods. The TSC is used as a measure for the progress in time. However, the

periodic update of the system time is still done by timer hardware because the TSC does

not produce periodic events. Such periodic event may be generated by the HPET.

Querying the timer resolutions on such a platform as described in section 2.1 will produce

a pattern like this:

ActualResolution uPeriod

1,0007 1 ms

2,0001 2 ms

3,0008 3 ms

4,0002 4 ms

5,0009 5 ms

6,0003 6 ms

7,0010 7 ms

8,0005 8 ms

9,0012 9 ms

10,0006 10 ms

11,0000 11 ms

12,0007 12 ms

13,0001 13 ms

14,0008 14 ms

15,0003 15 ms

15,6351 16 ms

The values of ActualResolution are accompanied by small offsets which may vary from

boot to boot but they stay constant during operation. This clearly indicates that the timer

periods are calibrated during boot time. Consequently, system time updates are done a

those periods with a mean progress of ActualResolution.

The calibration of the performance counter frequency during boot is described in section

2.4. The tiny deviations seen in the list above are a result of the calibration accuracy.

Again: The TSC frequency is calibrated against HPET timer periods. This is to be done in

a reasonable short time to not extend the boot time too much. The remaining deviations

are small but noticeable (e.g. 1.2 µs in 9,0012 for a 9 ms period corresponds to

840ppm!).

2.2. The Sleep API

The Sleep function suspends the execution of the current thread for a specified interval.

VOID Sleep(DWORD dwMilliseconds);

This would indeed be a very useful function if it were doing what it is supposed to do.

Unfortunately, a detailed view discloses some artifacts, some of which are helpful, and

others that are not. The Sleep() function is backed up by the system’s interrupt services.

As described in section 2.1., the interrupt period can be configured to some extent. This

 9

has a direct impact on Sleep(). The call to Sleep() passes the parameter dwMilliseconds

to the system and expects the function to return after dwMilliseconds. In practice, the

Sleep() only returns when two conditions are met: Firstly, the requested delay must be

expired and secondly an interrupt has occurred (the test to see if the requested delay

has expired is only done with an interrupt). A simple Sleep(1) call may therefore have a

number of different results. The results also depend on the time at which the call was

made with respect to the interrupt period phase.

Say the ActualResolution is set to 156,250, the interrupt heartbeat of the system will run

at 15.625 ms periods or 64 Hz and a call to Sleep is made with a desired delay of 1 ms.

Two scenarios are to be looked at:

 The call was made < 1 ms (ΔT) ahead of the next interrupt. The next interrupt will

not confirm that the desired period of time has expired. Only the following interrupt

will cause the call to return. The resulting sleep delay will be ΔT + 15.625 ms.

 The call was made >= 1 ms (ΔT) ahead of the next interrupt. The next interrupt will

force the call to return. The resulting sleep delay will be ΔT.

The observed delay heavily depends on the time at which the call was made. This

matters particularly when the desired delay is shorter than the ActualResolution.

However, when the ActualResolution is set to MaximumResolution, the system runs at its

maximum interrupt frequency and the deviations are in the order of one interrupt period.

This behavior can be used to synchronize code with the interrupt period in an easy way

by simply calling two or more consecutive sleeps. Regardless of what ΔT is, the first will

end at the time of an interrupt. Consequently, the following sleep call will start at the

interrupt time (or at least so close to it that the system will assume that it happened at

the same time). As a result, a ΔT = 0 applies and the sleep will return when N x

ActualResolution becomes larger than the desired period. Right after the return of a sleep

the system has just processed an interrupt. Conditional latency may be on board due to a

priority and/or task/process switching delay or due to interrupt handler CPU capture

reasons. Typical latencies of a few μs can be observed with very little implementation

effort.

A special case is the call Sleep(0). It looks meaningless, but it is a very powerful tool

since it relinquishes the reminder of the thread’s time slice. That means that other

threads of equal priority level will take over when ready to run. When a number of

threads are running at the same priority level and all of them are very responsive, all of

them will make frequent calls to Sleep(0) whenever they can afford it. As a result, a task

switch can be forced to happen in just a few μs.

2.3. The WaitableTimer API

Another important mechanism for performing timed operations is provided by the

waitable timer interface:

 HANDLE WINAPI CreateWaitableTimer(

 IN LPSECURITY_ATTRIBUTES lpTimerAttributes,

 IN BOOL bManualReset,

 IN LPCTSTR lpTimerName);

 10

The returned handle is used to setup a timer function:

 BOOL WINAPI SetWaitableTimer(

 IN HANDLE hTimer,

 IN const LARGE_INTEGER* pDueTime,

 IN LONG lPeriod,

 IN PTIMERAPCROUTINE pfnCompletionRoutine,

 IN LPVOID lpArgToCompletionRoutine,

 IN BOOL fResume);

This tool can be used in a variety of ways. Below are just a few things that need to be

mentioned within the scope of this description:

 The LARGE_INTEGER structure DueTime specifies when the timer is to be set signaled

for the first time. This is basically a file time, but formatted as LARGE_INTEGER to

allow signed values. The sign is used by the system to allow input of absolute times

(positive) or relative times (negative). The system time only changes in steps of

TimeIncrement and the DueTime is only compared when an interrupt occurs. This

effectively means that the timer can only reach a signaled state for the first time

when a system time transition occurs.

 The Period parameter specifies whether the timer will be a single shot timer or a

periodic timer. With Period = 0, the timer will only get signaled once when the system

time has reached the DueTime. With Period > 0, the period specifies a timer period in

ms, resulting in a timer heartbeat of Period ms. Similar to the Sleep, the periodic

waitable timer will be set signaled when Period expires. But this is only tested when

an interrupt occurs. Real cyclic periods can only be observed if Period is a multiple of

ActualResolution (the interrupt period) or when the overshoot remains constant. An

example for the first case can be easily described for a platform configuration of type

A. A timer Period of 1,000 ms hosts exactly 1,024 interrupt intervals of 0.9765625

ms. Such a periodic timer will be truly cyclic.

If, on such a platform, Period is setup to 995 ms, the timer will expire after 1,019

interrupt periods, resulting in a delay of 995.1171875 ms. However, the waitable

timer uses the system file time and those overshoots will show deviations when a

Period hits a system time transition. In other words: A non-truly cyclic timer setup

will suffer from a beat frequency with the system file time increment frequency. The

detailed discussion of this behavior falls outside the scope of this description.

Evidently, a truly cyclic timer interval can also be set up when the beat frequency

stays in phase with the system file time update. A typical scenario can be described

for a platform configuration B type system:

Assuming the ActualResolution is set to MaximumResolution (10,032 100 ns units);

the TimeIncrement (100,144 100 ns units) is not a multiple of the

ActualResolution. In order to set up a truly cyclic timer, the least common multiple

of 100,144 and 10,032 has to be found. The value of 5,708,208 suits this need

here; it hosts 57 periods at MinimumResolution or 569 periods at ActualResolution.

The first truly cyclic timer period is therefore 570.8208 ms. It will be setup by a

Period value of 570 and will expire after 569 interrupt periods. At the time of

expiration the system will have done 57 system time updates. More truly cyclic

timer setups can be created at any multiple of 5,708,208 for this type of platform.

(Example: Period= 1,141, the timer will expire after 1,138 interrupt periods or

1141.6416 ms and the system time will have progressed by 114 x 10.0144 ms

which is 1141.6416 ms too.)

 11

 An optional asynchronous CompletionRoutine (APC) with an optional pointer to

arguments ArgToCompletionRoutine can be passed to the timer. However, the calling

thread needs to be in the alertable state to allow execution of the APC. The only

advantage of the scheme with a completion routine is that this routine is

automatically supplied with the systems FILETIME at which the timer was signaled.

Calling the APC unfortunately results in a considerable extension of the observed

cyclic interval. When the system file time is needed, it can be queried as described in

2.1). The extra time required to do this is a tiny fraction (1/2,000) of the time added

to the timer period by calling the APC.

The expired (signaled) timer can be handled by means of an asynchronous procedure call

(APC) or by means of a call to WaitForSingleObject, for example. According to the last

point above, the former is useless when high accuracy is required. The latter suits the

needs of the mechanisms described here much better. The API needs the handle of the

object to wait for and allows specifying a timeout dwMilliseconds, which can be optionally

set to INIFINTE.

 DWORD WINAPI WaitForSingleObject(

 IN HANDLE hHandle,

 IN DWORD dwMilliseconds);

Waitable timers synchronize to the rhythm of the system interrupt period

(ActualResolution). This has to be kept in mind because it has severe implications to the

system’s overall performance. All of the tasks waiting for a Sleep() or an object to reach

signaled state will continue after the interrupt has occurred. The system’s load tends to

reach peaks at interrupts.

2.4. The QueryPerformanceCounter and QueryPerformanceFrequency API

This API is backed by a virtual counter running at a "fixed" frequency started at boot

time. The following two basic calls are used to explore the microsecond regime:

QueryPerformanceCounter() and QueryPerformanceFrequency(). The counter values are

derived from some hardware counter, which is platform dependent. However, the

Windows version also influences the results by handling the counter in a version specific

manner. Windows 7, in particular, has introduced a new way of supplying performance

counter values.

2.4.1. QueryPerformanceCounter

The call to

BOOL QueryPerformanceCounter(OUT LARGE_INTEGER *lpPerformanceCount);

will update the content of the LARGE_INTEGER structure PerformanceCount with a count

value. The count value is initialized to zero at boot time.

2.4.2. QueryPerformanceFrequency

The call to

 BOOL QueryPerformanceFrequency(OUT LARGE_INTEGER *lpFrequency);

will update the content of the LARGE_INTEGER structure PerformanceFrequency with a

frequency value. The frequency is treated by the system as a constant. From Windows

 12

7/Server 2008 R2 onwards the result of QueryPerformanceCounter() may be calibrated

at boot time and may therefore return varying results. This depends on the underlying

hardware (see 2.1.4.1.), But QueryPerformanceCounter() never reports any changes of

the frequency during operation; its result remains constant. The following chapter

describes deviations on systems on which the underlying hardware neither provides an

invariant TSC nor provides a HPET for time services.

2.4.3. Performance of the Performance Counter

The range in time that can be held by the LARGE_INTEGER structure PerformanceCount

depends on the update rate or the Frequency at which the count will incrementally

increase. Depending on the hardware platform, the counter may be an Intel 8245 at

1,193,000 Hz or an ACPI Power Management Timer chip with an update frequency of

3,579,545 Hz or even another source. A number of platforms do not have these timers at

all; they mimic the timer by providing the CPU clock. As a result of the latter, the

frequency can get into the GHz range. PerformanceCount.QuadPart (signed) will change

sign after 263 increments. At a frequency of say 1GHz (109 s-1) such a system can run for

about 290 years without reaching the sign bit. Even for multi-GHz platforms, there does

not seem to be a serious limit.

However, apart from the system’s treatment, the frequency cannot be considered as

constant. Firstly, the frequency generating hardware will deviate from the specified value

by an offset and secondly the frequency may vary (i.e., due to thermal drift). The impact

of these deviations is not negligible. Oscillators do have tolerances in the range of a few

ppm and would consequently introduce errors of a few μs/s in the measured time period.

Within this description, the performance counter will be used to predict time intervals

over a few seconds at accuracies better than 1μs. If an accuracy of 0.1 μs shall be

reached after 10s, the frequency needs to be known to 0.01 ppm, which corresponds to

0.035 Hz at a nominal frequency of 3,579,545 Hz. Obviously, that value is not provided

by the system and needs to be calibrated. A first estimate of the true frequency can be

gathered by querying two counter values at a certain (known) time apart from each

other. The code snippet uses the API call

 DWORD timeGetTime(VOID);

and could look like this:

DWORD ms_begin,ms_end;

LARGE_INTEGER count_begin, count_end;

double ticks_per_second;

ms_begin = timeGetTime();

QueryPerformanceCounter(&count_begin);

Sleep(1000);

ms_end = timeGetTime();

QueryPerformanceCounter(&count_end);

ticks_per_second = (double)(count_end−count_begin)/(ms_end−ms_begin);

However, due to artifacts described in 2.2 timeGetTime() is accompanied by an

inaccuracy of up to 2 ms; thus a Sleep(1,000) would give an accuracy for

ticks_per_second of 0.002 (2,000ppm) at most. An accuracy of 2 ppm would be

achievable when the Sleep extends to 1,000,000 ms or 1,000 s. In order to obtain 0.01

ppm the Sleep would have to cover more than 55 hours. This is obviously a hopeless

approach. It also averages temporary changes of the frequency and it will not forgive

frequency changes due to thermal drifts.

 13

The thermal drift of the performance counter frequency can be severe:

Fig. 2.4.3.1: Calibrated Performance Counter Offset on ACPI PM timer hardware.

This graph shows an older system with heavy thermal drift. At boot time (~8:00), the

measured performance counter frequency is off by about 60 Hz. The system reports the

performance counter frequency as 3,579,545 Hz. In fact, it is already at 3,579,605 Hz

when it is "cold". After many hours of doing nothing, the system seems to reach a

thermal equilibration. At ~14:00 (six hours after boot), the system was heavily loaded

for about 45 minutes and consequently warmed up. The load has increased the main

board temperature by 5 deg. (centigrade scale) only, but the influence to the measured

performance counter frequency is quite considerable. It rose to an offset of almost 100

Hz or a true performance counter frequency of 3,579,645 Hz. A 100 Hz offset at a base

frequency of 3,579,605 Hz is a deviation of about 28 ppm or an error in time of 28μs/s.

The calibration procedure used for the time stamp mechanism described here uses a

repeated averaging period evaluation and reaches an accuracy of better than 0.05 ppm

after about 100 s. Thermal drifts can be captured reasonably well and can be applied

without much delay. (Note: The declaration of ticks_per_second as a 64-bit float in the

code snippet above enables the ticks_per_second to hold a number with an accuracy of

15 digits. A value of 3,579,545.12 Hz shows the 0.01 ppm accuracy in the last digit.)

The use of QueryPerformanceCounter on multi-processor platforms implies that the call is

made on the same processor all the time. The SetThreadAffinityMask API and its

associated calls are used to ensure this. This rule only applies to systems using non

invariant TSC hardware. The system analyzed in this chapter operates time services

based on ACPI PM hardware.

http://www.windowstimestamp.com/thermal_drift.png
http://www.windowstimestamp.com/thermal_drift.png

 14

2.4.4. Is the CPU Time Stamp Counter an Alternative?

The RDTSC specifies a call to query the time stamp counter of the CPU. The advent of

multi processor platforms or muti-core processors highly recommends not using RDTSC

calls. Newer processors also support adaptive CPU frequency adjustments. This is just

another reason to not use RDTSC calls for the purpose discussed here. Microsoft strongly

discourages using the TSC for high-resolution timing ("Game Timing and Multicore

Processors"). However, the introduction of invariant Time Stamp Counters has changed

the situation. Starting with Windows 7/Server 2008 R2, Windows has a clear preference:

Look for invariant TSCs, see whether they can be synchronized on different cores and use

them for wall clock and performance counter whenever possible ("MSDN: Acquiring high-

resolution time stamps.").

2.5. Discussion of Resources

Some of the resources discussed show platform-specific behavior. They may deliver

results depending on the hardware and/or on Windows version. The precision time

functions developed within the windows timestamp project mainly rely on four function

suites provided by the operating system:

 GetSystemTimeAsFileTime

 QueryPerformanceCounter with QueryPerformanceFrequency

 Sleep

 The WaitableTimer function together with WaitForSingleObject

The complexity of the system time update with respect to the interrupt settings was

explained and is understood. A complex automatic diagnosis of the system has to

establish proper settings in order to obtain the desired accuracy. Particularly, the

continuous calibration of the performance counter frequency described in 2.4.3 is of

utmost importance to obtain a high accuracy. In addition, the proper interrupt period

setting to obtain truly cyclic timer behavior (e.g., as described for example in 2.1) is very

important. Another set of APIs is used to establish functionality:

 Pipes

 Events

 Shared Memory

 Mutexes (mutual exclusions)

The description of these functions falls outside the scope of this description.

http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx

 15

3. Goals

The Windows timestamp project provides the tools to enable access to time at

microsecond resolution and accuracy. Furthermore, it provides timer functions at the

same resolution and accuracy. The high accuracy and microsecond resolution are

archived by synchronizing the system time with the performance counter. In fact, the

performance counter is phase locked to the system time. A diagnosis determines the

system’s specific parameters and establishes a "truly cyclic" timer interval for updating

the phase of the performance counter value. The drift of the performance counter is

permanently evaluated and taken into account while the system is running.

The code runs in a real-time priority process providing time information. An auxiliary IO

process builds the interface to an optional graphical user interface. Nonblocking IO

enables proper performance testing and debugging.

3.1. Time Support

Any time providing mechanism needs time for its internals. Thus, the following question

arises with respect to time: Is the time requested at the time the call is made or shall the

time be reported at the time in which the call returns? This may sound strange, but

considering the level of resolution and accuracy aimed for here, it matters. Example:

 Something just happened and you want to assign a timestamp to it. In this case, you

would want the time at the time you are asking for it.

 You want to do something at a specific time. In this case, you would want the time at

the time that you are getting the answer.

Two time functions are implemented to fulfill these two needs:

3.1.1. GetTimeStamp

The function GetTimeStamp, declared as

 void GetTimeStamp(TimeStamp_TYPE * TimeStamp);

fills the argument pointed to by TimeStamp with numbers according to the TimeStamp

structure definition:

typedef struct {

 long long Time;

 long long ScheduledTime;

 double RefinedPerformanceCounterFrequency;

 long Accuracy;

 int State;

TimeStamp_TYPE;

The 64-bit value Time represents the number of elapsed 100-nanosecond intervals

elapsed since January 1, 1601. ScheduledDueTime reports the system file time at which

the next reference time is scheduled for an attempt to update the phase. This value

should primarily be used to verify the operation of the precision time mechanism. If

ScheduledDueTime is noticeable behind the current system file time, the scheduled

update of the time reference must have failed for a number of consecutive attempts.

Finally the 32-bit value of Accuracy gives an estimate of the assumed accuracy (rms) of

the time stamp in 1 ns units (error in ns/s).

 16

RefinedPerformanceCounterFrequency returns the calibrated frequency of results from

QueryPerformanceCounter(). GetTimeStamp() may be called at any time, thus it provides

information about the state of the calibration. States can be the following:

 TIME_STAMP_OFFLINE (1): Time calibration service is offline.

 TIME_STAMP_AWAITING_CALIBRATION (2): Calibration service just started but time

service not yet calibrated.

 TIME_STAMP_CALIBRATED (3): Time service calibrated.

 TIME_STAMP_LICENSE_EXPIRED (4): License expired during runtime.

The call to GetTimeStamp is fast and it reports the time at the time it is called. As of

version 2.01, this call is done in 10 to 20 ns on current platforms.

3.1.2. Time

A simple function is stated as

 long long Time(void);

The function is as fast as GetTimeStamp and it returns the time at the time the call

returns. With the need for a few thousand CPU cycles, the call will require very few μs

with the current hardware. The Time() can be used to compare times or to wait until a

certain time is observed. The 64-bit return value represents the number of elapsed 100-

nanosecond intervals since January 1, 1601.

3.2. Timer Support

A set of timer functions:

 Creating a timed named event:

HANDLE CreateTimedEvent(

 BOOL bManualReset,

 LPCTSTR lpTimerName);

bManualReset [in]

If this parameter is TRUE, the function creates a manual reset event object, which

requires the use of the ResetEvent function to set the event state to non-signaled. If

this parameter is FALSE, the function creates an auto reset event object, and the

system automatically resets the event state to non-signaled after a single waiting

thread has been released.

lpTimerName [in, optional]

The name of the event object. The name is limited to MAX_PATH characters. Name

comparison is case sensitive. If lpTimerName matches the name of an existing

named event object, this function will fail. If lpTimerName is NULL, the event object

is created without a name. If lpTimerName matches the name of another kind of

object in the same namespace (such as an existing semaphore, mutex, waitable

timer, job, or file-mapping object), the function fails and the GetLastError function

returns ERROR_INVALID_HANDLE. This occurs because these objects share the

same namespace. The name can have a "Global\" or "Local\" prefix to explicitly

create the object in the global or session namespace. The remainder of the name

can contain any character except the backslash character (\). For more information,

 17

see Kernel Object Namespaces. Fast user switching is implemented using Terminal

Services sessions. Kernel object names must follow the guidelines outlined for

Terminal Services so that applications can support multiple users. The object can be

created in a private namespace. For more information, see Object Namespaces.

Return value

If the function succeeds, the return value is a handle to the event object. If the

named event object existed before the function call, the function returns NULL and

GetLastError returns ERROR_ALREADY_EXISTS. If the function fails, the return value

is NULL. To get extended error information, call GetLastError.

 Setting the timed event with a DueTime in 100 ns units and an optional Period in 100

ns units:

int SetTimedEvent(

 HANDLE hTimerEvent,

 long long TimerDueTime,

 long long TimerPeriod);

hTimerEvent [in]

A handle to a named timed event. The CreateTimedEvent() function returns this

value.

TimerDueTime [in]

The time after which the state of the timer is to be set to signal, in 100 nanosecond

intervals. Positive values indicate absolute time. Be sure to use a UTC-based

absolute time since the system uses UTC-based time internally. Negative values

indicate relative time.

TimerPeriod [in]

The period of the timer in 100ns intervals. If TimerPeriod is zero, the timer is

signaled once. If TimerPeriod is greater than zero, the timer is periodic. A periodic

timer automatically reactivates each time the period elapses, until the timer is

canceled using the CancelTimedEvent function or reset using SetTimedEvent. If

TimerPeriod is less than zero, the function fails.

Return value

If the function succeeds, the return value is nonzero. If the function fails, the return

value is zero. To get extended error information, call GetLastError.

 Canceling the timed event:

int CancelTimedEvent(HANDLE hTimerEvent);

hTimerEvent [in]

A handle to a named timed event. The CreateTimedEvent() function returns this

value.

Return value

If the function succeeds, the return value is nonzero. If the function fails, the return

value is zero. To get extended error information, call GetLastError.

 Opening a timed event:

 18

HANDLE OpenTimedEvent(LPCTSTR lpTimerName);

lpTimerName [in]

The timed event name used when the timed event was created.

Return value

If the function succeeds, the return value is the handle to the named timed event. If

the function fails, the return value is NULL. To get extended error information, call

GetLastError.

 Deleting the timed event:

int DeleteTimedEvent(HANDLE hTimerEvent);

hTimerEvent [in]

A handle to a named timed event. The CreateTimedEvent() function returns this

value.

Return value

If the function succeeds, the return value is nonzero. If the function fails, the return

value is zero. To get extended error information, call GetLastError.

These timer functions are based on timed events. The handle returned by

CreateTimedEvent() is in fact a handle to a named event of which signaled state is

supervised by a time service routine. Standard wait functions like WaitForSingleObject or

WaitForMultipleObjects can be used to wait for the high resolution timer events.

4. Implementation

Only two hardware platforms were described here to highlight some of the problems to

bear in mind when implementing reliable time services for Windows. Many more

configurations need to be diagnosed to ensure platform independent functionality to a

large extent. However, a flexible and automatic evaluation of hardware specific behavior

may result in hardware independence.

The implementation of all the above into a time service is done by careful separation into

different processes and threads. The time critical parts are hosted by a process running

at real-time priority class. Some of the threads inside this process are even running at

time-critical priority level. In the case of a multi-processor or multi-core system, certain

threads are assigned to a specific CPU/core. This is the Kernel and hosts the time service

routines. For testing and debugging the Kernel process has some IO capabilities shared

with the IO process. A later version may not need this additional functionality. The high

priority class requires the Kernel process to run with administrator privileges.

A second process hosts all kinds of less time-critical service threads. It shares some IO

services with the Kernel process by means of piped IO between these two processes.

Furthermore, it provides pipe services to the graphical user interface (GUI).

The third process is a graphical user interface (GUI), which runs optionally and helps in

the current stage of the development to get an insight into what is going on.

The GUI and the IO process are development tools only. The only process that needs to

run to access the time functions discussed here is the Kernel process.

 19

4.1. The Real-time Priority Class Process: Kernel

The Kernel is the heart of the time service described here. It provides the important link

between the system file time and the performance counter value. The idea in this context

is to provide data triplets of system file time, performance counter, and performance

counter frequency. Knowing the performance counter value at a certain system file time

allows the extrapolation of the system file time to the actual time by applying the

performance counter value and the performance counter frequency. As discussed, the

performance counter frequency is of insufficient accuracy; a refined performance counter

frequency is supplied in format double (64-bit float). There is also some internal

information which allows a refinement of the performance counter value itself (as a result

of some self calibration). Thus, it is also represented in double (64-bit float) format.

A typical result of such a data triplet could be:

 int64 FileTime: 129,737,733,817,343,750 (some value captured on Feb. 15, 2012)

 double PerformanceCounter: 20,918,865,472.23

 double PerformanceCounterFrequency: 3,579,515.24

This information is sufficient to establish time services. Querying the current performance

counter value gives the difference to the value calculated to match the last captured file

time. This difference is divided by the performance counter frequency and the result is

the elapsed time since the last file time capture. This data triplet is, besides other

parameters, written to a mutex protected shared memory section. Other

processes/threads have access to this data triplet. As of version 2.02 the mutex scheme

has been replaced by a read-copy-update (RCU) scheme to improve the performance.

As described in sections 2.1 and 2.3, the important part is to get the file time updated

correctly. It proves best to gather the data triplet exactly when the file time transits or

just transited. Difficulties archiving this have been described for platform examples A and

B. At startup, a complex diagnosis of the interrupt timing structure and file time

update/transition structure is performed. This results in a timing scheme for updating the

data triplet. The desired update period is in the range of 1 to 10 seconds. As discussed,

the period duration influences the accuracy. Algorithms are looking for patterns and beat

frequencies in the file time update and interrupt timing structure. As a result, a periodic

timer is set up to run the data triplet generation and the calibration in parallel. Once

exact ∆T file time periods occur, the true performance counter frequency can be

measured and averaged over a number of consecutive measurements. A running average

over the last n captures is maintained at all times to provide information about the true

(calibrated) performance counter frequency. When the accuracy of the average reaches a

certain quality, the phase locking of file time change and performance counter is

considered as established and timestamp requests are accompanied by information about

their accuracy.

Running all of this at utmost priority ensures that there is very little overhead after an

interrupt. Remember: Many processes/threads are waiting for interrupts. Therefore,

systems have a workload peak at the occurrence of an interrupt. Even running at such

priority settings, it is unavoidable to be influenced by the load of other processes.

However, the accuracy of this scheme easily stays below a few microseconds, even with

heavy load on the system.

 20

The routines Time() and GetTimeStamp() are applying the extrapolation scheme

described here. Both calls are done in far less than a few 10 ns, even on older systems.

The functionality of the timer routines listed in 3.2 is handled in this real-time process as

well. Timed events are registered in a timer event queue. They are monitored with

respect to their due time/period. When there is less than one interrupt period left before

the due time expires, the timer service polls the timed event queue for the precise time

to set the event. This may happen for a number of timed events, even within the same

interrupt period. However, it should be noted that the time service thread is running at a

high priority level and the signaled event may not be accessible to other

processes/threads when there is just one CPU. A single CPU/core system simply cannot

cope with multiple timed events setup to signal within the same interrupt period.

4.2. Less critical services: The IO-Process

In order to implement the kernel as small as possible, much of the functionality is

performed by a second process. The IO, in particular, matters. The IO process

establishes pipe services to release the kernel from blocking IO. All IO done by the kernel

is queued into the IO processes pipe service. These operations are non-blocking. A

complex fprintf() can be queued in just a few microseconds. This allows extensive output

for diagnosis. Furthermore, output is logged into a file.

4.3. The Optional GUI-Process

The current GUI is mainly created for developing the time service. Meanwhile, it has

become a valuable tool for diagnosing platforms. It runs optionally.

Fig. 4.3.1: The Graphical User Interface (Version 1.70).

http://www.windowstimestamp.com/GUI_170.png

 21

The output is split into four tabs: the all output tab, the error messages tab, the

Calibrated Performance Counter Frequency Offset tab, and the NTP Offset tab. The text

output within the first two tabs is produced using the queued qfprintf(...) function. This

function makes its message time stamped and shows also some other parameters of the

output piping thread:

The output line format is:

yyyy-mm-dd hh:ii:ss.μμμμμμ.n (s/a)[PID.THID.Processor,Priority]: Message

 yyyy-mm-dd hh:ii:ss: Year-Month-Day Hour:Minute:Second

 μμμμμμ: 6 digits microseconds

 n: The 100ns units field

 s/a: Shows "ftime" while calibration is not ready, otherwise accuracy in

microseconds/second

 PID: Identifier of the process

 THID: Identifier of the thread

 Processor: The number of the core or processor the thread runs on (0...n)

 Priority: A combination of thread priority level and process priority class (1...31)

 Message: The message

As already mentioned, the GUI runs optionally and any number of GUI can be started

and ended at anytime. Ending a GUI will neither end the kernel process nor end the IO

process. In order to terminate the whole group of processes, the Kernel process has to

be stopped. The Stop Kernel button (lower right corner) stops the kernel. By doing so,

queued messages that are supposed to be processed are stuck. A few message windows

will pop up to show the contents of the unprocessed parts of the queues of all involved

processes. These popup windows are not error messages; they just report what was

happening while the Kernel was stopped.

The plot at the left lower corner shows the history of the accuracy in μs/s during the last

600 seconds. The GUI produces this information by means of GetTimeStamp() imported

from the time service DLL.

It also provides a tiny test of the timer functionality: A single shot timer can be setup.

The due time setting here is absolute, thus the time has to be in the future. Hint: Use the

Update Date/Time Fields button to get the actual time into the fields and than

incrementally change the minute field by 1. Press the Create Timed Event button quickly

before the due time expires. Progress of the timed event approaching its due time is

shown next to the button, which has now converted into a Stop Timed Event Button to

allow cancellation of the timed event. A message window will popup when the timed

event has signaled. It shows the precise time at which the signaled state was detected

and how much it deviates from the requested due time.

The output can be stopped for the all output tab (Hold Output Button). All output will be

queued and the button converts into a Continue Output button until the Continue Output

button is pressed. An optional auto cont. check box lets the GUI continue automatically

when the queue buffer reaches a critical stage. The auto cont. check box can only be

checked when the output is hold.

The Calibrated Performance Counter Frequency Offset tab shows the offset of the

calibrated performance counter frequency. The graph shown in 2.4.3 was created within

this tab. The graphs context menu (right mouse button) allows saving the graph or

 22

clearing the graph's data. Clearing the data will not stop further recording; creation of

the graph will continue. Version 1.2 introduced the NTP Offset tab, the NTO/autoadjust

status lines, and the NTP/autoadjust check boxes. Details about these items are given in

"Part II: Adjustment of System Time".

4.4. The Libraries

The functions described above are accessible to other processes/threads through a static

library (LIB) or a dynamic link library (DLL).

5. Results

Microsecond resolution time stamps are possible on Windows systems. Resolution in the

microsecond regime can be observed at accuracies of a few microseconds without

distracting the system too much. Timer functions at the same resolution and accuracy

are implemented and tested. Handling many timed events created by those timer

functions set up to fire within the same millisecond is tricky but possible. The evaluation

at the startup of the services may sometimes take a few seconds and needs all the CPU

time. Doing this at utmost priority will freeze single core/processor systems for a

moment.

Fine granularity time services are established with the tools described above. System

time adjustment following an NTP time server relies on fine granularity of time keeping.

The accuracy obtained when synchronizing to an NTP server is determined by the

accuracy of the system time. Granularities of 15.625 ms are way to poor to achieve

reasonable NTP synchronization. The time keeping has improved with newer windows

versions. The function GetSystemTimePreciseAsFileTime() was described in 2.1.4.2. It is

proposed to have very fine granularity. Unfortunately GetSystemTimePreciseAsFileTime()

shows a misbehavior when a Windows system time adjustment is active. This is

counterproductive when the goal is precise synchronization of the system time to an NTP

server.

The following second part "Adjustment of System Time" deals with high accuracy system

synchronization.

...

Note: Don't miss more details described on the "News" page. A pdf version of the News

History can be downloaded here.

Note: Windows is a registered trademark of Microsoft Corporation in the United States and other countries. The
Windows Timestamp Project is an independent publication and is not affiliated with, nor has it been authorized,

sponsored, or otherwise approved by Microsoft Corporation.

http://www.windowstimestamp.com/PartIIAdjustmentofSystemTime.pdf
http://www.windowstimestamp.com/news
http://www.windowstimestamp.com/pdf_download_news

	Microsecond Resolution Time Services for Windows
	Arno Lentfer, June 2012
	Last update: Version 3.10, May 2019

	1. Abstract
	2. Resources
	2.1. GetSystemTimeAsFileTime API
	2.1.1. ActualResolution on Platform Type A
	2.1.2. ActualResolution on Platform Type B
	2.1.3. Changes of System File Time
	2.1.4. Windows 7/8/8.1/10 and Server 2008 R2/2012/2012 R2/2016
	Time services on windows have undergone changes with any new version of Windows. Considerable changes are to be reported beyond VISTA and Server 2008. The synchronous progress in hardware and software development requires the software to stay compatib...
	An existing invariant TSC influences the behavior of GetSystemTimeAsFileTime() noticeable. The influence to the functions QueryPerformanceCounter() and QueryPerformanceFrequency() is described in sections 2.4.3. and 2.4.4. Windows 8 introduces the fun...
	2.1.4.1. Resolution, Granularity, and Accuracy of System Time
	2.1.4.2. Desktop Applications: GetSystemTimePreciseAsFileTime()

	GetSystemTimePreciseAsFileTime() uses the performance counter to achieve the microsecond precision. Depending on the hardware platform and Windows version, a call to QueryPerformanceCounter may be expensive or not (HPET, ACPI PM timer, or TSC, see "MS...
	The function shall also be used with care when a system time adjustment is active. Current Windows versions treat the performance counter frequency as a constant. The high resolution of GetSystemTimePreciseAsFileTime() is derived from the performance ...
	2.1.4.3. Timer Periods with Invariant TSC

	2.2. The Sleep API
	2.3. The WaitableTimer API
	2.4. The QueryPerformanceCounter and QueryPerformanceFrequency API
	2.4.1. QueryPerformanceCounter
	2.4.2. QueryPerformanceFrequency
	2.4.3. Performance of the Performance Counter
	2.4.4. Is the CPU Time Stamp Counter an Alternative?

	2.5. Discussion of Resources

	3. Goals
	3.1. Time Support
	3.1.1. GetTimeStamp
	3.1.2. Time

	3.2. Timer Support

	4. Implementation
	4.1. The Real-time Priority Class Process: Kernel
	4.2. Less critical services: The IO-Process
	4.3. The Optional GUI-Process
	4.4. The Libraries

	5. Results

