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Abstract

Virtual Private Network is a widely used technology for secure data transmission.
The purpose of a VPN is to provide a secure of way of transferring sensitive data
between two or more parties over an insecure channel. Flaws in the implementations
of security protocols are some of the most serious security problems. This paper de-
scribes a popular VPN solution, OpenVPN, as well as methodology used to infer state
machines from a security protocol, using largely automated fuzzing techniques. If a
vulnerability is found, an attacker may remotely exploit vulnerable systems over the
Internet. State machines can be used to specify possible sequences of sent and received
messages in different states of protocol. Learning techniques allow the automatic in-
ference of the behavior of a protocol implementation as a state machine. Additionally,
fuzzing is a well known and effective testing method which allows discovering differ-
ent flaws within the implementations. Combining automatic state machine inference
and protocol fuzzing, it is possible to produce a universal state machine which is a
good representation of the implemented protocol structure. Manually inspecting these
state machines allows for a straightforward way to possibly find bugs, inaccuracies or
vulnerabilities in the implementation.

Keywords: virtual private networks, OpenVPN, state machines, protocol
state fuzzing, vulnerability detection
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1 Introduction

A Virtual Private Network (VPN) is a technology that provides a method of
securing information transmitted over an insecure channel. By allowing users
to establish a virtual private tunnel, it is possible to enable a secure access to
the private or internal company resources, data, and communication services
over the Internet. There are numerous VPN protocols: Point-to-Point Tunnel-
ing Protocol (PPTP), Layer 2 Tunneling Protocol (L2TP), Internet Protocol
Security (IPsec), OpenVPN, to name the most popular ones. Some of these
VPN solutions are largely complex and include multiple separate protocols with
each of them having its own security and availability challenges. For instance,
the implementation of IPSec protocol may use protocols like L2TP, Authentica-
tion Header and Encapsulating Security Payload (security protocols), IKE (key
management) , and a variety of cryptographic algorithms for authentication and
encryption. Considering the substantial number of VPN implementations and
their variations available, it is reasonable to assume that at least some of them
may have undiscovered vulnerabilities. Testing and possibly finding such bugs
and vulnerabilities is the main goal of this research paper. The focus of this
research paper is well known SSL VPN based protocol, called OpenVPN.

A communication protocol is a set of rules and conventions that describe
how information is to be exchanged between two or more entities [4]. It de-
fines message types that are comprised of a sequence of fields organized with
specific rules. These messages are then being sent from one party to another
which leads to protocol achieving distinctive unique states within itself. These
states describe all the stored protocol information at a given instant of time.
Given what is known about communication protocols, it is reasonable to assume
that any given communication protocol can be modeled as a list of transitions
(messages) and states.

Protocol state machines describe the message sequences that occur in the
communication protocol during the session. In this research, the state machines
will be used to learn how the protocol is implemented and how it behaves under
the different conditions. A proven tool which is able to test communication
protocols and provide a state machine based on the results is called LearnLib [5].
Using automated techniques, implemented in the LearnLib library, it is possible
to automatically infer these the machines from the protocols. The more details
about LearnLib library and its working will be explained in Chapter 3.2.1 and
Chapter 3.3.

To use LearnLib, input alphabet of messages that are sent to the System
Under Test (SUT) must be prepared. Likewise, an output alphabet of all pos-
sible received responses must be also be prepared.A special test harness will
be constructed in order to act as an intermediate later between the LearnLib
and the SUT. Then it will be run under varying conditions in order to monitor
its behavior and inputs. Since the selected OpenVPN protocol has neither an
official specification nor an RFC, it must be well analyzed and explored to be
successfully implemented within the learning framework.
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This particular testing technique used in this research is called fuzzing, It is
commonly used to test systems for implementation flaws, such as bugs, vulner-
abilities or stability issues. The idea of fuzzer is to send the target an unusual
inputs with an intention to possible produce unexpected behavior. Fuzzing, as
well as different fuzzing software will be explained in more detail in Chapter 3.3.

This goal of this research is to take a known security protocol, in particular,
OpenVPN implementation, and use aforementioned fuzzing techniques, com-
bined with state machine learning to derive an accurate state machine of the
protocol. This state machine is supposed to give a clear representation of the
protocol implementation. Next, manual analysis of the state machine can be
done to observe if the implementation strictly follows and complies with the
official specification. Furthermore, the state machine is tested for whether there
is more than one path leading to a successful exchange of application data as
well as checked for unusual or unnecessary behavior, possible bugs, inaccuracies
or vulnerabilities in the implementation.

Organization. The thesis is organized as follows. Chapter 2 gives an overview
on different research works related to learning state machines from network
protocols. Chapter 3 presents an overview about different kinds of Virtual
Private Networks and their implementations, automata theory and protocol
fuzzers. Chapter 4 focuses on detailed explanation of OpenVPN protocol and
its inner workings. Chapter 5 introduces test harness concepts and explains its
purpose in this project. Chapter 6 presents practical work performed in this
research which involve programming a test harness (custom OpenVPN client)
and attaching it to the LearnLib fuzzing framework in order to test OpenVPN
server. Next, in the chapters 7 and 8 the findings are presented and suggestions
for improvement and future work are given. Finally, Chapter 9 contains results
and conclusions.
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2 Related Work

This chapter will give a quick overview on the realated work performed in the
field of learning state machines from the security protocols.

Security communication protocols have not been explicitly studied using au-
tomatic inference and state machines. Nonetheless, there was some important
research performed on few security protocols. J. de Ruiter performed protocol
state fuzzing in eight TLS implementations [6] in order to find implementation
flaws. To infer state machines from implementations J. de Ruiter used Angluin’s
L* algorithm’s Java implementation called LearnLib. The following TLS im-
plementations were found to have flaws, in particular, GnuTLS, Java Secure
Socket Extension, and OpenSSL.

• GnuTLS (3.3.8). Sending HeartbeatRequest message during handshake
results in an alert being returned in response to the Finished message. The
handshake protocol would proceed but result in fatal error thus allowing
to go to a corresponding state via so-called “shadow” path. Due to this
bug, no integrity is provided for any previously received message.

• Java Secure Socket Extension (1.8.0 20). During regular TLS protocol
run the two paths are possible leading to exchange application data. One
of those paths is missing ChangeCipherSpec message from the client. Nev-
ertheless, the server will respond with a ChangeCipherSpec message to a
plaintext finished message from the client. Since the server can be tricked
into accepting plaintext data, it invalidates any assumption of data in-
tegrity or confidentiality of data sent to the server [6].

• OpenSSL (1.0.1i). In version 1.0.1 is it possible to hijack a session by
sending an early ChangeCihperSpec message to both the client and the
server. This can be done because session keys are computed even when
no ChangeCipherSpec is received.

F. Aarts et al. [7] presented an approach to infer models of entities in commu-
nication protocols, which also handles message parameters. They used abstrac-
tion, as used in formal verification, to the black-box inference setting. Authors
successfully inferred state machines of fragments of Session Initiation Protocol
(SIP) and TCP. Furthermore, F. Aarts et al. used the similar regular infer-
ence and abstraction approach to infer a model of Biometric passport [8] that
describes how the passport responds to certain input sequences. Even though
Biometric passport has quite a simple machine, it has several nuances. Also,
the application sometimes exhibits non-deterministic behavior. Since LearnLib
is restricted to infer behavior or deterministic Mealy machines, it cannot cope
with non-deterministic behavior.

Merten et al. [9] presented a straightforward method on how to manually
create application-specific data-aware test drivers for LearnLib. Finite state
machines as protocol models were used and studied an active black-box checking
algorithm and passive trace minimization algorithm on MSN instant messaging
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protocol [10]. They found many previously unknown bugs in both MSN clients.

Fides Aarts, et al. presented an approach to infer models of entities in com-
munication protocols, which also handles message parameters [7]. Their frame-
work adapts regular inference to include data parameters in messages and states
for generating components with large or infinite message alphabets.

The aforementioned research papers acted as an important source of material
for this research. In particular, J. de Ruiter’s [6] and F. Aarts et al. [7][8] papers
were particularly helpful when examining testing possibilities and constructing
a test harness.
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3 Background

In the following chapter the overview of the virtual private networks, in par-
ticular, IPsec, SSL and PPTP VPN solutions (3.1), their common implemen-
tations (3.1.4), introduction to state machines (3.2), automata learning (3.2.1)
and most commonly used fuzzers (3.3) is presented.

3.1 Virtual Private Networks

A VPN is a virtual network, built on top of existing physical networks, which
can provide a secure communications mechanism for data and IP information
transmitted between networks [11]. Its main purpose is to facilitate the secure
transfer of sensitive data across insecure channels (public networks). There
are three major families of VPN implementations in wide usage today: Secure
Sockets layer (SSL), IPsec and PPTP-based VPNs. They are the most widely
applied by big corporations thus requires the highest level of reliability and
security. The main attributes of the VPN include [11]: )

• Confidentiality means that no one can read the captured traffic at the
packet level. All of the information going through the insecure (public)
channel is encrypted and leaks no information about actually sent data.
This is achieved using encryption primitives.

• Authentication means that only the specifically assigned users can com-
municate using a secure VPN network. This prevents the unauthorized or
impersonating users to access the data in the VPN network.

• Integrity assures that none of the data is being transmitted was being
tampered between the authenticated sender and receiver.

Before going into details of VPNs, it is important to understand the structure of
networking. Each network protocol resides on a specific layer, defined in several
different conceptual models, like OSI (Open Systems Interconnection) model [1]
or TCP/IP (Internet Protocol Suite) [2] model (Tab.1).

OSI model has seven network layers - Physical, Data link, Network, Trans-
port, Session, Presentation, Application, while TCP/IP has four network layers
- Data Link, Network, Transport, and Application. Each layer adds more infor-
mation to the data packet and higher level layers are not aware of lower level
layer functions. Thus a security control at a higher layer cannot provide full
protection for lower layers. Different VPNs provide security at different network
layers and this is important to consider when choosing a VPN solution as it may
determine the easiness to use it in the company. The three most commonly used
VPN technologies are SSL, IPsec, and PPTP. Each of them resides on different
network layers. Nevertheless, the layering of VPNs is not very straightforward
as they usually use multiple protocols which are present in different layers.

For instance, in the OSI model, TLS protocol resides between Transport layer
(TCP protocol) and Application layer. However, as OSI is just a conceptual



3 Background 10

Layer
Model

OSI TCP/IP

1 Application Application

2 Presentation Transport

3 Session Internet

4 Transport Link

5 Network

6 Data Link

7 Physical

Tab. 1: OSI [1] and TCP/IP [2] computer networking models

model and protocols are often very complicated, it is tough to assign a concrete
layer for each protocol.

As mentioned previously, in order to perform a successful fuzzing of a security
protocol the client implementation of OpenVPN will be made to communicate
with the OpenVPN server. To achieve this, it is important to at least grasp the
network fundamentals, some of which were mentioned in this chapter. During
this research a lot of time was spent working on low level components of the
OpenVPN implementation. Since OpenVPN operates inside the User Datagram
Protocol (UDP) protocol (explained in Ch. 4), most of the work have been
done working on the Transport layer (OSI model), which carries UDP protocol.
Additionally, during the construction of the test harness, there were some choices
made in regards on how to best implement network layers using Python sockets
and Scapy abstraction layers. This will be explained in more detail in Ch. 6.

3.1.1 IPsec VPNs

This section gives a brief summary on fundamentals of one the most commonly
used VPN protocol - IPsec.

IPsec is a framework of open standards for ensuring private communications
over IP networks which has become the most commonly used network layer
security control [11]. IPsec is based on securing Network layer of TCP/IP
model. In many environments securing Network layer is a better solution than
securing higher Transport or Application layers. It makes a way for network
administrators to enforce certain security policies, and also provides a more
flexible way in protecting IP information for each packet [11]. Depending on the
implementation IPsec can provide a combination of following security measures:
confidentiality, integrity, peer authentication, replay protection, traffic analysis
protection and access control [11]. The three commonly used architecture types
used in IPsec, are [11]:

1. Gateway-to-Gateway architecture. VPN gateway may be a dedicated de-
vice or just a part of network device, such a router or firewall [11]. VPN
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gateway essentially separates internal network from anything over other
side of gateway.

2. Host-to-Gateway architecture. Primarily used to provide secure remote
access. The host (IPsec client) uses VPN tunnel to connect to a VPN
gateway. Whenever a host wishes to create a VPN connection to a server,
he must authenticate and establish a connection with a gateway, which
then manages host’s connection to a VPN server.

3. Host-to-Host architecture. Least common architecture type, mostly used
by system administrators to perform remote management. In this scenario
direct connection is established between two separate hosts - one host acts
as a VPN client and another as a VPN server.

In all three architecture types, in order to connect to the host, typically must
authenticate itself. This is usually done either by gateway itself of by consulting
a dedicated authentication server.

As noted earlier, IPsec uses multiple additional protocols to establish a secure
connection [11]:

Authentication Header (AH) , defined in RFC 4302 [12], provides integrity
protection for all packet headers (except few IP header fields) and user authen-
tication. Optionally it can provide replay and access protection. AH is not able
to encrypt data.

Encapsulating Security Payload (ESP) , defined in RFC 4303 [13], has two
modes: tunnel and transport. Tunnel mode can provide encryption and integrity
protection for an encapsulated IP packet as well as authentication for ESP
header, while transport mode can provide encryption and integrity protection
for the payload of an IP packet and integrity protection for the ESP header.

Internet Key Exchange (IKE) is used to negotiate, create and manage Secu-
rity Associations (SA) [11]. SA is a set of rules needed to define the features and
security mechanisms for the establishing a IPsec connection. It can be defined
manually, however it does not scale well with large-scale VPNs. A more common
method is using one of the five possible IKE exchange modes - main, aggres-
sive, quick, informational or group. The modes differ in speed and the usage
of their cryptographic primitives for establishing a secure connection. IKEv2
is the newest version of IKE, and it improves the protocol in the following ar-
eas: clearly defined RFC (RFC 5996 [14]), simplicity, reliable message delivery,
protection against Denial of Service (DoS) attacks, and improved usage of IKE
with Network Address Translation (NAT) gateways [11].

3.1.2 SSL VPNs

Originally known as Secure Socket Layer (SSL), and later renamed to Transport
Layer Security (TLS), TLS is a protocol designed to provide a secure connection
over an insecure network. TLS achieves the following goals: confidentiality, in-
tegrity of data, authentication of server and authentication of the client [15]. It
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uses X.509 certificates with asymmetric cryptography to authenticate the coun-
terparty and negotiate a symmetric session key. To establish a secure connec-
tion, TLS uses Handshake, ChangeCipherSpec and Alert subprotocols. Multiple
different implementations of TLS were fuzzed and tested by J. de. Ruiter [6]
and therefore, this research is not concerned about the testing security of TLS
itself.

An SSL VPN can tunnel an entire network’s traffic or secure an individual
connection. One advantage of SSL VPNs over an IPsec VPNs is that SSL VPNs
can connect to more restricted environments where NAT (Network Address
Translation) or strict firewall rules are used. The reason for this is because
most organizations do not filter the traffic on the TCP port 443, as it is usually
used for employees to securely access Internet. For instance, OpenVPN, SSL-
based VPN, uses UDP Port 1194 for secure data transmission. However, in the
case that port is filtered, OpenVPN can also make use TCP port 443. The
advantages of using UDP as a transport protocol are discussed at the beginning
of the Chapter 4.

There are two primary types of SSL VPNs, namely SSL portal VPNs and
SSL tunnel VPNs [15].

• SSL portal VPN works over a single network port, namely TCP 443 and
acts as a Transport layer VPN. It allows users to connect with most web
browsers to access web related content.

• SSL tunnel VPN is used to access multiple network services through a
tunnel that is running under SSL. The main difference from portal SSL
VPNs is that tunnel SSL VPNs allow accessing multiple network services,
including applications and protocols that are not web-based. The require-
ment for SSL tunnel VPN is that it must be able to handle different
active content like Java, JavaScript, Flash, ActiveX [15]. Being able to
use more services, this tunnel has more capabilities compared to a portal
type VPNs, but it may prevent some users from being able to connect to
VPN. The SSL VPN tunnels are created in SSL, but just like in IPsec
tunnels, IP traffic is fully protected by the tunnel [15].

Note: in this research the abbreviations SSL and TLS are used interchange-
ably. In general, newer version (TLS) is preferred, however some systems and
protocols are very well known for their name which includes SSL, e.g. SSL VPN.

3.1.3 PPTP VPNs

Point-to-Point Tunneling Protocol (PPTP) is a virtual private network imple-
mentation method which uses TCP control channel and a Generic Routing En-
capsulation (GRE) tunnel to encapsulate Point-to-Point Protocol (PPP) [16]
packets and send them over TCP/IP links. The protocol was developed by
a vendor consortium and documented in RFC 2637 [17]. PPTP encapsulated
virtual network packets inside the PPP packets, which are then encapsulated
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inside the GRE packets and these encapsulated inside the TCP control channel.
Everything is then sent over IP network on TCP port 1723.

3.1.4 VPN implementations

There are number of VPN implementations available both closed and open
source as well as for multiple platforms. Several known VPN packages are listed
below.

• StrongSwan is an open source IPsec implementation for the Linux oper-
ating system [18]. Maintained by Andreas Steffen, strongSwan supports
features, such as IPv6, Android 4+, X.509 public key certificates, certifi-
cate revocation lists, RSA private key storage on smartcards, ability to
interoperate with various MS Windows and Mac OS X VPN clients, full
implementation of IKEv2 protocol, and much more.

• OpenVPN is an SSL VPN implementation which implements OSI layer
2 or 3 secure network extension using the industry standard TLS proto-
col [19]. Specifics of OpenVPN are explained in detail in Chapter 4.

• SoftEther 1 is an open source multi-protocol VPN software. It supports
a variety of VPN protocols: OpenVPN, L2TP/IPsec, L2TPv3/IPsec,
EtherIP, Microsoft Secure Socket Tunneling Protocol (SSTP), VPN over
HTTPS (SSL VPN), VPN over Domain Name System (DNS), VPN over
Internet Control Message Protocol (ICMP).

Both IPsec and SSL-based VPNs were considered for this research. Seeing as
IPsec is usually very complex, comprising of multiple protocols, the OpenVPN
was chosen to perform the security tests. It would require considerable time
to modify or create an IPsec client which establishes a full IPsec connection
using multiple complex protocols. Nevertheless, the advantage IPsec has over
the OpenVPN, is that there exist an RFC specification document for each of
IPsec security protocols (IPsec [20], AH [12], ESP [13], IKEv2 [14]), while the
OpenVPN does not have one.

3.2 State Machines

This chapter will provide a brief summary on state machines, and how they will
be applied in this research.

A Mealy machine [21] is a finite state machine where every transition involves
an input and a resulting output. Its output is determined both by its current
state and current outputs. A Mealy machine is a tuple A = 〈I,O,Q, q0, δ, λ, 〉,
where I, O and Q are nonempty sets of input symbols, output symbols, and
states, respectively; q0 ∈ Q is the initial state; δ : Q × I � Q is the transition
function; and λ : Q × I � O is the output function. Elements of I∗ and O∗

1 www.softether.org
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are input and output strings respectively. In this research Mealy machines are
used to model a complete structure of an OpenVPN protocol. Next chapter
describes how state machines can be used to learn network protocols.

3.2.1 Automata Learning

Automata (State Machine) learning, also known as regular inference, can be used
to create formal models of different real-time systems. In recent years it was
applied to learn models for electronic passports [8], telephony systems [22], and
communication protocol entities [23]. The main challenge to infer the correct
state machine lies in correctly preparing application-specific learning setup. This
includes determining a suitable form of abstraction and finding ways to manage
concrete runtime data that influences the behavior of the target system [9].

Communication protocols can be modeled with simple state machines (Deter-
ministic Finite Automaton (DFA), Mealy) or mode advanced Extended Finite
State Machine (EFSM) [23].

To infer state machines LearnLib library uses L* algorithm, which was first
described by Dana Angluin in 1987 [24]. Niese extended the L* algorithm to
support Mealy machines which are implemented in LearnLib. It is an active
query algorithm which puts queries consisting of an input string to a certain
teacher and uses the returned output to model a Mealy machine.

A so-called Learner (i.e. LearnLib library), who initially has no knowledge
about the Mealy machine M, can ask queries to a Teacher, who knows the
automaton [25]. There are two possible queries:
– A membership query consists of sending an input string to a Teacher and
receiving a response back.
– An equivalence query consists of asking whether a hypothesized machine H is
equivalent to M. the Teacher will answer yes if H is correct or else provides a
counterexample.

Normally Learner keeps asking a sequence of membership queries until a
solid hypothesis H can be built from responses. Next equivalence query is made
to find out whether H is equivalent to M. If equivalent, then Learner has
succeeded, or else the returned counterexample is used to perform subsequent
membership queries until hypothesized automaton is equivalent to M [25].

In the experiments performed, the Learner is the LearnLib instance and the
Teacher is the OpenVPN server. However, the Learner cannot simply send
the queries to the Teacher and expect it to understand. OpenVPN server
works by sending and receiving specific packets which include different set of
dynamic components. An abstraction layer must be created to translate Learn-
Lib Learner queries to the packet format understandable to Teacher (OpenVPN
server).

An Oracle forM is a device which accepts and inclusion query of hypothesis
H as input, where H is a Mealy machine with inputs I [7].

The two possible challenges when implementing Learner -Teacher setup are [9]:
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• Authentication. Security protocols usually require valid authentication
tokens or valid login credentials to proceed to next communication step.

• Dependences on substructures: Often returned data structure cannot be
directly used as a parameter value for different methods and some under-
standing of the application’s data structures is needed in order to follow
protocol.

3.3 Protocol Fuzzers

Fuzzing is a testing technique used to find flaws and unexpected behavior in
the software [10]. During the fuzzing process, the system under test is provided
with random, unexpected or invalid data, which essentially targets the corner
cases, and is not considered during software development. Below some of the
more popular fuzzing frameworks are presented. Since often the fuzzed system is
complex, it is not possible to have a single tool to test them all. These fuzzing
frameworks allow creating a specific fuzzing solution for a particular system.
Some of the possible attributes of a fuzzing framework are:

• Support for abstract with the goal to minimize the number of tedious
tasks.

• Support for intelligent fault injection - a known input, previously known
to cause system problems. An example would be different SQL, string
injections, format string, and directory traversal.

• Possibility to interact with a debugger attached to the target system to
see more clearly how the system reacts.

• Support for a wide range of formatted data to be included in the fuzzing
script.

• Support for code to reuse and saves a lot of time when building fuzzing
components for different software products in the future.

The following chapter will present and give a short summary on the five
popular fuzzing frameworks - Snooze, Peach, Sulley, Netzob and LearnLib.

3.3.1 Snooze

Snooze is a tool used to construct stateful network protocol fuzzers [26]. It
includes Fault Injector, the Traffic Generator, the Protocol Specification Parser,
the Interpreter, the State Machine Engine, and the Monitor.

1. The Fault Injector tries to manipulate and fuzz messages in such way,
which may trigger a fault in the target system.

2. The Traffic Generator transforms user received messages into network
packets and sends them to the target system. It may update certain
fields like checksums or content length fields.
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3. The Parser is used to parse the protocols specification so other parts of
the tool can understand the data.

4. The Interceptor is the main component which runs the fuzzer and must
be provided with protocol specifications, user scenarios and a module im-
plementing scenario primitives.

5. The State Machine Engine keeps track of the state of transmitted and
received messages. It can check if messages trigger the state change from
the current state of a new state.

6. The Monitor performs the behavior and the traffic data of the target
system. It is able to find faults, abnormal behavior and unexpected output
from the fuzzed target [26].

3.3.2 Peach

Peach 2 is a fuzzer, supporting a variety of features, e.g. multiprotocol support,
stateful (context-aware) fuzzing, multithreaded/distributed fuzzing, ability to
parse responses, distinguishing between data types and vulnerabilities. Main
basic components of the Peach are:

1. The Generator generates input data which is sent to the target system.
This can range from simple strings to complex data types.

2. The Transformer changes the data in a specific way. This is usually an
encoding (base64, HyperText Markup Language (HTML), and gzip).

3. The Publisher implements a form of transport for generated data through
a protocol to a target system.

4. The Group contains one or more generators.

3.3.3 Sulley

Sulley is a Python-based fuzzing framework [27]. A few notably included fea-
tures of Sulley are packet capture, VMware automation, crash reporting, ability
to restart the target application in the event of a crash and continue fuzzing.
Just like Spike, it uses block-based fuzzing. Sulley components include primi-
tives, blocks, groups, encoders, dependencies, block helpers, and legos. Sulley
works with several agents that are described below.

• The network monitor agent monitors network communications (using pcapy)
and logs data to PCAP files.

• The process monitor agent is responsible for detecting faults. When the
fault is triggered, it is both logged and transmitted back to the Sulley
session.

2 www.peachfuzzer.com
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• The VMware control agent provides an Application Programming Inter-
face (API) for interacting with a Virtual Machine (VM). It can make
snapshots of the current VM state and if needed it can revert back to
them.

• The web monitoring agent provides a graphical user interface for interac-
tion with a fuzzer as well as graphical representation of fuzzing progress [27].

3.3.4 Netzob

Netzob 3 is an open source tool for reverse engineering, traffic generation and
fuzzing of communication protocols. It allows inferring the message format and
the state machine of a protocol through passive and active processes. Netzob
uses specific algorithms to learn and represent vocabulary of the protocol. The
tool can also semi-automatically learn state machine (grammar) of a protocol
using specific algorithms. It also supports protocol simulation which is based
on inferred protocol.

3.3.5 LearnLib

LearnLib is a free, open source Java library for automata learning algorithms [5].
LearnLib provides Java implementation of Angluin’s L* algorithm is able to
produce finite automata and Mealy machines. LearnLib consists of three main
interfaces: LearningAlgorithm, MembershipOracle, and EquivalenceOracle.

1. LearningAlgorithm encapsulates implementations of learning algorithms
and offers three methods: startLearning, getHypothesisModel and refine-
Hypothesis.

2. MembershipOracle encapsulates any structure that can answer member-
ship queries. For Mealy machine learning, this Oracle provides system
output for every single input symbol. This interface has a single method
called processQueries. This method has to be provided with a collection
of query objects that have to be processed by the membership Oracle.

3. EquivalenceOracle is used to analyze counterexamples. Since conjectures
created by learning algorithms are not fully complete after the initial learn-
ing round, the mechanism is needed to refine conjectures by analyzing
counterexamples that reveal mismatches between conjecture and SUT [5].

This research is focused on the LearnLib as a learning-fuzzing framework.
The main reason for latter is that several related research projects were per-
formed using LearnLib which yielded positive results. Additionally, most other
fuzzing frameworks do not provide a way to infer a state machine based on
observed client-server interactions.

3 www.netzob.org
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4 OpenVPN

In this chapter the OpenVPN and its inner workings are further examined.
Before selection of the OpenVPN protocol, another VPN protocol - IPsec was
considered. IPSec, however, provides a full low-level specification which is im-
portant to anyone trying to implement VPN themselves. The OpenVPN, on
the other hand, does not have an official specification, instead, a quick low-level
summary on its security, as well as documents for configuring the VPN itself.
Additionally, the OpenVPN has quite a lot of useful comments in the source
code, however they do not always match the observed behavior or a low-level
summary provided on the official website. Due to this reason, it was decided
to document the OpenVPN protocol in a low-detail understandable fashion,
which could be used by anyone trying to write a custom implementation of the
OpenVPN. To achieve this, multiple sources of information were studied and
analyzed. Notably, low-level summary on the official website, source code, cap-
tured the OpenVPN packets in Wireshark, VPN related books, official support
forums. Following chapter will provide a low-level details on the OpenVPN
protocol based on the collected and summarized data.

4.1 Introduction

The OpenVPN is a SSL VPN which implements the OSI layer 2 and 3 secure
network extension [19]. It allows any IP subnetwork being tunneled over a
single UDP or TCP port and completely relies on the security of OpenSSL. The
high-level client-server communication is shown in Fig. 1. Just like other VPNs,
the OpenVPN provides the essential security services, such as authentication,
encryption, integrity protection, and access control.

Fig. 1: OpenVPN tunnel
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The OpenVPN utilizes the OpenSSL encryption library which itself imple-
ments TLS. Originally known as Secure Socket Layer (SSL), TLS is a protocol
designed to provide a secure connection over an insecure network. TLS uses
X.509 digital certificates4 with asymmetric cryptography to authenticate coun-
terparty and negotiate a symmetric tunnel session key. TLS is most widely
known for being used over Hypertext Transfer Protocol (HTTP) to provide en-
cryption and authentication, which led to the naming of HTTPS, which stands
for HTTP Secure. To establish a secure connection, TLS uses Handshake,
ChangeCipherSpec, and Alert subprotocols. Multiple different implementations
of TLS, including OpenSSL, were fuzzed and tested by de. Ruiter [6] and there-
fore this paper is not concerned about testing security of TLS itself.

Unlike a vanilla TLS, the OpenVPN gives the user an opportunity to use a
static key (or pre-shared passphrase) to generate a what is known as HMAC
firewall, which authenticates the whole TLS handshake sequence. The details
of HMAC firewall, as well as the security features it provides are explained in
Chapter 4.5. The OpenVPN multiplexes the TLS session used for authentication
and key exchange (Control Channel) with the actual encryption tunnel data
stream (Data Channel)(Fig. 2) [3]. As UDP is connectionless protocol, the
encrypted and signed IP packets are tunneled over UDP without any reliability
guarantee. The reliability needed for secure authentication is provided by the
TLS protocol which uses TCP as its reliability layer. It is important to note that
control and data channels are explained separately, however, they are inside the
same UDP (or TCP) tunnel hence on the same network layer.

The general structure of the OpenVPN packet and ensuing encapsulation can
be seen in Fig. 3. It is explained in detail further in section 4.1.1. As shown, the
OpenVPN data is encapsulated inside the UDP (or less commonly TCP) layer.
The structure shown in Fig. 3 applies to all OpenVPN packets, however, different
packets will have different OpenVPN payloads. For instance, P CONTROL V1

packets will have TLS protocol data encapsulated inside the OpenVPN payload.

Default configuration

The OpenVPN provides a lot of different options for configuring and establishing
the VPN connection. This chapter (Ch. 4) in detail describes the OpenVPN
protocol mechanics and structure without going into the details of different
configuration options the implementation itself may provide.

It is important to note that due to various ways of configuring the OpenVPN
and selecting different options, it is unfeasible to provide a clear structure for
every type of packet possible. Different options enable various functions, and
thus, the packet format and structure will differ. Below the packet structure of
the default OpenVPN configuration is shown.

4 Digital certificates are used to ensure that the public key belongs to someone who claims
to be the owner of that public key. The certificate contains the details (name, serial number,
expiration dates, a digital signature of Certificate Authority (CA)) of the person or organiza-
tion as well as public key [28].
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Fig. 2: OpenVPN using multiplexer

Fig. 3: OpenVPN packet encapsulation

• TLS mode (as opposed to pre-shared static key mode) - uses SSL/TLS
protocol + certificates for authentication and key exchange (explained in
Chapter 4.2.2).

• HMAC authentication of packets which are the part of TLS mode authen-
tication sequence. It is enabled using --tls-auth option in the configu-
ration, and protects against buffer overflows (explained in Chapter 4.5).

• TLS mode key method #2. Defined by --key-method 2 option (explained
in Chapter 4.2.2).

4.2 Authentication modes

The OpenVPN provides two different authentication modes. The main mode
uses TLS with certificates and/or user’s credentials to provide security. Another
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mode uses pre-shared static keys, which by default provides authentication and
encryption. There are multiple differences and security considerations for using
each of the modes. The high-level comparison can be seen in Tab. 2.

The aforementioned comparison table compares even slight differences the
two modes may have, which may not be relevant in real world scenario. For
instance, TLS mode is described as having the slower speed, however, that en-
tirely depends on how often the tunnel session key renegotiation is performed.
Granted that the OpenVPN tunnel session keys are not often renewed, the
difference becomes marginal as the tunnel encryption itself is performed using
symmetric keys in both pre-shared static key and TLS modes. Public-key cryp-
tography is only used to establish secure channel so exchange of symmetric key
can take place. This is explained in more detail in Chapter 4.2.2.

Both the pre-shared static key mode and the TLS mode provide equivalent se-
curity assuming they are implemented correctly and use identical cryptographic
primitives. That said, pre-shared static key mode does not provide the key
renewal mechanism and thus perfect forward secrecy5 is not provided. This
could be regarded as a security concern. Since pre-shared static key mode uses
symmetric-key algorithm6, it is simpler to implement and has improved perfor-
mance when it comes to cryptographic operations. However, pre-shared static
key mode has very limited scalability as no automatic key-exchange is possi-
ble. In addition, symmetric key must be present on each OpenVPN peer in a
plaintext form which is an additional security challenge. Peer authentication in
the pre-shared static key mode is provided only by the ownership of the shared
symmetric key owned by each of the peers.

Both authentication modes are explained in more detail in the next two
chapters.

4.2.1 Pre-shared static key mode

The first authentication mode of the OpenVPN is pre-shared static key mode. In
pre-shared static key mode, the encryption and authentication are performed
solely using a static key, generated and shared between the OpenVPN peers
before the tunnel is started. This static key contains four independent keys:
HMAC send, HMAC receive, encrypt and decrypt. By default in static key
mode, both hosts will use the same HMAC key and the same encrypt/decrypt
key. In the official OpenVPN implementation, the key is derived using random
bits obtained from the RAND bytes OpenSSL function. Authentication in this
mode is provided solely by the ownership of pre-shared static key.

The main security challenge of a pre-shared static key mode is that static
key must be manually shared between all involved parties. Ideally, the most
secure way to transfer a symmetric key would be to physically deliver it to

5 Perfect forward secrecy ensures that compromise of long-term keys does not compromise
the tunnel session keys used in the past.

6 Symmetric-key algorithm is a cryptographic algorithm which uses the same key for both
data encryption and decryption.
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the VPN peer, however, this method certainly does not scale well, as the key
renewal procedure would be greatly inefficient. An alternative method would
be automatically distributing keys via SSH on a daily basis, so any compromise
of the key would only allow an attacker to decrypt traffic captured on that
particular day. This method, however, would largely rely on the security of an
SSH implementation. Common ways of doing that would be using SSH based
protocols - Secure Copy (SCP) or Secure File Transfer Protocol (SFTP) to
securely transfer keys over the Internet.

The aforementioned static key has 2048 bit length, and consists of 512 bit
encrypt, decrypt, HMAC send, and HMAC receive keys. Despite the long key,
the default implementation only uses 128 bits (Blowfish) for cipher and 160 bits
for HMAC (SHA1), which is used for tampering protection. The reason behind
such a large key is to accommodate future ciphers and HMAC hashes which
may require longer keys[3].

Static key mode by definition does not provide Perfect Forward Secrecy, so
if the symmetric key is stolen, all the communications previously encrypted by
that specific key are compromised. This is an important security consideration,
which should be well thought over by those using the OpenVPN.

It is good to understand how the OpenVPN handles pre-shared static key au-
thentication and encryption, however this mode does not scale well and usually
most organizations prefer to use TLS mode.

4.2.2 TLS mode

Second, and the most popular OpenVPN authentication mode is TLS mode. In
contrast to pre-share static key mode, TLS mode uses TLS protocol to authen-
ticate, establish secure channel and exchange the symmetric tunnel session key
between peers. Just like in pre-shared static key mode, session key is used to en-
crypt the data tunnel, however, the authentication and symmetric key exchange
take place using TLS protocol. This not only provides an automatic and secure
way of distributing symmetric keys, but also a way to renew the symmetric key
at any point during the communication. The aforementioned aspect of the TLS
mode provides the Perfect Forward Secrecy, which is not present in pre-shared
static key mode.

The structure of the tunnel session key derivation TLS packet, as shown in
Wireshark, can be seen in Fig. 4.

The transfer of tunnel session keys are encrypted and carried inside the TLS
Record layer, so it cannot be decrypted without the proper TLS certificates.
The two main steps in this protocol are shown below.

1. Negotiation of the TLS connection. Both sides of the connection are au-
thenticated by exchanging certificates and verifying the certificate of the
opposing side. If the authentication is successful, the protocol proceeds
wit the step two. Otherwise, the connection is terminated.

2. Tunnel session keys are negotiated over the already established secure TLS
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Fig. 4: Session key derivation TLS packet as seen in Wireshark

channel. The tunnel session key derivation TLS packet structure depends
on the OpenVPN key method being used. TLS mode supports two key
methods, which are described below.

(a) If the first key method is used, then the tunnel session keys are de-
rived from OpenSSL cryptographic library RAND bytes function. P_
CONTROL_HARD_RESET_CLIENT_V1 and P_CONTROL_HARD_RESET_SERVER_

V1 messages are used to initiate key derival procedure. The tunnel
session key derivation TLS packet structure is shown in Tab. 3.

(b) If the second key method is used, (default in the OpenVPN 2.0+),
then the tunnel session keys are derived from the RAND bytes func-
tion passed through the TLS pseudo-random function (TLS PRF).
TLS PRF mixes random key material using entropy from both sides
of the connection. P_CONTROL_HARD_RESET_CLIENT_V2 and P_CONTROL_

HARD_RESET_SERVER_V2 messages are used to initiate key derival pro-
cedure. Tab. 4 shows how the TLS plaintext packet is assembled.

In order to successfully construct a OpenVPN client, it is important to un-
derstand the key differences explained in this chapter between the TLS modes,
key methods and their respective packet structures.
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Pre-shared static key mode TLS mode

Crypto mode Symmetric Asymmetric & Symmetric

Handshake No Yes

Implementation Simpler More complex

Speed Faster Slower

CPU consumption Smaller Higher

Scalability Limited Very good

Key exchange No Yes

Encryption keys renewal No Yes

Peer authentication Yes Yes

Perfect forward secrecy No Yes

Tab. 2: Comparison of pre-shared static key mode and TLS mode

No. Type Note

1 Cipher key n bytes

2 HMAC key length in bytes 1 byte

3 HMAC key n bytes

4 Options string
n bytes, null terminated, client/server options
string should match

Tab. 3: The tunnel session key derivation TLS packet using first key method [3]

No. Type Note

1 Literal 0 4 bytes

2 Key method type 1 byte

3 key source structure

4
options string length, including
null

2 bytes

5 Options string
n bytes, null terminated, client/server
options string must match

6
username string length, includ-
ing null

2 bytes

7 Username string n bytes, null terminated

8
password string length including
null

2 bytes

9 Password string n bytes, null terminated

Tab. 4: The tunnel session key derivation TLS packet using second key method
(items 6 to 9 are optional) [3]
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Value
Op
code

Message type Explanation

1 0x01 P CONTROL HARD RESET CLIENT V1
Initiate TLS mode handshake using
first key method

2 0x02 P CONTROL HARD RESET SERVER V1
Reply to TLS mode handshake initia-
tion using second key method

3 0x07 P CONTROL HARD RESET CLIENT V2
Initiate TLS mode handshake using sec-
ond key method

4 0x08 P CONTROL HARD RESET SERVER V2
Reply to TLS mode handshake initia-
tion using second key method

5 0x03 P CONTROL SOFT RESET V1 Force tunnel session key renegotiation

6 0x04 P CONTROL V1 Control channel packet (TLS data)
7 0x05 P ACK V1 Acknowledgment

8 0x06 P DATA V1 Data channel packet (encrypted)

Tab. 5: Combined list of message types for TLS mode (both key methods)

Value Message type Comments

1 P CONTROL HARD RESET CLIENT V2 Key method 2 from client
2 P CONTROL HARD RESET CLIENT V2 Key method 2 from server
3 P CONTROL SOFT RESET V1 Forcing tunnel session key renegotiation
4 P CONTROL V1 Control channel packet (TLS data)
5 P ACK V1 Acknowledgement
6 P DATA V1 Data channel packet (encrypted)

Tab. 6: Message types for default OpenVPN configuration (4.1)

4.3 Messages And Client-Server Communication in TLS
mode

This section only concerns the TLS mode messages and authentication using the
default OpenVPN configuration as described in Chapter 4.1. The pre-shared
static key mode does not have the key exchange and authentication mechanisms,
thus client-server communication of later mode is not discussed.

The OpenVPN TLS mode has eight different message types used to establish
(Control channel) and manage (Data channel) the VPN tunnel. Tab. 5 shows all
possible message types in the OpenVPN protocol using TLS mode. All of them
are not used at the same time, and the message types depend on the selected
key method (explained in Chapter 4.2.2). The default OpenVPN configuration
(Ch. 4.1) only uses five message types (Tab. 6).

All of the OpenVPN message types can be seen in the sequence diagram of
the OpenVPN TLS mode session establishment between a client and a server
(Fig. 5). In the TLS mode, every packet is recognized based on its opcode.
Opcode uses high 5 bits of the first byte of the OpenVPN layer header and is
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Client Server

Initial data
from client

1
P CONTROL HARD RESET CLIENT V2

2
Initial data
from serverP CONTROL HARD RESET SERVER V2

Acknowledgment of
P CONTROL HARD
RESET SERVER V2

3 P ACK V1

TLS handshake;
Session key
derivation

4 P CONTROL V1

5
Acknowledgement of

P CONTROL V1P ACK V1

. . . TLS handshake;

Tunnel session

key derivation. . .

6
End of session
key derivationP CONTROL V1

Acknowledgement of
the last

P CONTROL V1
7 P ACK V1

8
Tunnel data
(both ways)

P DATA V1

9
Request session

key renegotiationP CONTROL SOFT RESET V1

Control channel

Data channel

Fig. 5: Regular OpenVPN session (TLS mode, default configuration (4.1)
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Fig. 6: Initial OpenVPN packet as seen in Wireshark

included in every single OpenVPN packet. The example of the initial OpenVPN
packet (message type P_CONTROL_HARD_RESET_CLIENT_V2) can be seen in Fig. 6.

As previously mentioned, first OpenVPN Control channel packet is P_CONTROL_
HARD_RESET_CLIENT_V2, which is inspected by checking its one-byte header,
containing the packet’s opcode and key ID. The opcode defines if the packet
is processed as a Control channel or Data channel packet. In the client-server
communication diagram (Fig. 5) Control, the channel messages are indicated in
red and Data channel messages in blue. All the P_DATA_V1 and P_CONTROL_V1

packets have TLS protocol data inside, however, their OpenVPN layer structure
differs. This will be elaborated in the following chapters.

As mentioned previously, the OpenVPN uses two separate channels - Control
channel for authentication and establishing a tunnel, as well as Data channel,
which contains the OpenVPN tunneled data when the tunnel has already been
established. The following chapters will provide details about Control and Data
channels.

4.3.1 Control Channel

The Control channel initiates the secure data tunnel establishment procedure,
performs TLS handshake, including session starting, key exchange and cipher
suite agreement. After the Data channel is established, the Control channel
is also responsible for the key renegotiation procedure. The Control channel
is depicted in the OpenVPN client-server model in Fig. 5. There are nine
distinguishable steps in any OpenVPN TLS mode session. Steps 1 to 7 and
9 represent the Control channel, while step 8 represents the Data channel. The
following chapter, Chapter 4.3.2, will particularly go into detail on the Data
channel. As seen in Fig. 5, the Control channel can be separated into following
parts:

• Step 1, 2 and 3: session initialization packets sent between client and
server along with their corresponding acknowledgment packets;
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Fig. 7: Network layer encapsulation within the P CONTROL V1 packet

• Step 4, 5, 6 and 7: TLS handshake encapsulated inside the OpenVPN
protocol layer. Following the successful TLS handshake, tunnel session
key derivation is performed.

• Step 9: request for tunnel session key renegotiation.

The Control packet’s plaintext header contains opcode and session ID, which
determine if the packet is destined for an active TLS session or whether a new
TLS session should be started. Each side of communication has its own 64-bit
session ID, which is randomly generated and used to identify the OpenVPN
session. Data channel tunnel session key renegotiation can be requested based
on the message type P CONTROL SOFT RESET V1. Renegotiation of the tunnel
session key can be performed periodically, based on three parameters:

• Renegotiate tunnel session key after N seconds (reneg-sec N);

• Renegotiate tunnel session key after N bytes (reneg-bytes N);

• Renegotiate tunnel session key after N packets (reneg-pkts N).

Control channel packets are P_CONTROL_HARD_RESET_CLIENT_V2, P_CONTROL_
HARD_RESET_SERVER_V2, P_CONTROL_V1and P_ACK. P_CONTROL reset messages
are used to initiate the OpenVPN protocol and include initial protocol data.
The structure of P_CONTROL reset message type packets is shown in Tab 7.
P_CONTROL_V1 type indicates control packet which has TLS protocol data inside.
Once the TLS session has been initialized and authenticated, the TLS channel
is being used to derive and exchange secret keys. TLS control channel is also
used to renew key material after a certain period, as defined by --regen-sec,
--regen-bytes or --regen-pkts options. The structure of P_CONTROL_V1 mes-
sage packet type is the same as for initial reset packets (Tab. 7), except that
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No. Type Size Note

1 Opcode / key ID 1 byte

2 Session ID 64 bit
Randomly generated,
used to identify TLS
session

3 HMAC
16 or 20
bytes

Used only if --tls-auth

(see note below) is speci-
fied

4 Packet ID
4 or 8
bytes

Includes sequence num-
ber and optional time t

timestamp

5 Network time 4 bytes Local network time

6 P ACK packet ID array length 1 byte

7 P ACK packet ID array Used if length > 0

8 P ACK remote session id Used if length > 0

9 Message packet ID 4 bytes

Tab. 7: P CONTROL initial reset packet structure

it has the TLS protocol layer as its payload (Fig. 7). The networking layer
encapsulation of P_CONTROL_V1 can be seen in Fig. 7.

For every P_CONTROL_V1 message P_ACK_V1 message is being sent to acknowl-
edge the received P_CONTROL_V1 packet. Acknowledgment messages can be ei-
ther be encoded in the dedicated P_ACK packet, or they can be prepended to a
P_CONTROL message. Note that a packet structure may differ a lot depending on
the different OpenVPN options used in the configuration. default configuration
(as explained in Ch. 4.1).

After capturing the OpenVPN traffic, it can be noticed, that there are more
P_CONTROL_V1 messages than P_ACK_V1 messages. This means that not all P_
CONTROL_V1 messages are being delivered and thus acknowledged. This prompts
for retransmission of some P_CONTROL_V1 messages. The structure of P_ACK_V1
packet type is depicted in Tab. 8.
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No. Type Size Note

1 Opcode / key id 1 byte

2 Local session ID 64 bit
Randomly generated,
used to identify TLS
session

3 HMAC
16 or 20
bytes

used only if --tls-auth

(see note below) is speci-
fied

4 packet-id
4 or 8
bytes

includes sequence num-
ber and optional time t

timestamp

5 Net time 4 bytes

6 P ACK packet id array length 1 byte

7 P ACK packet-id array used if length > 0

8 Remote session ID 64 bit

Tab. 8: P ACK V1 packet structure

4.3.2 Data channel

The Data channel starts after the symmetric key is exchanged using already
established TLS connection. It uses a connectionless UDP tunnel where there
is no retransmission and ACK mechanism. The relation between Control and
Data channels can be seen in Fig. 5. The packet structure of P_DATA_V1, as
well as network layer encapsulation can be seen in Wireshark trace in Fig. 8.
As can be seen, the packet header consists only of opcode and key ID. Just like
in Control channel packets, the opcode is used to identify the packet type while
the key ID is used to identify the associated local TLS state. State activity,
authentication and the peer’s source are checked for correctness, and in the case
of success they are saved to be used for later authentication and decryption.

P_DATA_V1 packets (VPN payload, used in an unreliable channel) represent
encrypted, authenticated, and encapsulated OpenVPN tunnel packets. The full
packet structure is shown in Tab. 9. The Data channel header is split into two
separate parts - packet header and data payload header. It can be seen that
both encrypted and authenticated parts of data extends into the data payload
header.

Packet header holds the opcode, which identifies the packet type, and keying
material. Data payload header consists of HMAC, Initialization Vector (IV) and
packet ID. HMAC is computed by combining IV and ciphertext. To compute
HMAC, OpenSSL EVP evp md function is used together with the key. Evp md

can be EVP sha1(), EVP ripemd160() or other digest function. The OpenVPN
uses BlowFish and SHA1 as default cipher and message digest algorithms.

Once each peer has its set of symmetric tunnel keys, the tunnel is started
and data can flow between both OpenVPN connections. The plaintext of the
encrypted envelope consists of a 64 bit sequence number and payload data (IP
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Fig. 8: Data channel P DATA V1 packet as seen in Wireshark

Fig. 9: The OpenVPN data packet (P DATA V1) structure
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packet or Ethernet frame). Encryption, decryption, and HMAC functions are
provided by the OpenSSL EVP interface. It allows to select arbitrary ciphers
and digest algorithm. IV size is cipher-dependent, and it usually equals to
cipher’s block size, i.e. Data Encryption Standard (DES) is 64 bit block, and
Advanced Encryption Standard (AES) is 128 bits block [3].

4.4 State Machine of the OpenVPN

In this chapter, the attained knowledge of the OpenVPN protocol was combined
with the automata theory in order to manually create a presumed OpenVPN
protocol state machine with a respectable degree of precision.

Before drawing the state machine, it is necessary to first understand and
visualize the OpenVPN protocol. This could be achieved by manually drawing
a state machine based on the all known specifications and observations of the
protocol. Having a clear picture of the expected outcome might help in finding
the strange and unusual activities in the protocol. The presumed protocol state
machine can be seen in Fig. 10. Transitions 1 → 2 → 3 → 4 and 7 → 8
→ 4 refer to the Control channel (4.3.1) which is used to establish the secure
VPN channel between two parties. Control channel includes the TLS handshake
which takes place on following transitions: 4 → 5 ↔ 6. Data transfer in the
secure tunnel (4.3.2) operates in as follows: 6 ↔ 7. The number of repetitive
transitions depends on the packet size as well as the amount of data being
transmitted. Alert/ConnectionRefused transition represents an OpenVPN error
message which corresponds to the terminated connection.

Finally, once the real state machine is derived during fuzzing the OpenVPN
server with LearnLib, a comparison could be made between presumed state ma-
chine and the true state machine. Any differences should be manually inspected
for unusual behavior. The discrepancy between the presumed state machine and
learned state machine may signify the presence of bugs, inaccuracies or vulner-
abilities within the implementation.
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Fig. 10: Presumed OpenVPN state machine

4.5 Security Enhancing Options

The OpenVPN protocol implementation provides a great deal of options for
configuring a VPN solution depending on particular requirements or needs. The
more interesting options are specifically designed against malicious activities,
and may have a substantial impact on the security. Below the three most
relevant security enhancing options are presented.

Known as HMAC firewall, the OpenVPN has a --tls-auth option which uses
a pre-shared static key (PSK) to add an HMAC signature to all TLS handshake
packets for integrity verification. This option provides defense against:

• Buffer overflow vulnerabilities. This option forces all incoming packets to
authenticate via HMAC before they are passed on to the TLS code in
OpenSSL. This essentially acts as a Message Authentication Code (MAC)
firewall which prevents the initiation of TLS handshake by an unautho-
rized user who does not have a symmetric key to authenticate the packets.

• DoS attacks or port flooding. Any packets without the correct HMAC
will be immediately dropped so it is not possible to perform a DoS attack
by initiating a TLS handshake.

The OpenVPN documentation recommends using HMAC firewall if the server
is listening for packets from possible multiple unknown IP addresses. In the con-
figuration file it is specified as --tls-auth ta.key 0 and --tls-auth ta.key

1 for server and client respectively. Here ta.key is a pre-shared static key, which
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can be generated by using the OpenVPN itself (openvpn --genkey --secrect

ta.key). It is important to note that tls-auth does not improve TLS au-
thentication in any way, because it is used neither for authentication nor for
encryption. It can, however, act as an additional defense in case the flaw or vul-
nerability in TLS cipher-suite is discovered. Since it adds additional complexity
to the protocol, to perform initial testing, it was decided to omit this option.
The generation and distribution of the pre-shared key adds an additional layer
of complexity.

Second security option is designed to prevent privilege escalation in the event
of session compromise and/or command execution on the system running Open-
VPN. This is achieved by using --user nobody and --group nobody parame-
ters. These parameters ensure that even if some kind of remote buffer overflow
exploit were discovered, the exploit would with minimal privileges [29].

Last option is used to prevent replay attacks. This form of network attack
repeats the previously sent valid data packets in order to impersonate a legit-
imate user [30]. As a replay protection, the OpenVPN uses a sliding-window
mechanism (similar to IPsec [20]). Additionally, there is a defense mechanism
against replay protection which is applied using --replay-persist file pa-
rameter. This option will log the current replay protection state (most recent
timestamp and sequence number) and in the event of session termination or
restart it will compare incoming timestamp and sequence number with logged
one. If a replay is detected it will reject the packets [29].

4.6 OpenVPN Routing vs. Bridging

As noted in Chapter 3.1, understanding and selecting the correct networking
components largely important. Therefore, in this next chapter, two different
OpenVPN networking possibilities are presented.

The OpenVPN supports two networking modes for connecting networks,
namely routing and bridging [31].

• Routing is essentially an interconnection of independent subnets. The
router is a Level 3 (OSI model) device which forwards the packet according
to a specified IP address.

• Bridging is a much simpler infrastructure because it operates only on the
same local network (subnet). Bridge is a Layer 2 (OSI model) device
which forwards packets based on the physical MAC address instead of IP
address.

To perform testing, the bridged mode (tap virtual interface) was used, since
the OpenVPN was running between two separate virtual machines on the same
physical machine. The OpenVPN uses TUN (Network Tunneling Protocol) and
TAP (Network TAP) virtual network kernel devices. These devices are entirely
supported by software and provide packet reception and transmission of user
space programs. The network interface can be configured as a Layer 2 device
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(TAP) or as a Layer 3 device (TUN). For non-IP traffic or bridging, TUN devices
cannot be used thus TAP is the only option. Also TAP must be used on the
OpenVPN versions 2.2 or older when using Internet Protocol version 6 (IPv6)
traffic.

Depending on which networking model is chosen, the test harness 5 would
have to be constructed accordingly.
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5 Test Harness

This chapter will describe the purpose and functionality of intermediate ab-
straction layer called test harness. The three different systems that are used in
the setup of this research, are:

1. Learner - an implementation of LearnLib interface which uses an abstract
input alphabet to learn the automaton of the protocol.

2. Teacher - System Under Test (SUT), an unmodified OpenVPN server,
which yields an output based on Learner’s input.

3. Test harness - an intermediate abstraction layer between the Learner and
the Teacher. This is a custom made OpenVPN client which was being
constructed during this research.

The purpose of the test harness is to allow the communication between two
different parties - the Learner and the Teacher. Since LearnLib uses alphabets
to provide input, it cannot be directly connected to the Teacher, in this case,
an OpenVPN server. Its input is in an abstract language, and it expects the
same abstract language as an output. To connect LearnLib to a real system,
it is necessary to create a special abstraction mapper (Fig.11) that abstracts
the alphabet of the Teacher into specific format, understandable to the Learner.
This abstraction mapper is called the test harness and it translates input words
into sequences of method calls which enables the Learner to communicate with
the Teacher. The job of the test harness is to encompass both concrete and
abstract sets of input, and output symbols, a set of states and a transition
function which describes how the occurrence of a concrete symbol affects the
state and an abstraction function which maps concrete symbols to abstract
symbols [32].

Fig. 11: Learner-Test harness-Teacher setup

The alphabet can be constructed in the following way [9]:

• Methods can be translated into abstract symbols of the learning alphabet.
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Input alphabet Output alphabet

P CONTROL HARD RESET CLIENT V1 P CONTROL HARD RESET SERVER V1

P CONTROL HARD RESET CLIENT V2 P CONTROL HARD RESET SERVER V2

P ACK V1 P ACK V1

P CONTROL SOFT RESET V1

Tab. 9: Input and output alphabets used to establish OpenVPN tunnel

• API parameters can be handled by parameterizing the abstract learning
symbols of parameterized interface methods.

• Return values can be abstracted according to the return type.

The input and output alphabets of establishing an OpenVPN connection are
displayed in Tab. 9. The P_CONTROL_SOFT_RESET_V1 message is not actually
an output because it does not require any input from the Learner. It is just
an OpenVPN server initiating the session key renewal. Nevertheless, it is inter-
esting to test the key renewal process by forcing the server to initiate the new
session key exchange.

The OpenVPN also uses the P_CONTROL_V1 message type, which contains a
fragmented TLS handshake data (explained in Chapter 4.3.1). The TLS packets
are encapsulated inside this P_CONTROL_V1 message type and are sent back and
forth between client and server. However, since this is the TLS data, it is not
considered as an element of input or output alphabet for the test harness. The
fact that TLS handshake is wrapped inside the P_CONTROL_V1 message type,
made it considerably harder to build an OpenVPN client.
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6 Experiments

In the previous chapters, theories were discussed that were necessary to examine
before performing the experiments for this research. This chapter will explain
the thorough process of the conducted experiments as well as giving a detailed
description of the main ideas behind the steps that were taken when performing
the experiments for this research.

In this research, the test harness was an OpenVPN client which could trans-
late LearnLib messages into correct packets understandable to OpenVPN server.
The test harness was written in Python using the Scapy library (6.2). The Open-
VPN implementation is written in C, and Angluin’s L* algorithm in Learnlib is
written in Java, however, this does not provide any difficulties because the client
and the server can simply communicate using network sockets. Therefore, the
Python client uses network sockets to interact with an OpenVPN server writ-
ten in C. While OpenVPN is an open source, both the client and the server
implementations are merged in the same thousand-line file which makes it ex-
ceptionally difficult to reuse original source code in a test harness.

Additionally, before writing even a simple VPN client, it is important to
understand what message types does the server expects to receive. This is
done mostly by analyzing the OpenVPN source code as well as inspecting the
captured OpenVPN connection packets using Wireshark or other packet capture
software. Knowing this, a needed message type can be send in order to receive
a desirable response back from the server.

The next chapters give an introduction to the tools used, then follows the
explanation of test harness construction process and finally there will be an
overview of an issues faces during the construction process.

6.1 Tools

The experiments for this research were carried out using several different open
source tools. In particular:

• OpenVPN - official open source OpenVPN implementation, containing
many configuration options and capabilities in configuring VPNs.

• Python - high-level programming language, used for construction of a test
harness.

• Scapy - Python based packet manipulation tool used to efficiently create,
capture, and send network packets.

• Wireshark - open source network packet analyzer which is widely used to
capture, dissect, and inspect network packets.

• LearnLib - open source Java library for fuzzing and active automata learn-
ing.
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While creating the test harness, the only choice that needed to be made
regarding tools was the programming language being used. Choices for other
software, like OpenVPN and LearnLib, were made at the start of the research
as they are the key components of this research.

6.2 Constructing a test harness

This chapter will talk about the approach chosen to construct an OpenVPN
client (test harness), and well as explain the details of network programming
with Scapy.

The test harness, which is essentially the simple OpenVPN client, is coded
in the Python programming language. For crafting and inspecting packets, the
packet manipulation tool called Scapy 7 was used. Scapy provides a Python
interface into libpcap (packet capture interface) and allows for a fast creation
of packets with working default values. It allows the user to forge easily and
decode packets of a wide number of protocols, capture packets, sniff traffic,
match requests/replies, fuzz and more. Scapy is very flexible and the user can
easily construct packets in a variety of ways as well as send packets on different
network layers. For instance, send() function will send packets at Layer 3 and
handle routing as well as Layer 2. Meanwhile, sendp() will send packets at
Layer 2 which means right interface and link layer protocol must be chosen.

Two different ways of assembling packets were considered:

1. Creating a UDP Socket with python and only creating OpenVPN layer
with Scapy, then sending OpenVPN data inside the UDP socket.

2. Creating all the layers (IP, UDP) with Scapy without using sockets.

For this research the first method was chosen. It provides more flexibility,
because a separate UDP socket is open, and can later be used to send TLS
packets. Python provides libraries for crafting TLS packets which can be put on
top of the created OpenVPN layer. Scapy assembles packets based on separate
layers which can be stacked on top of each other. For instance, an example
below showcases a UDP packet carrying some raw data.
scapyPacket = Ether()/IP(dst=’192.168.138.129’)/UDP()/Raw(load=’some raw data’)

In this example there are three different layers defined on top of each other:
(Ether), (IP), (UDP). Then raw data follows, which is being put inside the
UDP layer. Each of the layers has multiple parameters which can be manually
defined, just like dst=’192.168.138.129’ in the IP layer showcased above.
The great thing about Scapy is that it is well designed to work with default
parameters. That is, the user can omit them completely in the layer definition,
and Scapy automatically uses pre-defined correct values.

At first, a simple Python client skeleton using socket programming to send
a P_CONTROL_HARD_RESET_CLIENT_V2 message and receive a response from the

7 www.secdev.org
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server was created. Scapy provides an easy way to define custom protocols and
later simply use them as a separate layer when forming a packet. Defining an
OpenVPN protocol (Layer):

class openvpn1(Packet):

name = "P_CONTROL_HARD_RESET_CLIENT_V2"

fields_desc = [XByteField("opcode", 0x38),

LongField("Session_ID", 0),

XByteField("Message_Packet_ID_Array_Length", 0),

IntField("Message_Packet_ID", 0)]

Selecting the correct values for each parameter is important as otherwise
the protocol will not function. Message_Packet_ID parameter in the P_ACK_V1

when replying to P_CONTROL_V1 is meant against replay protection, and its value
corresponds to the sequential number of the packet itself. If the value is 0 or
not equal to the P_CONTROL_V1 number value, then the server will not respond
and will keep repeating the last message.

The code snipped below displays the creation of TLS Client Hello message
using Scapy.

def createClientHello(:

print(‘‘Crafting TLS Client Hello\ldots’’),

tlsClientHello = openvpn3(opcode=0x20, Session_ID=initSesId,

Message_Packet_ID_Array_Length=0,

Message_Packet_ID=0001)/TLSRecord(/TLSHandshake

(/TLSClientHello(compression_methods=range(0xff)

[\dots-1], cipher_suites=range(0xff))

(/TLSClientHello(

print(‘‘done.’’)

return tlsClientHello))))))

Due to multiple difficulties during the programming of TLS handshake, the
test harness was not finished. Scapy provides a layer of abstraction which is very
convenient for fast construction of packets, however for OpenVPN client to fully
operate, it needs to be created very precisely based on what the OpenVPN server
expects. For that, a low-level networking programming methodology might be
more useful. Nevertheless, the main blocker during the programming phase was
the lack of low-level specification. A lot of time was spent analysing existing
Wireshark packet traces and trying to figure out how the protocol operates.

6.3 Observations

When conducting the experiments, several issues and problems were faced.
These issues made the research somewhat slower than expected. A lot of difficul-
ties came from the fact that OpenVPN does not provide a low-level specification
on its workings. The majority of issues are documented below.
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1. To assemble initial OpenVPN messages, it is crucial to precisely under-
stand the structure of each packet sent and received. Initially, it was tried
to send P_CONTROL_HARD_RESET_CLIENT_V2 message with previously cap-
tured OpenVPN payload, however the following errors were received:

TLS Error: incoming packet

authentication failed.

and

Authenticate/Decrypt packet error:

packet HMAC authentication

failed.

These error signals that there is a problem with authentication and proba-
bly incorrectly generated HMAC. To avoid wasting time on solving incor-
rect authentication it was decided to temporary disable HMAC authenti-
cation (--tls-auth) and proceed without it.

2. Often network protocols are not able to handle big data chunks (i.e. net-
work packet size limitation) and thus, those data chunks are being split
over multiple packets. When observing captured packets with Wireshark,
usually multiple P_CONTROL_V1 messages are displayed in a row which is
an example of data size being too big to fit in a single packet. After
the data has arrived, Wireshark reassembles the packets according to the
specified boundaries it detected.

3. It is important to note that different packet capture programs interpret
captured network according to their own rules so it may appear differently.
It is not wise to always trust the interpretation of the packet capture
software. On the other hand, it is always good to examine and try to
interpret the packet bytes themselves because they will always be correct.
For instance, during initial testing the Wireshark results were compared
on two different machines - Ubuntu 14.04.01 and Kali Linux (based on
Debian 3.18.6-1). For that, the newest (1.12.7) versions of Wireshark were
compiled and built on each machine separately, however the Kali machine
could not distinguish OpenVPN traffic by default and showed ’malformed
packet’ error. After manually specifying to Wireshark that traffic is indeed
OpenVPN, the error was no longer shown. This is due enabling Wireshark
built in dissector, which usually automatically recognizes the OpenVPN
protocol based on the UDP port 1194. The naming and boundaries of an
Wireshark output may differ compared to an official OpenVPN website or
other packet analysis software. For instance, Scapy was misinterpreting
captured OpenVPN packets as some other protocol. The OpenVPN data
in Scapy was sometimes interpreted as a DNS data.

4. For testing purposes while creating an OpenVPN client, it was very help-
ful to observe the client and server logs for any errors reported while
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establishing communication. OpenVPN provides a verbose option (verb
n) which can range from 0 (no logging) to 11 (most explicit). Highest
possible option was used to extract as much information as possible and
not miss any relevant details.

5. During the experiment it was noticed that, the current time in the Random
field in ClientHello and ServerHello record layers is defined only by 4 bytes
even though the full representation is shown as Nov 20, 2015 15:16:53.000000000 CET .
The way TLS makes this long time format fit into 4 bytes is by instead
using a number of seconds which passed since January 1st, 1970, 00:00
UTC to current local time. This was quite interesting considering that
there would not be any other way to fit full date into 4 bytes.
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7 General findings about OpenVPN & using Scapy in
combination with Wireshark

During the OpenVPN protocol analysis, and the construction of a test harness,
several interesting observations were made. This chapter contains a list of gen-
eral findings regarding the OpenVPN protocol and the tools that were used for
carrying out the experiments.

1. Some contradicting information was found in the security overview [3] of
the official OpenVPN website, compared to the comments in the official
open source implementation. In particular:

(a) The official OpenVPN security overview [3] states that HMAC packet
authentication (--tls-auth mode) is only used to keep the packet
integrity and does not improve the peer authentication.

“This feature by itself does not improve the TLS auth in any way,
although it offers a 2nd line of defense if a future flaw is discovered

in a particular TLS cipher-suite or implementation”

As the HMAC packet authentication prevents any unauthorized ini-
tiations from other parties, it does indeed act as an aditional authen-
tication mechanism, considering there is a different pre-shared static
key used for a HMAC authentication. Moreover, the comment in the
OpenVPN source code states:

“Without –tls-auth, we leave authentication entirely up to TLS.”

The above quote implies, that --tls-auth mode improves authenti-
cation.

(b) The official OpenVPN security overview [3] states the following:

“P_CONTROL_HARD_RESET_CLIENT_V1 – Key method 1, initial key
from client, forget previous state.”

The above suggests, that the P_CONTROL_HARD_RESET_CLIENT_V1

message type includes the initial key from the client. However, this
is not the case and the data sent in this initial packet is shown in
Fig. 7. Furthermore, it would not be feasible to send a secret key in
plaintext before the completion of the TLS handshake.

2. Another interesting finding is related to the OpenVPN replay protection
mechanism which is enabled by --replay-persist file parameter. The
quote from the official OpenVPN website [29] states: “It should only be
used when replay protection is enabled with --tls-auth or --secret

modes.” Considering that OpenVPN only has these two authentication
modes, it begs the question in which instances replay protection mecha-
nism should not be used.
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3. Finally, even though Scapy and Wireshark use different sockets to capture
traffic, Scapy interferes with Wireshark packet capture capabilities. If
Scapy is not running, then Wireshark correctly captures packets, however
if the sniff function is used in Scapy then sometimes Wireshark does
not capture correctly. To solve this issue, a dummy virtual interface was
created using iproute2 toolkit and the data was sent on this interface while
capturing with Wireshark on default interface.
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8 Future Work

Since the planned fuzzing component of this research was not performed, the
correct continuation would be to finish the testing and evaluation of the security
of an OpenVPN protocol. To continue with the project, it is important to eval-
uate issues and shortcomings faced in this research. Defining a clear scope and a
precise plan would more likely yield positive results. As it is often the case with
programming projects, certain issues may consume an extensive amount of time
and the outcome will not be as expected. Therefore, it is important to evaluate
personal skills and competence in the area of performed research. Performing a
sophisticated project may be very tempting and undoubtedly interesting, yet it
requires a certain set of skills to successfully finish it in an outlined time frame.
It is advised to be quite comfortable with low-level network programming before
starting similar research.

The packet manipulation Python library Scapy was very useful for quickly
creating the desired packets, however that was irrelevant, considering, that the
main problem was the lack of low-level knowledge of the OpenVPN protocol. It
is recommended to fully grasp the protocol inner workings and then the tools
like Scapy will be very efficient.

Fuzzing is certainly an interesting type of testing as it simulates real-world
situations very well. Therefore, maintaining the planned approach to perform a
LearnLib framework based fuzzing remains the preferred and suggested method.
Additionally, and given enough time, it might be valuable to perform a more
sophisticated fuzzing. Specifically, implementing the fuzzing environment which
would not only fuzz the message types but the message parameters as well
would likely lead to a better tested system. In general, fuzzing based testing
has a broad spectrum of options and techniques, which mostly depend on the
capabilities of the used hardware and the designated time frame.
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9 Conclusions

In this research several VPN protocols and fuzzers were presented. An in-
depth analysis of the widely used open source VPN protocol - OpenVPN - was
studied and performed. Considering the popularity of OpenVPN protocol, it
is surprising that it does not have a low-level specification document for its
operation. It took a lot of time to fully understand the inner workings of the
protocol and incorporate that knowledge while constructing the test harness.
Moreover, the lack of detailed specification led to many unexpected stops during
the programming process of the test harness, which consumed a large amount
of time and subsequently the planned fuzzing component of the research was
not performed.

This research paper provides a low-level specification of the OpenVPN proto-
col, based on the data collected from multiple sources, including official security
overview, VPN books, support pages, captured network traces, and analysis
of the source code. Additionally, an OpenVPN implementation was evaluated
based on the known data and observations, which led to drawing of a presumed
OpenVPN protocol state machine (Fig. 10 on page 33), which could be used in
the future research. Finally, the complications faced during the research, incon-
sistencies in the OpenVPN documentation, as well as other interesting findings
are all documented in this research paper.
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11 Appendix

The Wireshark packet trace below displays complete establishment of an Open-
VPN protocol tunnel using TLS mode (P_CONTROL and P_ACK) along with the
tunnel data P_DATA_V1.



12 Source code 51

12 Source code

#!/usr/bin/env python

# Tomas Novickis, Radboud University Nijmegen

from scapy.all import *

from scapy.layers.ssl_tls import *

from M2Crypto.EVP import HMAC

import base64, random, uuid, M2Crypto, OpenSSL, binascii, ssl,

time, pprint, os, sys, datetime

from time import strftime, gmtime

from socket import socket, AF_INET, SOCK_DGRAM, SOCK_STREAM

from dtls import do_patch

import sys, os

try:

import scapy.all as scapy

except ImportError:

import scapy

try:

basedir = os.path.abspath(os.path.join(os.path.dirname(

__file__),"../"))

sys.path.append(basedir)

from scapy_ssl_tls.ssl_tls import *

except ImportError:

from scapy.layers.ssl_tls import *

import socket

class openvpn1(Packet):

name = "P_CONTROL_HARD_RESET_CLIENT_V2"

fields_desc = [XByteField("opcode", 0x38), LongField("

Session_ID", 0), XByteField("

Message_Packet_ID_Array_Length", 0), IntField("

Message_Packet_ID", 0)]

class openvpn2(Packet):

name = "P_ACK_V1"

fields_desc = [XByteField("opcode", 0x28), LongField("

Session_ID", 0), XByteField("

Message_Packet_ID_Array_Length", 0), IntField("

Message_Packet_ID", 0), LongField("Remote_Session_ID

", 0)]

class openvpn3(Packet):

name = "P_CONTROL_V1"

fields_desc = [XByteField("opcode", 0x20), LongField("

Session_ID", 0), XByteField("

Message_Packet_ID_Array_Length", 0), IntField("

Message_Packet_ID", 0)]

if __name__=="__main__":



12 Source code 52

mysocket=socket.socket(socket.AF_INET, socket.SOCK_DGRAM

)

#do_patch()

#tlssocket=ssl.wrap_socket(socket(AF_INET, SOCK_STREAM))

mysocket.connect((’192.168.138.129’, 1194))

#tlssocket.connect((’192.168.138.129’, 1194))

print("connect done")

mystream=StreamSocket(mysocket)

#ascapypacket=Ether()/IP(dst="192.168.138.129")/UDP(

dport=1194, len=50)/Raw(load="\x38\x81\x38\x14\x62\

x1d\x67\x46\x2d\xde\x86\x73\x4d\x2c\xbf\xf1\x51\xb2\

xb1\x23\x1b\x61\xe4\x23\x08\xa2\x72\x81\x8e\x00\x00\

x00\x01\x50\xff\x26\x2c\x00\x00\x00\x00\x00")

#ascapypacket=Ether(dst=’00:0c:29:37:c5:6c’)/Raw(load="\

x38\x81\x38\x14\x62\x1d\x67\x46\x2d\xde\x86\x73\x4d\

x2c\xbf\xf1\x51\xb2\xb1\x23\x1b\x61\xe4\x23\x08\xa2\

x72\x81\x8e\x00\x00\x00\x01\x50\xff\x26\x2c\x00\x00\

x00\x00\x00")

#initPayl = "\x38\xc2\xba\x6b\x7d\xee\x12\xf9\xc8\x00\

x00\x00\x00\x00\x00\x00\x00\x00"

ses = 14031645777635506632

print("ses type:")

print type(ses)

initp = openvpn1(opcode=0x38, Session_ID=ses,

Message_Packet_ID_Array_Length=0, Message_Packet_ID

=0000)

print("packet created")

initp.show()

#initp = Raw(load=hi)

mystream.send(initp)

print("init sent")

captured = []

content = ’’

ses_id = ’’

first = 1

def sho(packet):

print("sho started")

print("s id")

print ses_id

global first, ses_id

if first == 1:

global content

captured.append(packet)

#print("len: %d" % len(packet))

#print captured

if first == 1:
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content = str(packet).encode("HEX") #

safe packet as string and display in

hex

print("content:")

print(content)

ses_id = content[-50:-34]

print("ses_id")

print(ses_id)

first = 0

print("Sniffing...")

sniff(iface="eth0:0", prn=sho, filter="host

192.168.138.129 and udp port 1194", timeout=4, store

=0)

print("Sniffing finished")

print("ses id after sniffing")

print ses_id

print("ses id type")

print type(ses_id)

print ses_id

print("remote session id:")

remote_session_id = long(ses_id,16)

print type(remote_session_id)

print remote_session_id

print("ses type:")

print type(ses)

print ses

ackp = openvpn2(opcode=0x28, Session_ID=ses,

Message_Packet_ID_Array_Length=0x01,

Message_Packet_ID=0000, Remote_Session_ID=

remote_session_id)

time.sleep(1)

print("sending ack")

mystream.send(ackp)

print("ack sent")

#-----------------------------------------------------------------------------------

myTime = strftime("%b %d %H:%M:%S %Y")

myTime = myTime + " GMT"

print ("myTime:")

print myTime

timestamp = ssl.cert_time_to_seconds(myTime) # get

current time in seconds in float

finalTime = hex(int(timestamp))

finalTime = finalTime[2::] # remove 0x
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currentTime = binascii.unhexlify(finalTime) # prepare to

be sent on wire in bytes

# create TLS Handhsake / Client Hello packet

print("creating TLS handshake")

#p = openvpn3(opcode=0x20, Session_ID=ses,

Message_Packet_ID_Array_Length=0, Message_Packet_ID

=0000, Remote_Session_ID=remote_session_id)/

TLSRecord()/TLSHandshake()/TLSClientHello(

compression_methods=range(0xff)[::-1], cipher_suites

=range(0xff))

p = openvpn3(opcode=0x20, Session_ID=ses,

Message_Packet_ID_Array_Length=0, Message_Packet_ID

=0000)/TLSRecord()/TLSHandshake()/TLSClientHello(

compression_methods=range(0xff)[::-1], cipher_suites

=range(0xff))

#p = Raw(load=helloPayl)/TLSRecord()/TLSHandshake()/

TLSClientHello()

print("record created")

pp = openvpn3(opcode=0x20, Session_ID=ses,

Message_Packet_ID_Array_Length=0, Message_Packet_ID

=0001)/Raw(load="\x16\x03\x01\x00\xc3\x01\x00\x00\

xbf\x03\x01"+currentTime+"\xc7\x88\xb2\x29\xcb\x59\

x4b\xc6\x98\xef\x29\x3f\xdf\x45\x1c\x24\x3c\x34\x3b\

x01\x95\x26\xc4\x7b\x61\x9f\xe3\x14\x00\x00\x50\xc0\

x14\xc0\x0a\x00\x39\x00\x38\x00\x88\x00\x87\xc0\x0f\

xc0\x05\x00\x35\x00\x84\xc0\x12\xc0\x08\x00\x16\x00\

x13\xc0\x0d\xc0\x03\x00\x0a\xc0\x13\xc0\x09\x00\x33\

x00\x32\x00\x9a\x00\x99\x00\x45\x00\x44\xc0\x0e\xc0\

x04\x00\x2f\x00\x96\x00\x41\xc0\x11\xc0\x07\xc0\x0c\

xc0\x02\x00\x05\x00\x04\x00\x15\x00\x12\x00\x09\x00\

xff\x02\x01\x00\x00\x45\x00\x0b\x00\x04\x03\x00\x01\

x02\x00\x0a\x00\x34\x00\x32\x00\x0e\x00\x0d\x00\x19\

x00\x0b\x00\x0c\x00\x18\x00\x09\x00\x0a\x00\x16\x00\

x17\x00\x08\x00\x06\x00\x07\x00\x14\x00\x15\x00\x04\

x00\x05\x00\x12\x00\x13\x00\x01\x00\x02\x00\x03\x00\

x0f\x00\x10\x00\x11\x00\x0f\x00\x01\x01")

print "sending TLS payload"

mystream.send(pp)

print ("TLS payload sent")

time.sleep(10)

#s.sendall(str(p))

#resp = s.recv(1024*8)

#print "received, %s"%repr(resp)

#SSL(resp).show()

#s.close()
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