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▪Memory corruption vulnerabilities

▪Fuzzing- finding vulnerabilities

▪Types of Fuzzing

▪Some existing solutions
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▪WYSINWYX: What You See Is Not What You 
eXecute by G. Balakrishnan et. al.

– Higher level code -> low-level representation

– Seemingly separate variables -> contiguous memory 
addresses

▪Contiguous memory locations allow for boundary 
violations!
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return 0;

}



example
#include <stdio.h> 

int get_cookie(){

return rand();} 

int main(){

int cookie;

char name[40];

cookie = get_cookie(); 

gets(name);

if (cookie == 0x41424344)

printf("You win %s\n!", name);

else printf("better luck next time :("); 

return 0;

}

name

18



example
#include <stdio.h> 

int get_cookie(){

return rand();} 

int main(){

int cookie;

char name[40];

cookie = get_cookie(); 

gets(name);

if (cookie == 0x41424344)

printf("You win %s\n!", name);

else printf("better luck next time :("); 

return 0;

}

name

cookie

19



example
#include <stdio.h> 

int get_cookie(){

return rand();} 

int main(){

int cookie;

char name[40];

cookie = get_cookie(); 

gets(name);

if (cookie == 0x41424344)

printf("You win %s\n!", name);

else printf("better luck next time :("); 

return 0;

}

name

cookie

Saved RET

20



example
#include <stdio.h> 

int get_cookie(){

return rand();} 

int main(){

int cookie;

char name[40];

cookie = get_cookie(); 

gets(name);

if (cookie == 0x41424344)

printf("You win %s\n!", name);

else printf("better luck next time :("); 

return 0;

}

name

cookie

Saved RET

21



name

cookie

Saved RET

example
#include <stdio.h> 

int get_cookie(){

return rand();} 

int main(){

int cookie;

char name[40];

cookie = get_cookie(); 

gets(name);

if (cookie == 0x41424344)

printf("You win %s\n!", name);

else printf("better luck next time :("); 

return 0;

}

22



example
#include <stdio.h> 

int get_cookie(){

return rand();} 

int main(){

int cookie;

char name[40];

cookie = get_cookie();

gets(name);

if (cookie == 0x41424344) 

printf("You win %s\n!", name);

else printf("better luck next time :("); 

return 0;

}

name

cookie

Saved RET

23



example
#include <stdio.h> 

int get_cookie(){

return rand();} 

int main(){

int cookie;

char name[40];

cookie = get_cookie();

gets(name);

if (cookie == 0x41424344) 

printf("You win %s\n!", name);

else printf("better luck next time :("); 

return 0;

}

name

cookie

Saved RET

Memory 

corruption

24



Side effects

25



Side effects

26

▪Over/underflow



Side effects

27

▪Over/underflow

▪Sensitive data corruption



Side effects

28

▪Over/underflow

▪Sensitive data corruption

▪Control data corruption (control hijacking)



Side effects

29

▪Over/underflow

▪Sensitive data corruption

▪Control data corruption (control hijacking)



Side effects

30

▪Over/underflow

▪Sensitive data corruption

▪Control data corruption (control hijacking)

Otherwise crash!
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▪It started on a dark and stormy night…. [Barton P. Miller, late1980s]
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Fuzzing

●Run program on many abnormal/malformed inputs, look for unintended

behavior, e.g. crash.

● An observable (measurable) side effect is essential

● Should be scalable

●Underlying assumption: if the unintended behavior is dependent on input, an 
attacker can craft such an input to exploit the bug.
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▪Input based: mutational and Generative (grammar based)

▪Application based: black-box and white-box

▪Input Strategy: memory-less and evolutionary
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▪Mutation Based: mutate seed inputs to create new test inputs

-

-

-

Simple strategy is to randomly choose an offset and change 

the byte.

Pros: easy to implement and low overhead

Cons: highly structured inputs will become invalid quickly → 

low coverage.



Cont..
● Generation (Grammar) Based: Learn/create the format/model of 

the input and based on the learned model, generate new inputs.

-

-

-

e.g. well-known file formats (jpeg, xml, etc.)

Pros: Highly effective for complex structured input parsing 

applications → high coverage

Cons: expensive as models are not easy to learn or obtain.
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Application Monitoring

▪Blackbox: Only 
interface is known.

● Whitebox: Application can 

be analysed/monitored. 

Static & Dynamic analysis
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else
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Problem with Traditional Fuzzing

▪Apply more heuristics to:
– Mutate better

– Learn good inputs

▪Apply more analysis (static/dynamic) to understand the application 
behavior.

➢But remember the scalability factor!

62



Problem with Traditional Smart Fuzzing

63



Problem with Traditional Smart Fuzzing
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▪What should be the feedback to evolve?
– Code-coverage based fuzzing

➢Most of the contemporary fuzzers are here (AFL, AFLFast, Driller, VUzzer, 
ProbeFuzzer, CollAFL, Angora, QSYM, Nautilus, …

➢Uses code-coverage as the proxy metric for the effectiveness of a fuzzer

– Directed fuzzing
➢Not much explored (BuzzFuzz, AGLGo, … )

➢There should be a way to find the destination and a sense of direction.
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▪Lets start with something we are more familiar with- AFL

inputs

Q

Mutate at 

offset X

Bitflip, 

replace, 

arithmetic

Execute and 

monitor 

edges (BB)

New 

edge

?

Yes, add input to Q

No, (perhaps) try more mutation

Code
coverage-

Maximize it!

You do 

something to 

maximize 

CC

Analysis-

You need 

something to 

mutate in a

meaningful way
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Problem Exemplified….

a==\xffd8

Where is ‘a’?

What values?

Hard-to-reach-paths 

(deeper buried bugs)

Easy paths (superficial 

paths), error code
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▪For smart code-coverage based fuzzer, it is important to have some 
knowledge about:

– Where (which offsets in input) to apply mutation

– What values to replace with.

– How to avoid traps (paths leading to error handling code)
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▪Lava: Large-scale automated vulnerability addition,” in Proc. IEEE 
S&P ’16. IEEE Press, 2016.

– quickly and automatically injecting large numbers of realistic bugs into 
program source code.

– injected bug is designed to be triggered only if a particular set of multi-bytes 
in the input is set to a magic value

– Results are not very encouraging!
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QSYM- Enhancing Fuzzing by Enhancing 
Symbex

▪Presented in Usenix Sec’18

▪Focuses on scaling symbex

– Native execution, contrary to IR based execution in existing symbex tools

– Instruction-level symbolic execution
➢Only the relevant instructions are executed symbolically (taintflow analysis)

➢Solving only relevant constraints related to the target branch

– Optimistic Solving

– …

▪Maintaining scalability with good heuristics + program analysis to
improve coverage
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VUzzer- going further with more 
analysis

▪Presented at NDSS’17

▪Uses taintflow analysis + several heuristics

▪Main idea:
– Leverage application’s control- and data-flow features to infer input properties:

applications is designed to work with that input!
➢ Dynamic taintfow analysis

– Prioritize and deprioritize paths: Certain paths are difficult to execute as they are guarded by 
constraints (nested conditions)!
➢ Static analysis and error handling code

▪Combines static and dynamic analysis + heuristics to improve coverage
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handing BB? If 

so, not 

interesting.

Mutate only 

interesting offsets 

and with interesting 

values (magic-bytes)

Input preference 

with path 

prioritization- static 

analysis
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▪Unaware of whether offset is processed by application
– Waste of mutation time

▪What and Where to mutate
– Different bugs have different triggering conditions

➢Buffer overflow involves buffer (strings, arrays etc.)

➢ Integer overflow involves integer data type.

Traditional Byte by byte mutation may not be a very 

effective strategy!

TIFF (presented at ACSAC 2018)
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Input format learning (Grammar based 
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▪TIFF brought forward the idea of bringing grammar and mutation 
based fuzzing closer!

▪Angora (S&P’18)- on source code (LLVM based)

▪ProFuzzer ( S&P’19)- learning input structure with execution patterns

▪GRIMOIRE: Synthesizing Structure while Fuzzing (Usenix Sec’19)-
grammar inference.

▪ and many more.. See: https://github.com/fengjixuchui/FuzzingPaper

▪Focus shifted to How to mutate sensibly?
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▪What experimental setup is needed to produce trustworthy results? 
[Evaluating Fuzz Testing, Klees et. al. CCS’18]

▪There is a randomness in mutation operation- thus results may differ 
run to run. Multiple runs.

▪Dataset- quite arbitrary (LAVA-M, Google fuzz, a set of real-world 
applications, binutils,..)

– VUzzer, perhaps for the 1st time, used three different datasets in the 
evaluation (DARPA CGC, LAVA-M, real-world apps)

▪Seed selection- which inputs to start with?
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▪How to measure efficiency?
– Code-coverage, but what about directed fuzzers?

➢Also for binary only fuzzers, measuring code coverage is not that straight forward-
static binary instrumentation

➢Also, for source code based fuzzers, what about library code?

– Uniqueness of crashes
➢How to differentiate several crashes? Often coredump does not have enough 

information!

➢Root-cause analysis (not much is there! Failure Sketching, G. Candea EPFL)



Good Engineering
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▪(the scope of) Optimization is everywhere in a fuzzer.

▪Light-weight fuzzers (e.g. AFL)
– Branch bitmap (64K to be fit into the cache)

– Fork()

– Input trimming

▪Every program analysis introduces a performance hit
– F1 (World’s fastest grammar based fuzzer- it is F0 by Brandon Falk)

▪VUzzer uses memory file system (tmpfs).

▪Vectorized Emulation: Putting it all together (Brandon Falk)
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▪Fuzzing – seems easy unless you try it!

▪Scalability and performance cannot be negotiated much!
– A good engineering, hardware assisted monitoring

▪A good place to try program analysis techniques
– Possibility to compromise correctness to make them scalable

▪Software will remain integral part of the cyber world- make is 
secure!


