Chapter 6
Processes, Threads, and Jobs

In this chapter, we’ll explain the data structures and algorithms that deal with processes,
threads, and jobs in Microsoft Windows. The first section focuses on the internal structures
that make up a process. The second section outlines the steps involved in creating a process
(and its initial thread). The internals of threads and thread scheduling are then described. The
chapter concludes with a description of the job object.

Where relevant performance counters or kernel variables exist, they are mentioned. Although
this book isn’t a Windows programming book, the pertinent process, thread, and job Win-
dows functions are listed so that you can pursue additional information on their use.

Because processes and threads touch so many components in Windows, a number of terms
and data structures (such as working sets, objects and handles, system memory heaps, and so
on) are referred to in this chapter but are explained in detail elsewhere in the book. To fully
understand this chapter, you need to be familiar with the terms and concepts explained in
chapters 1 and 2, such as the difference between a process and a thread, the Windows virtual
address space layout, and the difference between user mode and kernel mode.

Process Internals

This section describes the key Windows process data structures. Also listed are key kernel
variables, performance counters, and functions and tools that relate to processes.

Data Structures

Each Windows process is represented by an executive process (EPROCESS) block. Besides
containing many attributes relating to a process, an EPROCESS block contains and points to
anumber of other related data structures. For example, each process has one or more threads
represented by executive thread (ETHREAD) blocks. (Thread data structures are explained in
the section “Thread Internals” later in this chapter.) The EPROCESS block and its related data
structures exist in system space, with the exception of the process environment block (PEB),
which exists in the process address space (because it contains information that is modified by
user-mode code).

289

290

Microsoft Windows Internals, Fourth Edition

In addition to the EPROCESS block, the Windows subsystem process (Csrss) maintains a par-
allel structure for each Windows process that executes a Windows program. Also, the kernel-
mode part of the Windows subsystem (Win32k.sys) has a per-process data structure that is
created the first time a thread calls a Windows USER or GDI function that is implemented in
kernel mode.

Figure 6-1 is a simplified diagram of the process and thread data structures. Each data struc-
ture shown in the figure is described in detail in this chapter.

Process
environment
block
Thread
environment
block

Process address space

System address space

p —>| Windows process bIockl
rocess
—— ——| Handle table [
Thread [
block

Figure 6-1 Data structures associated with processes and threads

First let’s focus on the process block. (We'll get to the thread block in the section “Thread
Internals” later in the chapter.) Figure 6-2 shows the key fields in an EPROCESS block.

PsActiveProcessHead —

Chapter 6: Processes, Threads, and Jobs

Kernel process block (or PCB)

Process ID

Parent process ID

Exit status

Create and exit times

Active process link

L »

EPROCESS

|_.

Quota block

Memory management information

Exception port

Debugger port

| Primary access token |

| Handle table |

Device map

Process environment block

Image filename

Image base address

Process priority class

[Windows process block |

| Job object |

Figure 6-2 Structure of an executive process block

291

EXPERIMENT: Displaying the Format of an EPROCESS Block

For a list of the fields that make up an EPROCESS block and their offsets in hexadeci-
mal, type dt _eprocess in the kernel debugger. (See Chapter 1 for more information on
the kernel debugger and how to perform kernel debugging on the local system.) The

output (truncated for the sake of space) looks like this:

Tkd> dt _eprocess
nt!_EPROCESS

+0x000
+0x06¢
+0x070
+0x078
+0x080
+0x084
+0x088
+0x090
+0x09c
+0x0a8
+0x0ac
+0x0b0
+0x0b4
+0x0bc
+0x0c0
+0x0c4

Pcb : _KPROCESS
ProcessLock : _EX_PUSH_LOCK
CreateTime : _LARGE_INTEGER
ExitTime : _LARGE_INTEGER
RundownProtect : _EX_RUNDOWN_REF
uUniqueProcessId : Ptr32 void
ActiveProcessLinks : _LIST_ENTRY
QuotauUsage [3] uint4B
QuotaPeak [3] uint4B
commitCharge : Uint4B
PeakvirtualSize : Uint4B
VirtualsSize : Uint4B
SessionProcessLinks : _LIST_ENTRY
DebugPort : Ptr32 void
ExceptionPort : Ptr32 void
ObjectTable : Ptr32 _HANDLE_TABLE

292

Microsoft Windows Internals, Fourth Edition

+0x0c8
+0x0cc
+0x0ec
+0x0f0
+0x110
+0x114
+0x118

Token
workingSetLock
workingSetPage

HyperspaceLock
ForkInProgress
HardwareTrigger

Tkd> dt _kprocess
nt!_KPROCESS

+0x000 Header

+0x010 ProfileListHead
+0x018
+0x020
+0x028
+0x030
+0x032
+0x033
+0x034
+0x038
+0x03c
+0x040
+0x048
+0x04c
+0x050
+0x058
+0x05¢c
+0x060
+0x062
+0x063
+0x064
+0x065
+0x066
+0x067
+0x068
+0x069
+0x06a
+0x06b

LdtDescriptor
Int21Descriptor
Iopmoffset

Iopl

Unused
ActiveProcessors :
KernelTime
UserTime
ReadyListHead
SwapListEntry
vdmTrapcHandler
ThreadListHead
ProcessLock
Affinity
StackCount
BasePriority
ThreadQuantum
AutoAlignment
State
ThreadsSeed
DisableBoost
PowersState
DisableQuantum
IdealNode

Spare

AddressCreationLock :
: Uint4B
: Ptr32 _ETHREAD
: Uint4B

: _EX_FAST_REF
: _FAST_MUTEX
: Uint4B

_FAST_MUTEX

Note that the first field (Pcb) is actually a substructure, the kernel process block (KPRO-
CESS), which is where scheduling-related information is stored. To display the format of
the kernel process block, type dt_kprocess:

: _DISPATCHER_HEADER
: _LIST_ENTRY
DirectoryTableBase :
: _KGDTENTRY
: _KIDTENTRY
: Uint2B

: UChar

: UChar

[2] vuint4B

Uint4s

: Uint4B

: Uint4s

: _LIST_ENTRY
: _SINGLE_LIST_ENTRY
: Ptr32 void
! _LIST_ENTRY
: Uint4B

: Uint4s

: Uint2B

1 Char

: Char

: UcChar

: UChar

: UChar

: UChar

: UChar

: UChar

: UChar

: UcChar

An alternate way to see the KPROCESS (and other substructures in the EPROCESS) is
to use the recursion (-r) switch of the dt command. For example, typing dt _eprocess —
rl will recurse and display all substructures one level deep.

The dt command shows the format of a process block, not its contents. To show an
instance of an actual process, you can specify the address of an EPROCESS structure as
an argument to the dt command. You can get the address of all the EPROCESS blocks in
the system by using the /process 0 0 command. An annotated example of the output from
this command is included later in this chapter.

Chapter 6: Processes, Threads, and Jobs 293

Table 6-1 explains some of the fields in the preceding experiment in more detail and includes
references to other places in the book where you can find more information about them. As
we’ve said before and will no doubt say again, processes and threads are such an integral part
of Windows that it’s impossible to talk about them without referring to many other parts of
the system. To keep the length of this chapter manageable, however, we’ve covered those
related subjects (such as memory management, security, objects, and handles) elsewhere.

Table 6-1 Contents of the EPROCESS Block

Element

Purpose

Additional Reference

Kernel process (KPROCESS)
block

Common dispatcher object header,
pointer to the process page directory,
list of kernel thread (KTHREAD)
blocks belonging to the process, de-
fault base priority, quantum, affinity
mask, and total kernel and user time
for the threads in the process.

Thread Scheduling
(Chapter 6)

Process identification

Unique process ID, creating process
ID, name of image being run, win-
dow station process is running on.

Quota block

Limits on nonpaged pool, paged
pool, and page file usage plus cur-
rent and peak process nonpaged
and paged pool usage. (Note: Sever-
al processes can share this structure:
all the system processes point to the
single systemwide default quota
block; all the processes in the inter-
active session share a single quota
block that Winlogon sets up.)

Virtual address descriptors
(VADs)

Series of data structures that de-
scribes the status of the portions of
the address space that exist in the
process.

Virtual Address
Descriptors
(Chapter 7)

Working set information

Pointer to working set list (MMWSL
structure); current, peak, minimum,
and maximum working set size; last
trim time; page fault count; memory
priority; outswap flags; page fault
history.

Working Sets
(Chapter 7)

Virtual memory information

Current and peak virtual size, page
file usage, hardware page table en-
try for process page directory.

Chapter 7

Exception local procedure call
(LPC) port

Interprocess communication chan-
nel to which the process manager

sends a message when one of the

process's threads causes an excep-
tion.

Exception Dispatching
(Chapter 3)

294 Microsoft Windows Internals, Fourth Edition

Table 6-1 Contents of the EPROCESS Block

Element

Purpose

Additional Reference

Debugging LPC port

Interprocess communication chan-
nel to which the process manager
sends a message when one of the
process’s threads causes a debug
event.

Local Procedure Calls
(LPCs) (Chapter 3)

Access token (ACCESS_TOKEN)

Executive object describing the se-
curity profile of this process.

Chapter 8

Handle table Address of per-process handle ta- Object Handles and the
ble. Process Handle Table
(Chapter 3)
Device map Address of object directory to re- Object Names
solve device name references in (Chapter 3)
(supports multiple users).
Process environment block Image information (base address, Chapter 6

(PEB)

version numbers, module list), pro-
cess heap information, and thread-
local storage utilization. (Note: The
pointers to the process heaps start
at the first byte after the PEB.)

Windows subsystem process
block (W32PROCESS)

Process details needed by the ker-
nel-mode component of the Win-
dows subsystem.

The kernel process (KPROCESS) block, which is part of the EPROCESS block, and the pro-
cess environment block (PEB), which is pointed to by the EPROCESS block, contain addi-
tional details about the process object. The KPROCESS block (which is sometimes called the
PCB, or process control block) is illustrated in Figure 6-3. It contains the basic information
that the Windows kernel needs to schedule threads. (Page directories are covered in
Chapter 7, and kernel thread blocks are described in more detail later in this chapter.)

The PEB, which lives in the user process address space, contains information needed by the
image loader, the heap manager, and other Windows system DLLs that need to modify it from
user mode. (The EPROCESS and KPROCESS blocks are accessible only from kernel mode.)
The basic structure of the PEB is illustrated in Figure 6-4 and is explained in more detail later

in this chapter.

Dispatcher header

Chapter 6: Processes, Threads, and Jobs

| Process page directory|

Kernel time

User time

Inswap/Outswap list entry

KTHREAD f—» -

Process spinlock

Processor affinity

Resident kernel stack count

Process base priority

Default thread quantum

Process state
Thread seed

Disable boost flag

Image base address

Module list

Thread-local storage data

Code page data

Critical section timeout

Number of heaps

Heap size information

Figure 6-3 Structure of the executive process block

Process heap

GDI shared handle table

Operating system version number information

Image version information

Image process affinity mask

Figure 6-4 Fields of the process environment block

295

Microsoft Windows Internals, Fourth Edition

EXPERIMENT: Examining the PEB

You can dump the PEB structure with the !peb command in the kernel debugger. To get
the address of the PEB, use the /process command as follows:

Tkd> !process

PROCESS 8575f030 SessionId: O cCid: 08d0 Peb: 7ffdf000 ParentcCid: 0360
DirBase: 1a81b000 oObjectTable: el2bd418 HandleCount: 66.
Image: windbg.exe

Then specify that address to the !peb command as follows:

Tkd> !peb 7ffdf000
PEB at 7ffdf000

InheritedAddressSpace: No

ReadImageFiTleExecOptions: No

BeingDebugged: No

ImageBaseAddress: 01000000

Ldr 00181e90

Ldr.Initialized: Yes
Ldr.InInitializationorderModuleList: 00181f28 . 00183188
Ldr.InLoadordermModuleList: 00181ecO . 00183178
Ldr.InMemoryorderModuleList: 00181ec8 . 00183180

Base TimeStamp Module

1000000 40478dbd Mar 04 15:12:45 2004 c:\Program Files\Debugging Tools for
windows\windbg.exe

7750000 3eblb4la May 01 19:56:10 2003 C:\WINDOWS\System32\ntd11.d11

77€60000 3d6dfa28 Aug 29 06:40:40 2002 C:\WINDOWS\system32\kernel32.d11

2000000 40476db2 mMar 04 12:56:02 2004 C:\Program Files\Debugging Tools for
windows\dbgeng.d11

SubSystemData: 00000000

ProcessHeap: 00080000

ProcessParameters: 00020000

windowTitle: 'C:\Documents and Settings\All Users\Start Menu\Programs\Debugging
Tools for windows\winbbg.1nk'

ImageFile: 'C:\Program Files\Debugging Tools for windows\windbg.exe'

CcommandLine: '"C:\Program Files\Debugging Tools for windows\windbg.exe" '

Dl11Path: 'C:\Program Files\Debugging Tools for windows;C:\WINDOWS\System32;C:

\WINDOWS\system;C:\WINDOWS;.;C:\Program Files\Windows Resource Kits\Tools\;C:\WINDOWS\
system32;C:\WINDOWS ;C:\WINDOWS\System32\Wbem;C:\Program Files\Support Tools\;c:\sysint
;C:\Program Files\ATI Technologies\ATI Control Panel;C:\Program Files\Resource Kit\;C:
\PROGRA~1\CA\Common\SCANEN~1; C: \PROGRA~1\CA\eTrust\ANTIVI~1;C:\Program Files\Common
Files\Roxio Shared\DLLShared;C:\SFU\common\"
Environment: 00010000
==\
ALLUSERSPROFILE=C:\Documents and Settings\All Users
APPDATA=C:\Documents and Settings\dsolomon\Application Data

Kernel Variables

Chapter 6: Processes, Threads, and Jobs 297

Afew key kernel global variables that relate to processes are listed in Table 6-2. These variables
are referred to later in the chapter, when the steps in creating a process are described.

Table 6-2 Process-Related Kernel Variables

Variable Type Description
PsActiveProcessHead Queue header List head of process blocks
PsldleProcess EPROCESS Idle process block

PsinitialSystemProcess

Pointer to EPROCESS

Pointer to the process block
of the initial system process
that contains the system
threads

PspCreateProcessNotifyRoutine

Array of pointers

Array of pointers to routines
to be called on process cre-
ation and deletion (maxi-
mum of eight)

PspCreateProcessNotifyRoutineCount

DWORD

Count of registered process
notification routines

PspLoadlmageNotifyRoutine

Array of pointers

Array of pointers to routines
to be called on image load

PspLoadlmageNotifyRoutineCount DWORD Count of registered image-
load notification routines
PspCidTable Pointer to Handle table for process

HANDLE_TABLE

and thread client IDs

Performance Counters

Windows maintains a number of counters with which you can track the processes running on
your system; you can retrieve these counters programmatically or view them with the Perfor-
mance tool. Table 6-3 lists the performance counters relevant to processes (except for mem-
ory management and I/O-related counters, which are described in Chapters 7 and 9,

respectively).

Table 6-3 Process-Related Performance Counters

Object: Counter Function

Process: % Privileged Time Describes the percentage of time that the threads in the process
have run in kernel mode during a specified interval.

Process: % Processor Time Describes the percentage of CPU time that the threads in the
process have used during a specified interval. This count is the
sum of % Privileged Time and % User Time.

Process: % User Time Describes the percentage of time that the threads in the process
have run in user mode during a specified interval.

298 Microsoft Windows Internals, Fourth Edition

Table 6-3 Process-Related Performance Counters

Object: Counter

Function

Process: Elapsed Time

Describes the total elapsed time in seconds since this process was
created.

Process: ID Process

Returns the process ID. This ID applies only while the process ex-
ists because process IDs are reused.

Process: Creating Process ID

Returns the process ID of the creating process. This value isn't up-
dated if the creating process exits.

Process: Thread Count

Returns the number of threads in the process.

Process: Handle Count

Returns the number of handles open in the process.

Relevant Functions

For reference purposes, some of the Windows functions that apply to processes are described
in Table 6-4. For further information, consult the Windows API documentation in the MSDN

Library.

Table 6-4 Process-Related Functions

Function Description

CreateProcess Creates a new process and thread using the caller’s security
identification

CreateProcessAsUser Creates a new process and thread with the specified alternate

security token

CreateProcessWithLogonW

Creates a new process and thread to run under the credentials
of the specified username and password

CreateProcessWithTokenW

Creates a new process and thread with the specified alternate
security token, with additional options such as allowing the user
profile to be loaded

OpenProcess Returns a handle to the specified process object
ExitProcess Ends a process, and notifies all attached DLLs
TerminateProcess Ends a process without notifying the DLLs

FlushinstructionCache

Empties the specified process's instruction cache

GetProcessTimes Obtains a process’s timing information, describing how much
time the process has spent in user and kernel mode

GetExitCodeProcess Returns the exit code for a process, indicating how and why the
process shut down

GetCommandLine Returns a pointer to the command-line string passed to the cur-
rent process

GetCurrentProcess Returns a pseudo handle for the current process

GetCurrentProcessld Returns the ID of the current process

Chapter 6: Processes, Threads, and Jobs

Table 6-4 Process-Related Functions

Function Description

GetProcessVersion Returns the major and minor versions of the Windows version on
which the specified process expects to run

GetStartupinfo Returns the contents of the STARTUPINFO structure specified

during CreateProcess

GetEnvironmentStrings Returns the address of the environment block

GetEnvironmentVariable Returns a specific environment variable

Get/SetProcessShutdownParame-

ters rent process

GetGuiResources Returns a count of User and GDI handles

EXPERIMENT: Using the Kernel Debugger !process Command

The kernel debugger Iprocess command displays a subset of the information in an EPRO-
CESS block. This output is arranged in two parts for each process. First you see the infor-
mation about the process, as shown here (when you don’t specify a process address or
ID, Iprocess lists information for the active process on the current CPU):

Tkd> !process

PROCESS 8575f030 Sessionid: 0 cid: 08d0
DirBase: 1a81b000 oObjectTable: el2bd418 HandleCount:
Image: windbg.exe
vadrRoot 857f05e0 vads 71 Clone 0 Private 1152. Modified 98.
DeviceMap ele96c88

pPeb: 7ffdf000 ParentCid: 0360
65.

Locked 1.

299

Defines the shutdown priority and number of retries for the cur-

Token elf5b8a8
ElapsedTime 1:23:06.0219
UserTime 0:00:11.0897
KernelTime 0:00:07.0450
QuotaPoolUsage[PagedPool] 38068
QuotaPoolUsage[NonPagedPool] 2840

working Set Sizes (now,min,max) (2552, 50, 345) (10208KB, 200KB, 1380KB)
pPeakworkingSetSize 2715
Virtualsize 41 ™Mb
Peakvirtualsize 41 Mb
PageFaultCount 3658
MemoryPriority BACKGROUND
BasePriority 8
CommitCharge 1566

After the basic process output comes a list of the threads in the process. That output is
explained in the “Experiment: Using the Kernel Debugger !thread Command” section
later in the chapter. Other commands that display process information include handle,
which dumps the process handle table (which is described in more detail in the section
“Object Handles and the Process Handle Table” in Chapter 3). Process and thread secu-
rity structures are described in Chapter 8.

300

Microsoft Windows Internals, Fourth Edition

Flow of CreateProcess

So far in this chapter, you’ve seen the structures that are part of a process and the API func-
tions with which you (and the operating system) can manipulate processes. You've also found
out how you can use tools to view how processes interact with your system. But how did those
processes come into being, and how do they exit once they've fulfilled their purpose? In the
following sections, yowll discover how a Windows process comes to life.

A Windows process is created when an application calls one of the process creation functions,
such as CreateProcess, CreateProcessAsUser, CreateProcessWithTokenW, or CreateProcessWith-
LogonW. Creating a Windows process consists of several stages carried out in three parts of
the operating system: the Windows client-side library Kernel32.dll, the Windows executive,
and the Windows subsystem process (Csrss). Because of the multiple environment subsystem
architecture of Windows, creating a Windows executive process object (which other subsystems
can use) is separated from the work involved in creating a Windows process. So, although the
following description of the flow of the Windows CreateProcess function is complicated, keep in
mind that part of the work is specific to the semantics added by the Windows subsystem as
opposed to the core work needed to create a Windows executive process object.

The following list summarizes the main stages of creating a process with the Windows Cre-
ateProcess function. The operations performed in each stage are described in detail in the sub-
sequent sections.

Note Many steps of CreateProcess are related to the setup of the process virtual address
space and therefore refer to many memory management terms and structures that are defined
in Chapter 7.

1. Open the image file (.exe) to be executed inside the process.

2. Create the Windows executive process object.

3. Create the initial thread (stack, context, and Windows executive thread object).
4

Notify the Windows subsystem of the new process so that it can set up for the new pro-
cess and thread.

5. Start execution of the initial thread (unless the CREATE_ SUSPENDED flag was speci-
fied).

6. In the context of the new process and thread, complete the initialization of the address
space (such as load required DLLs) and begin execution of the program.

Figure 6-5 shows an overview of the stages Windows follows to create a process.

Chapter 6: Processes, Threads, and Jobs 301

Creating process

Open EXE and

Stage 1 create section
object
Create

Stage 2 Windows

process object

!

Create
Stage 3 Windows
thread object

Windows subsystem

Notify Set up for new
Stage 4 Windows process and
subsystem thread N
ew process
Start execution Final
Stage 5 of the initial process/image Stage 6
thread initialization
Start execution
G at entry point
to caller! Ty P
to image

Figure 6-5 The main stages of process creation
Before opening the executable image to run, CreateProcess performs the following steps:

m In CreateProcess, the priority class for the new process is specified as independent bits in
the CreationFlags parameter. Thus, you can specify more than one priority class for a sin-
gle CreateProcess call. Windows resolves the question of which priority class to assign to
the process by choosing the lowest-priority class set.

m If no priority class is specified for the new process, the priority class defaults to Normal
unless the priority class of the process that created it is Idle or Below Normal, in which
case the priority class of the new process will have the same priority as the creating class.

m If a Real-time priority class is specified for the new process and the process’s caller
doesn’t have the Increase Scheduling Priority privilege, the High priority class is used
instead. In other words, CreateProcess doesn’t fail just because the caller has insufficient
privileges to create the process in the Real-time priority class; the new process just won’t
have as high a priority as Real-time.

m All windows are associated with desktops, the graphical representation of a workspace.
If no desktop is specified in CreateProcess, the process is associated with the caller’s cur-
rent desktop.

302 Microsoft Windows Internals, Fourth Edition

Stage 1: Opening the Image to Be Executed

As illustrated in Figure 6-6, the first stage in CreateProcess is to find the appropriate Windows
image that will run the executable file specified by the caller and to create a section object to
later map it into the address space of the new process. If no image name is specified, the first
token of the command line (defined to be the first part of the command-line string ending
with a space or tab that is a valid file specification) is used as the image filename.

On Windows XP and Windows Server 2003, CreateProcess checks whether software restric-
tion policies on the machine prevent the image from being run. (See Chapter 8 for a complete
description of software restriction policies.)

If the executable file specified is a Windows .exe, it is used directly. If it’s not a Windows .exe
(for example, if it’s an MS-DOS, Win16, or a POSIX application), CreateProcess goes through a
series of steps to find a Windows support image to run it. This process is necessary because
non-Windows applications aren’t run directly—Windows instead uses one of a few special
support images that in turn are responsible for actually running the non-Windows program.
For example, if you attempt to run a POSIX application, CreateProcess identifies it as such and
changes the image to be run on the Windows executable file Posix.exe. If you attempt to run
an MS-DOS or a Winl16 executable, the image to be run becomes the Windows executable
Ntvdm.exe. In short, you can’t directly create a process that is not a Windows process. If Win-
dows can’t find a way to resolve the activated image as a Windows process (as shown in Table
6-5), CreateProcess fails.

Run Cmd.exe Run Ntvdm.exe Use .exe directly
MS-DOS bat i Windows
or.cmd

What kind of
application is it?

MS-DOS .exe,
.com, or .pif

N\

Run Os2.exe Run Posix.exe Run Ntvdm.exe

0S/2 1.x POSIX

Figure 6-6 Choosing a Windows image to activate

Chapter 6: Processes, Threads, and Jobs 303

Table 6-5 Decision Tree for Stage 1 of CreateProcess

If the image is a/an And this will happen This image will run

POSIX executable file Posix.exe CreateProcess restarts Stage 1.
MS-DOS application with an .exe, Ntvdm.exe CreateProcess restarts Stage 1.
a .com, or a .pif extension

Win16 application Ntvdm.exe CreateProcess restarts Stage 1.
Command procedure (application with Cmd.exe CreateProcess restarts Stage 1.

a .bat or a .cmd extension)

Specifically, the decision tree that CreateProcess goes through to run an image is as follows:

m Iftheimage is an MS-DOS application with an .exe, a .com, or a .pif extension, a message
is sent to the Windows subsystem to check whether an MS-DOS support process
(Ntvdm.exe, specified in the registry value HKLM\SYSTEM\CurrentControlSet\Con-
tro\NWOW\ cmdline) has already been created for this session. If a support process has
been created, it is used to run the MS-DOS application. (The Windows subsystem sends
the message to the VDM [Virtual DOS Machine] process to run the new image.) Then
CreateProcess returns. If a support process hasn’t been created, the image to be run
changes to Ntvdm.exe and CreateProcess restarts at Stage 1.

m If the file to run has a .bat or a .cmd extension, the image to be run becomes Cmd.exe,
the Windows command prompt, and CreateProcess restarts at Stage 1. (The name of the
batch file is passed as the first parameter to Cmd.exe.)

m If the image is a Win16 (Windows 3.1) executable, CreateProcess must decide whether a
new VDM process must be created to run it or whether it should use the default session-
wide shared VDM process (which might not yet have been created). The CreateProcess
flags CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM control
this decision. If these flags aren’t specified, the registry value HKLM\SYSTEM\Current-
ControlSet\Contro\WOW\ DefaultSeparateVDM dictates the default behavior. If the
application is to be run in a separate VDM, the image to be run changes to the value of
HKLM\SYSTEM\CurrentControlSet\Contro\WOW\wowcmadline and CreateProcess
restarts at Stage 1. Otherwise, the Windows subsystem sends a message to see whether
the shared VDM process exists and can be used. (If the VDM process is running on a dif-
ferent desktop or isn’t running under the same security as the caller, it can’t be used and
anew VDM process must be created.) If a shared VDM process can be used, the Win-
dows subsystem sends a message to it to run the new image and CreateProcess returns. If
the VDM process hasn’t yet been created (or if it exists but can’t be used), the image to
be run changes to the VDM support image and CreateProcess restarts at Stage 1.

304

Q

Microsoft Windows Internals, Fourth Edition

At this point, CreateProcess has successfully opened a valid Windows executable file and
created a section object for it. The object isn’t mapped into memory yet, but it is open. Just
because a section object has been successfully created doesn’t mean that the file is a valid
Windows image, however; it could be a DLL or a POSIX executable. If the file is a POSIX
executable, the image to be run changes to Posix.exe and CreateProcess restarts from the begin-
ning of Stage 1. If the file is a DLL, CreateProcess fails.

Now that CreateProcess has found a valid Windows executable image, it looks in the registry
under HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options to see whether a subkey with the filename and extension of the executable image
(but without the directory and path information—for example, Image.exe) exists there. If it
does, CreateProcess looks for a value named Debugger for that key. If this is present, the image
to be run becomes the string in that value and CreateProcess restarts at Stage 1.

Tip You can take advantage of this CreateProcess behavior and debug the startup code of
Windows service processes before they start rather than attach the debugger after starting the
service, which doesn't allow you to debug the startup code.

Stage 2: Creating the Windows Executive Process Object

At this point, CreateProcess has opened a valid Windows executable file and created a section
object to map it into the new process address space. Next it creates a Windows executive pro-
cess object to run the image by calling the internal system function NtCreateProcess. Creating
the executive process object (which is done by the creating thread) involves the following sub-
stages:

m Setting up the EPROCESS block

m Creating the initial process address space

m Initializing the kernel process block (KPROCESS)
|

Concluding the setup of the process address space (which includes initializing the
working set list and virtual address space descriptors and mapping the image into
address space)

Setting up the PEB

Completing the setup of the executive process object

Note The only time there won't be a parent process is during system initialization. After that
point, a parent process is always required to provide a security context for the new process.

Chapter 6: Processes, Threads, and Jobs 305

Stage 2A: Setting Up the EPROCESS Block

This substage involves nine steps:

1.
2.
3.

9.

Allocate and initialize the Windows EPROCESS block.
Inherit the process affinity mask from the parent process.

The process minimum and maximum working set size are set to the values of PsMini-
mumWorkingSet and PsMaximumWorkingSet, respectively.

Set the new process’s quota block to the address of its parent process’s quota block, and
increment the reference count for the parent’s quota block.

Inherit the Windows device name space (including the definition of drive letters, COM
ports, and so on).

Store the parent process’s process ID in the InheritedFromUniqueProcessld field in the
new process object.

Create the process’s primary access token (a duplicate of its parent’s primary token).
New processes inherit the security profile of their parents. If the CreateProcessAsUser
function is being used to specify a different access token for the new process, the token
is then changed appropriately.

The process handle table is initialized. If the inherit handles flag is set for the parent pro-
cess, any inheritable handles are copied from the parent’s object handle table into the
new process. (For more information about object handle tables, see Chapter 3.)

Set the new process’s exit status to STATUS_PENDING.

Stage 2B: Creating the Initial Process Address Space

The initial process address space consists of the following pages:

Page directory (and it’s possible there’ll be more than one for systems with page tables
more than two levels, such as x86 systems in PAE mode or 64-bit systems)

Hyperspace page

Working set list

To create these three pages, the following steps are taken:

1.

Page table entries are created in the appropriate page tables to map the initial pages.

The number of pages is deducted from the kernel variable MmTotalCommittedPages and
added to MmProcessCommit.

The systemwide default process minimum working set size (PsMinimumWorkingSet) is
deducted from MmResidentAvailablePages.

The page table pages for the nonpaged portion of system space and the system cache are
mapped into the process.

306

Microsoft Windows Internals, Fourth Edition

Stage 2C: Creating the Kernel Process Block

The next stage of CreateProcess is the initialization of the KPROCESS block, which contains a
pointer to a list of kernel threads. (The kernel has no knowledge of handles, so it bypasses the
object table.) The kernel process block also points to the process’s page table directory (which
is used to keep track of the process’s virtual address space), the total time the process’s
threads have executed, the process’s default base-scheduling priority (which starts as Normal,
or 8, unless the parent process was set to Idle or Below Normal, in which case the setting is
inherited), the default processor affinity for the threads in the process, and the initial value of
the process default quantum (which is described in more detail in the “Thread Scheduling”
section later in the chapter), which is taken from the value of PspForegroundQuantum[0], the
first entry in the systemwide quantum array.

Note The default initial quantum differs between Windows client and server systems. For more
information on thread quantums, turn to their discussion in the section "Thread Scheduling.”

Stage 2D: Concluding the Setup of the Process Address Space

Setting up the address space for a new process is somewhat complicated, so let’s look at what’s
involved one step at a time. To get the most out of this section, you should have some familiarity
with the internals of the Windows memory manager, which are described in Chapter 7.

m The virtual memory manager sets the value of the process’s last trim time to the current
time. The working set manager (which runs in the context of the balance set manager
system thread) uses this value to determine when to initiate working set trimming.

m The memory manager initializes the process’s working set list—page faults can now be
taken.

m The section (created when the image file was opened) is now mapped into the new pro-
cess’s address space, and the process section base address is set to the base address of
the image.

NtdllLdll is mapped into the process.

The systemwide national language support (NLS) tables are mapped into the process’s
address space.

Note POSIX processes clone the address space of their parents, so they don’t have to go
through these steps to create a new address space. In the case of POSIX applications, the new
process’s section base address is set to that of its parent process and the parent’s PEB is cloned
for the new process.

Stage 2E: Setting Up the PEB

Chapter 6: Processes, Threads, and Jobs 307

CreateProcess allocates a page for the PEB and initializes a number of fields, which are

described in Table 6-6.

Table 6-6 Initial Values of the Fields of the PEB

Field Initial Value

ImageBaseAddress Base address of section
NumberOQfProcessors KeNumberProcessors kernel variable
NtGlobalFlag NtGlobalFlag kernel variable

CriticalSectionTimeout

MmCriticalSectionTimeout kernel variable

HeapSegmentReserve

MmHeapSegmentReserve kernel variable

HeapSegmentCommit

MmHeapSegmentCommit kernel variable

HeapDeCommitTotalFreeThreshold

MmHeapDeCommitTotalFreeThreshold kernel variable

HeapDeCommitFreeBlockThreshold

MmHeapDeCommitFreeBlockThreshold kernel variable

NumberOfHeaps

0

MaximumNumberOfHeaps

(Size of a page - size of a PEB) / 4

ProcessHeaps First byte after PEB

OSMajorVersion NtMajorVersion kernel variable
OSMinorVersion NtMinorVersion kernel variable
OSBuildNumber NtBuildNumber kernel variable & Ox3FFF
OSPlatformld 2

If the image file specifies explicit Windows version values, this information replaces the initial
values shown in Table 6-6. The mapping from image version information fields to PEB fields

is described in Table 6-7.

Table 6-7 Windows Replacements for Initial PEB Values

Field Name Value Taken from Image Header

OSMajorVersion OptionalHeader.Win32VersionValue & OxFF
OSMinorVersion (OptionalHeader.Win32VersionValue >> 8) & OxFF
OSBuildNumber (OptionalHeader.Win32VersionValue >> 16) & 0x3FFF
OSPlatformld (OptionalHeader.Win32VersionValue >> 30) A 0x2

Stage 2F: Completing the Setup of the Executive Process Object

Before the handle to the new process can be returned, a few final setup steps must be completed:

1. If systemwide auditing of processes is enabled (either as a result of local policy settings
or group policy settings from a domain controller), the process’s creation is written to

the Security event log.

308 Microsoft Windows Internals, Fourth Edition

2.

If the parent process was contained in a job, the new process is added to the job. (Jobs
are described at the end of this chapter.)

If the image header characteristic’s IMAGE_FILE_UP_SYSTEM_ ONLY flag is set (indi-
cating that the image can run only on a uniprocessor system), a single CPU is chosen for
all the threads in this new process to run on. This choosing process is done by simply
cycling through the available processors—each time this type of image is run, the next
processor is used. In this way, these types of images are spread out across the processors
evenly.

If the image specifies an explicit processor affinity mask (for example, a field in the con-
figuration header), this value is copied to the PEB and later set as the default process
affinity mask.

CreateProcess inserts the new process block at the end of the Windows list of active pro-
cesses (PsActiveProcessHead).

The process’s creation time is set, the handle to the new process is returned to the caller
(CreateProcess in Kernel32.dll).

Stage 3: Creating the Initial Thread and Its Stack and Context

At this point, the Windows executive process object is completely set up. It still has no thread,
however, so it can’t do anything yet. Before the thread can be created, it needs a stack and a
context in which to run, so these are set up now. The stack size for the initial thread is taken
from the image—there’s no way to specity another size.

Now the initial thread can be created, which is done by calling NtCreateThread. The thread
parameter (which can’t be specified in CreateProcess but can be specified in CreateThread) is
the address of the PEB. This parameter will be used by the initialization code that runs in the
context of this new thread (as described in Stage 6). However, the thread won’t do anything
yet—it is created in a suspended state and isn’t resumed until the process is completely initial-
ized (as described in Stage 5). NtCreateThread calls PspCreateThread (a function also used to
create system threads) and performs the following steps:

ik W

The thread count in the process object is incremented.

An executive thread block (ETHREAD) is created and initialized.
A thread ID is generated for the new thread.

The TEB is set up in the user-mode address space of the process.

The user-mode thread start address is stored in the ETHREAD. For Windows threads, this
is the system-supplied thread startup function in Kernel32.dll (BaseProcessStart for the
first thread in a process and BaseThreadStart for additional threads). The user’s specified
Windows start address is stored in the ETHREAD block in a different location so that the
system-supplied thread startup function can call the user-specified startup function.

9.

Chapter 6: Processes, Threads, and Jobs 309

KelnitThread is called to set up the KTHREAD block. The thread’s initial and current base
priorities are set to the process’s base priority, and its affinity and quantum are set to that
of the process. This function also sets the initial thread ideal processor. (See the section
“Ideal and Last Processor” for a description of how this is chosen.) KelnitThread next allo-
cates a kernel stack for the thread and initializes the machine-dependent hardware con-
text for the thread, including the context, trap, and exception frames. The thread’s context
is set up so that the thread will start in kernel mode in KiThreadStartup. Finally, Kelnit-
Thread sets the thread’s state to Initialized and returns to PspCreateThread.

Any registered systemwide thread creation notification routines are called.

The thread’s access token is set to point to the process access token, and an access check
is made to determine whether the caller has the right to create the thread. This check
will always succeed if you're creating a thread in the local process, but it might fail if
you're using CreateRemoteThread to create a thread in another process and the process
creating the thread doesn’t have the debug privilege enabled.

Finally, the thread is readied for execution.

Stage 4: Notifying the Windows Subsystem about the New Process

If software restriction policies dictate, a restricted token is created for the new process. At this
point, all the necessary executive process and thread objects have been created. Kernel32.dll
next sends a message to the Windows subsystem so that it can set up for the new process and
thread. The message includes the following information:

Process and thread handles
Entries in the creation flags
ID of the process’s creator

Flag indicating whether the process belongs to a Windows application (so that Csrss
can determine whether or not to show the startup cursor)

The Windows subsystem performs the following steps when it receives this message:

1.

CreateProcess duplicates a handle for the process and thread. In this step, the usage
count of the process and the thread is incremented from 1 (which was set at creation
time) to 2.

If a process priority class isn’t specified, CreateProcess sets it according to the algorithm
described earlier in this section.

The Csrss process block is allocated.

The new process’s exception port is set to be the general function port for the Windows
subsystem so that the Windows subsystem will receive a message when an exception
occurs in the process. (For further information on exception handling, see Chapter 3.)

310

Stage

Stage

Microsoft Windows Internals, Fourth Edition

5. Ifthe process is being debugged (that is, if it is attached to a debugger process), the pro-
cess debug port is set to the Windows subsystem’s general function port. This setting
ensures that Windows will send debug events that occur in the new process (such as
thread creation and deletion, exceptions, and so on) as messages to the Windows sub-
system so that it can then dispatch the events to the process that is acting as the new
process’s debugger.

The Csrss thread block is allocated and initialized.
CreateProcess inserts the thread in the list of threads for the process.

The count of processes in this session is incremented.

© ® N

The process shutdown level is set to 0x280 (the default process shutdown level—see Set-
ProcessShutdownParameters in the MSDN Library documentation for more information).

10. The new process block is inserted into the list of Windows subsystemwide processes.

11. The per-process data structure used by the kernel-mode part of the Windows subsystem
(W32PROCESS structure) is allocated and initialized.

12. The application start cursor is displayed. This cursor is the familiar arrow with an hour-
glass attached—the way that Windows says to the user, “I'm starting something, but you
can use the cursor in the meantime.” If the process doesn’t make a GUI call after 2 sec-
onds, the cursor reverts to the standard pointer. If the process does make a GUI call in
the allotted time, CreateProcess waits 5 seconds for the application to show a window.
After that time, CreateProcess will reset the cursor again.

5: Starting Execution of the Initial Thread

At this point, the process environment has been determined, resources for its threads to use
have been allocated, the process has a thread, and the Windows subsystem knows about the
new process. Unless the caller specified the CREATE_ SUSPENDED flag, the initial thread is
now resumed so that it can start running and perform the remainder of the process initializa-
tion work that occurs in the context of the new process (Stage 6).

6: Performing Process Initialization in the Context of the New

Process

The new thread begins life running the kernel-mode thread startup routine KiThreadStartup.
KiThreadStartup lowers the thread’s IRQL level from DPC/dispatch level to APC level and
then calls the system initial thread routine, PspUserThreadStartup. The user-specified thread
start address is passed as a parameter to this routine.

On Windows 2000, PspUserThreadStartup first enables working set expansion. If the process
being created is a debuggee, all threads in the process are suspended. (Threads might have been
created during Stage 3.) A create process message is then sent to the process’s debug port
(which is the Windows subsystem function port, because this is a Windows process) so that the

Chapter 6: Processes, Threads, and Jobs 311

subsystem can deliver the process startup debug event (CREATE_PROCESS_DEBUG_INFO) to
the appropriate debugger process. PspUserThreadStartup then waits for the Windows subsystem
to get the reply from the debugger (via the ContinueDebugEvent function). When the Windows
subsystem replies, all the threads are resumed.

On Windows XP and Windows Server 2003, PspUserThreadStartup checks whether applica-
tion prefetching is enabled on the system and, if so, calls the logical prefetcher to process the
prefetch instruction file (if it exists) and prefetch pages referenced during the first 10 seconds
the process started last time. (For details on the prefetcher, see Chapter 3.) Finally, PspUser-
ThreadStartup queues a user-mode APC to run the image loader initialization routine (LdrIni-
tializeThunk in NtdlLdll). The APC will be delivered when the thread attempts to return to
user mode.

When PspUserThreadStartup returns to KiThreadStartup, it returns from kernel mode, the APC is
delivered, and LdrInitializeThunk is called. The LdrInitializeThunk routine initializes the loader,
heap manager, NLS tables, thread-local storage (TLS) array, and critical section structures. It
then loads any required DLLs and calls the DLL entry points with the DLL_PROCESS_
ATTACH function code. (See the sidebar “Side-by-Side Assemblies” for a description of a
mechanism introduced in Windows XP to address DLL versioning problems.)

Finally, the image begins execution in user mode when the loader initialization returns to the
user mode APC dispatcher, which then calls the thread’s start function that was pushed on
the user stack when the user APC was delivered.

Side-by-Side Assemblies

Aproblem that has long plagued Windows users is “DLL hell.” You enter DLL hell when
you install an application that replaces one or more core system DLLs, such as those for
common controls, the Microsoft Visual Basic runtime, or MFC. Application installation
programs make these replacements to ensure that the application runs properly, but at
the same time, updated DLLs might have incompatibilities with other already-installed
applications.

Windows 2000 partly addressed DLL hell by preventing the modification of core
system DLLs with the Windows File Protection feature, and by allowing applications to
use private copies of these core DLLs. To use a private copy of a DLL instead of the one
in the system directory, an application’s installation must include a file named
Application.exe.local (where Application is the name of the application’s executable),
which directs the loader to first look for DLLs in that directory. This type of DLL redirec-
tion avoids application/DLL incompatibility problems, but it does so at the expense of
sharing DLLs, which is one of the points of DLLs in the first place. In addition, any DLLs
that are loaded from the list of KnownDLLs (DLLs that are permanently mapped into
memory) or that are loaded by those DLLs cannot be redirected using this mechanism.

312

Microsoft Windows Internals, Fourth Edition

To further address application and DLL compatibility while allowing sharing, Windows
XP introduces shared assemblies. An assembly consists of a group of resources, includ-
ing DLLs, and an XML manifest file that describes the assembly and its contents. An
application references an assembly through the existence of its own XML manifest. The
manifest can be a file in the application’s installation directory that has the same name
as the application with “.manifest” appended (for example, application.exe.manifest), or
it can be linked into the application as a resource. The manifest describes the application
and its dependence on assemblies.

There are two types of assemblies: private and shared. The difference between the two is
that shared assemblies are digitally signed so that corruption or modification of their
contents can be detected. In addition, shared assemblies are stored under the \Win-
dows\Winsxs directory, whereas private assemblies are stored in an application’s instal-
lation directory. Thus, shared assemblies also have an associated catalog file (.cat) that
contains its digital signature information. Shared assemblies can be “side-by-side”
assemblies because multiple versions of a DLL can reside on a system simultaneously,
with applications dependent on a particular version of a DLL always using that particu-
lar version.

An assembly’s manifest file typically has a name that includes the name of the assembly,
version information, some text that represents a unique signature, and the extension

“ manifest”. The manifests are stored in \Windows\Winsxs\Manifests, and the rest of
the assembly’s resources are stored in subdirectories of \Windows\Winsxs that have
the same name as the corresponding manifest files, with the exception of the trailing
.manifest extension.

An example of a shared assembly is version 6 of the Windows common controls DLL,
comctl32.dll, which is new to Windows XP. Its manifest file is named \Windows\Win-
sxs\Manifest\x86_Microsoft. Windows.Common-
Controls_6595b64144ccf1df_6.0.0.0_x-ww_1382d70a.manifest. It has an associated
catalog file (which is the same name with the .cat extension) and a subdirectory of Win-
sxs that includes cometl32.dl11.

Version 6 of Comctl32.dll includes integration with Windows XP themes, and because
applications not written with themes-support in mind might not appear correctly with
the new DLL, it’s available only to applications that explicitly reference the shared
assembly containing it—the version of Comctl32.dll installed in \Windows\System32 is
an instance of version 5.x, which is not theme aware. When an application loads, the
loader looks for the application’s manifest, and if one exists, loads the DLLs from the
assemblies specified. DLLs not included in assemblies referenced in the manifest are
loaded in the traditional way. Legacy applications, therefore, link against the version in
\Windows\System32, whereas theme-aware applications can specify the new version in
their manifest.

Chapter 6: Processes, Threads, and Jobs 313

You can see the effect of a manifest that directs the system to use the new common con-
trol library on Windows XP by running the User State Migration Wizard (\Win-
dows\System32\Usmt\Migwiz.exe) with and without its manifest file:

1. Runit, and notice the Windows XP themes on the buttons in the wizard.

2. Open the Migwiz.exe.manifest file in Notepad, and locate the inclusion of the ver-
sion 6 common control library.

3. Rename the Migwiz.exe.manifest to Migwiz.exe.manifest.bak.
4. Rerun the wizard, and notice the unthemed buttons.

5. Restore the manifest file to its original name.

A final advantage that shared assemblies have is that a publisher can issue a publisher
configuration, which can redirect all applications that use a particular assembly to use
an updated version. Publishers would do this if they were preserving backward compat-
ibility while addressing bugs. Ultimately, however, because of the flexibility inherent in
the assembly model, an application could decide to override the new setting and con-
tinue to use an older version.

Thread Internals

Now that we've dissected processes, let’s turn our attention to the structure of a thread.
Unless explicitly stated otherwise, you can assume that anything in this section applies to
both user-mode threads and kernel-mode system threads (which are described in Chapter 2).

Data Structures

At the operating-system level, a Windows thread is represented by an executive thread
(ETHREAD) block, which isillustrated in Figure 6-7. The ETHREAD block and the structures
it points to exist in the system address space, with the exception of the thread environment
block (TEB), which exists in the process address space. In addition, the Windows subsystem
process (Csrss) maintains a parallel structure for each thread created in a Windows process.
Also, for threads that have called a Windows subsystem USER or GDI function, the kernel-
mode portion of the Windows subsystem (Win32k.sys) maintains a per-thread data structure
(called the W32THREAD structure) that the ETHREAD block points to.

314

Microsoft Windows Internals, Fourth Edition

—

KTHREAD

— | TEB

Create and exit times

Process ID

[EprOCESs |

Thread start address

| Access token |

Impersonation information

LPC message information

Timer information

|Pending 1/0 requestsl

Figure 6-7 Structure of the executive thread block

Most of the fields illustrated in Figure 6-7 are self-explanatory. The first field is the kernel
thread (KTHREAD) block. Following that are the thread identification information, the pro-
cess identification information (including a pointer to the owning process so that its environ-
ment information can be accessed), security information in the form of a pointer to the access
token and impersonation information, and finally, fields relating to LPC messages and pend-
ing I/O requests. As you can see in Table 6-8, some of these key fields are covered in more
detail elsewhere in this book. For more details on the internal structure of an ETHREAD
block, you can use the kernel debugger dt command to display the format of the structure.

Table 6-8 Key Contents of the Executive Thread Block

Element Description Additional Reference
KTHREAD See Table 6-9.
Thread time Thread create and exit time

information.

Process identification

Process ID and pointer to
EPROCESS block of the process
that the thread belongs to.

Start address

Address of thread start routine.

Impersonation information

Access token and impersonation
level (if the thread is imperson-
ating a client).

Chapter 8

LPC information

Message ID that the thread is
waiting for and address of
message.

Local procedure calls
(Chapter 3)

1/0 information

List of pending I/O request
packets (IRPs).

I/O system (Chapter 9)

Let’s take a closer look at two of the key thread data structures referred to in the preceding
text: the KTHREAD block and the TEB. The KTHREAD block contains the information that

Chapter 6: Processes, Threads, and Jobs 315

the Windows kernel needs to access to perform thread scheduling and synchronization on
behalf of running threads. Its layout is illustrated in Figure 6-8.

Dispatcher header

Total user time

Total kernel time

| Kernel stack information |

| System service table |

Thread-scheduling information

Trap frame

| Thread-local storage array |

Synchronization information

List of pending APCs

Timer block and wait block

List of objects thread is waiting on

[TEB |

Figure 6-8 Structure of the kernel thread block

The key fields of the KTHREAD block are described briefly in Table 6-9.

Table 6-9 Key Contents of the KTHREAD Block

Element

Description

Additional Reference

Dispatcher header

Because the thread is an object that
can be waited on, it starts with a stan-
dard kernel dispatcher object header.

Kernel Dispatcher objects
(Chapter 3)

Execution time

Total user and kernel CPU time.

Pointer to kernel stack
information

Base and upper address of the kernel
stack.

Memory management
(Chapter 7)

Pointer to system service
table

Each thread starts out with this field
service table pointing to the main
system service table
(KeServiceDescriptorTable). When a
thread first calls a Windows GUI ser-
vice, its system service table is changed
to one that includes the GDI and USER
services in Win32k.sys.

System Service Dispatch-
ing (Chapter 3)

Scheduling information

Base and current priority, quantum, af-
finity mask, ideal processor, scheduling
state, freeze count, and suspend count.

Thread Scheduling

Wait blocks

The thread block contains four built-in
wait blocks so that wait blocks don’t
have to be allocated and initialized
each time the thread waits for some-
thing. (One wait block is dedicated to
timers.)

Synchronization
(Chapter 3)

316

Microsoft Windows Internals, Fourth Edition

Table 6-9 Key Contents of the KTHREAD Block

Element Description

Additional Reference

Wait information List of objects the thread is waiting for,
wait reason, and time at which the

thread entered the wait state.

Synchronization
(Chapter 3)

Mutant list List of mutant objects the thread owns. Synchronization
(Chapter 3)
APC queues List of pending user-mode and kernel- Aynchronous Procedure
mode APCs, and alertable flag. Call (APC) Interrrupts
(Chapter 3)
Timer block Built-in timer block (also a corre-
sponding wait block).
Queue list Pointer to queue object that the Synchronization

thread is associated with.

(Chapter 3)

Pointer to TEB Thread ID, TLS information, PEB point-

er, and GDI and OpenGL information.

EXPERIMENT: Displaying ETHREAD and KTHREAD Structures

The ETHREAD and KTHREAD structures can be displayed with the dt command in the
kernel debugger. The following output shows the format of an ETHREAD:

Tkd> dt nt!_ethread

nt!_ETHREAD
+0x000 Tcb : _KTHREAD
+0x1c0 CreateTime : _LARGE_INTEGER
+0x1cO0 NestedFaultCount : Pos 0, 2 Bits

+0x1cO0 ApcNeeded : Pos 2, 1 Bit
+0x1c8 ExitTime : _LARGE_INTEGER
+0x1c8 LpcReplycChain : _LIST_ENTRY
+0x1c8 KeyedwaitChain : _LIST_ENTRY
+0x1d0 ExitStatus : Int4B

+0x1d0 ofschain : Ptr32 void
+0x1d4 PostBlockList : _LIST_ENTRY

: Ptr32 _TERMINATION_PORT
: Ptr32 _ETHREAD

+0x1dc TerminationPort
+0x1dc ReaperLink

+0x1dc Keyedwaitvalue : Ptr32 void
+0x1e0 ActiveTimerListLock : Uint4B
+0x1le4 ActiveTimerListHead : _LIST_ENTRY
+0xlec cid : _CLIENT_ID
+0x1f4 LpcReplySemaphore : _KSEMAPHORE
+0x1f4 KeyedwaitSemaphore : _KSEMAPHORE
+0x208 LpcReplyMessage : Ptr32 void
+0x208 LpcwaitingonpPort : Ptr32 void

+0x20c ImpersonationInfo :
+0x210 IrpList :
+0x218 TopLevelIrp

+0x21c DeviceToverify
+0x220 ThreadsProcess

: _LIST_ENTRY

: Uint4B

: Ptr32 _DEVICE_OBJECT
: Ptr32 _EPROCESS

Ptr32 _PS_IMPERSONATION_INFORMATION

Chapter 6: Processes, Threads, and Jobs

317

+0x224 StartAddress : Ptr32 void

+0x228 win32startAddress : Ptr32 void
+0x228 LpcReceivedMessageId : Uint4B

+0x22c ThreadListEntry : _LIST_ENTRY
+0x234 RundownProtect : _EX_RUNDOWN_REF
+0x238 ThreadLock 1 _EX_PUSH_LOCK
+0x23c LpcReplyMessageId : Uint4B

+0x240 ReadClusterSize : Uint4B

+0x244 GrantedAccess : Uint4B

+0x248 CrossThreadFlags : Uint4B

+0x248 Terminated : Pos 0, 1 Bit
+0x248 DeadThread : Pos 1, 1 Bit
+0x248 HideFrombebugger : Pos 2, 1 Bit
+0x248 ActiveImpersonationInfo : Pos 3, 1 Bit
+0x248 SystemThread : Pos 4, 1 Bit
+0x248 HardErrorsAreDisabled : Pos 5, 1 Bit
+0x248 BreakonTermination : Pos 6, 1 Bit
+0x248 sSkipCreationMsg : Pos 7, 1 Bit

+0x248

SkipTerminationMsg :

Pos 8, 1 Bit

+0x24c SameThreadPassiveFlags : Uint4B
+0x24c ActiveExworker : Pos 0, 1 Bit
+0x24c ExworkerCanwaitUser : Pos 1, 1 Bit
+0x24c MemoryMaker : Pos 2, 1 Bit
+0x250 SameThreadApcFlags : Uint4B

+0x250 LpcReceivedMsgIdvalid : Pos 0, 1 Bit
+0x250 LpcExitThreadcalled : Pos 1, 1 Bit
+0x250 AddressSpaceowner : Pos 2, 1 Bit
+0x254 ForwardClusteronly : UChar

+0x255 DisablePageFaultClustering : UChar

The KTHREAD can be displayed with a similar command:

Tkd> dt nt!_kthread
nt!_KTHREAD

+0x000 Header : _DISPATCHER_HEADER
+0x010 MutantListHead : _LIST_ENTRY
+0x018 Initialstack : Ptr32 void
+0x01c StackLimit : Ptr32 void
+0x020 Teb : Ptr32 void
+0x024 Tl1sArray : Ptr32 void
+0x028 Kernelstack : Ptr32 void
+0x02c DebugActive : UChar
+0x02d State : UChar
+0x02e Alerted : [2] ucChar
+0x030 Iopl : UChar
+0x031 NpxState : UChar
+0x032 Saturation : Char

+0x033 Priority : Char

+0x034 ApcState : _KAPC_STATE
+0x04c ContextSwitches : Uint4B
+0x050 1dleSwapBlock : UChar
+0x051 Spare0 : [3] uchar
+0x054 waitStatus : Int4B

Microsoft Windows Internals, Fourth Edition

EXPERIMENT: Using the Kernel Debugger /thread Command

The kernel debugger !thread command dumps a subset of the information in the thread
data structures. Some key elements of the information the kernel debugger displays
can’t be displayed by any utility: internal structure addresses; priority details; stack
information; the pending I/O request list; and, for threads in a wait state, the list of
objects the thread is waiting for.

To display thread information, use either the /process command (which displays all the
thread blocks after displaying the process block) or the !thread command to dump a
specific thread. The output of the thread information, along with some annotations of
key fields, is shown here:

Address of Address of thread
ETHREAD Thread ID environment block

1 1 1
THREAD 83160f0 cCid: 9f.3dreb: 7ffdc000 win32Thread: e153d2c8
WAIT: (WrUserRequest) UserMode Non-Alertable —————— Thread state
808e9d60 SynchronizationEvent

. - Objects being waited on
Not 1mersonating

owning Process 81b44880 ——— Address of EPROCESS for owning process
wait Time (seconds) 953945

Context Switch Count 2697 LargeStack

UserTime 0:00:00.0289 Actual thread
KernelTime 0:00:04.0644 start address
Start Address kernal32!BaseProcessStart (0x77e8f268) ——

win32 start Address 0x020d9d98 —————— Address of user thread function

Stack Init 7818000 Current f7817bb0 Base f7818000 Limit f7812000 call 0
Priority 14 BasePriority 9 PriorityDecrement 6 DecrementCount 13—|

Kernal stack not resident. ..
Priority

— Cchi1dEBP RetAddr Args to child information
F7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl!KiSwapThreadexit
F7817c50 de0119ec 00000001 00000000 00000000 ntoskrnl!KewaitForsSingleoObject+0x2a0
F7817ccO0 de0123f4 00000001 00000000 00000000 win32k!xxxSleepThread+0x23c
F7817d10 de01f2f0 00000001 00000000 00000000 win32k!xxxInternalGetMessage+0x504
F7817d80 800bab58 00000001 00000000 00000000 win32k!NtUserGetMessage+0x58
F7817df0 77d887d0 00000001 00000000 00000000 ntoskrnl!KisSystemServiceEndAddress+0x4
0012fef0 00000000 00000001 00000000 00000000 user32!GetMessagew+0x30

Stack dump

EXPERIMENT: Viewing Thread Information

The following output is the detailed display of a process produced by using the Tlist util-
ity in the Windows Debugging Tools. Notice that the thread list shows the
“Win32StartAddress.” This is the address passed to the CreateThread function by the

Chapter 6: Processes, Threads, and Jobs 319

application. All the other utilities, except Process Explorer, that show the thread start
address show the actual start address (a function in Kernel32.dll), not the application-
specified start address.

C:\> tlist winword
155 WINWORD.EXE Documentl - Microsoft word
cwD: C:\book\
cmdLine: "C:\Program Files\Microsoft Office\0office\WINWORD.EXE"
Vvirtualsize: 64448 KB Peakvirtualsize: 106748 KB
workingSetSize: 1104 KB PeakworkingSetSize: 6776 KB
NumberofThreads: 2
156 win32startAddr:0x5032cfdb LastErr:0x00000000 State:waiting
167 win32StartAddr:0x00022982 LastErr:0x00000000 State:waiting
0x50000000 WINWORD.EXE
2163.1 shp 0x77f60000 ntdl11.d11
2191.1 shp 0x77f00000 KERNEL32.dT1
§ Tist of DLLs loaded in process

5.0.
5.0.

The TEB, illustrated in Figure 6-9, is the only data structure explained in this section that
exists in the process address space (as opposed to the system space).

The TEB stores context information for the image loader and various Windows DLLs. Because
these components run in user mode, they need a data structure writable from user mode.
That's why this structure exists in the process address space instead of in the system space,
where it would be writable only from kernel mode. You can find the address of the TEB with
the kernel debugger !thread command.

Exception list

Stack base

Stack limit

| Subsystem thread information block (TIB) |

[Fiber information |

Thread ID
Active RPC handle

[PEB |

LastError value

Count of owned critical sections

Current locale

User32 client information
GDI32 information

OpenGL information

TLS array

| Winsock data

Figure 6-9 Fields of the thread environment block

320 Microsoft Windows Internals, Fourth Edition

r‘ ‘U EXPERIMENT: Examining the TEB
J - You can dump the TEB structure with the !/teb command in the kernel debugger. The

output looks like this:

kd> !teb

TEB at 7ffde000
ExceptionList: 0006b540
StackBase: 00070000
StackLimit: 00065000
SubSystemTib: 00000000
FiberData: 00001e00
ArbitraryUserpPointer: 00000000
Sself: 7ffde000
EnvironmentPointer: 00000000
ClientId: 00000254 . 000007ac
RpcHandle: 00000000
Tls Storage: 00000000
PEB Address: 7ffdf000
LastErrorvalue: 2
LastStatusvalue: c0000034
Count owned Locks: 0 HardErrorMode: 0

Kernel Variables

As with processes, a number of Windows kernel variables control how threads run. Table 6-10
shows the kernel-mode kernel variables that relate to threads.

Table 6-10 Thread-Related Kernel Variables

Variable Type Description

PspCreateThreadNotifyRoutine Array of pointers Array of pointers to routines to
be called on during thread cre-
ation and deletion (maximum of
eight).

PspCreateThreadNotifyRoutineCount DWORD Count of registered thread-noti-
fication routines.

PspCreateProcessNotifyRoutine Array of pointers Array of pointers to routines to
be called on during process cre-
ation and deletion (maximum of
eight).

Performance Counters

Chapter 6: Processes, Threads, and Jobs 321

Most of the key information in the thread data structures is exported as performance
counters, which are listed in Table 6-11. You can extract much information about the internals
of a thread just by using the Performance tool in Windows.

Table 6-11 Thread-Related Performance Counters

Object: Counter

Function

Process: Priority Base

Returns the current base priority of the process. This is the
starting priority for threads created within this process.

Thread: % Privileged Time

Describes the percentage of time that the thread has run in
kernel mode during a specified interval.

Thread: % Processor Time

Describes the percentage of CPU time that the thread has
used during a specified interval. This count is the sum of %
Privileged Time and % User Time.

Thread: % User Time

Describes the percentage of time that the thread has run in
user mode during a specified interval.

Thread: Context Switches/Sec

Returns the number of context switches per second that the
system is executing.

Thread: Elapsed Time

Returns the amount of CPU time (in seconds) that the thread
has consumed.

Thread: ID Process

Returns the process ID of the thread's process. This ID is valid
only during the process's lifetime because process IDs are re-
used.

Thread: ID Thread

Returns the thread's thread ID. This ID is valid only during the
thread's lifetime because thread IDs are reused.

Thread: Priority Base

Returns the thread’s current base priority. This number might
be different from the thread's starting base priority.

Thread: Priority Current

Returns the thread’s current dynamic priority.

Thread: Start Address

Returns the thread's starting virtual address (Note: This ad-
dress will be the same for most threads.)

Thread: Thread State

Returns a value from 0 through 7 relating to the current state
of the thread.

Thread: Thread Wait Reason

Returns a value from 0 through 19 relating to the reason why
the thread is in a wait state.

322 Microsoft Windows Internals, Fourth Edition

Relevant Functions

Table 6-12 shows the Windows functions for creating and manipulating threads. This table
doesn’t include functions that have to do with thread scheduling and priorities—those are
included in the section “Thread Scheduling” later in this chapter.

Table 6-12 Windows Thread Functions

Function Description

CreateThread Creates a new thread

CreateRemoteThread Creates a thread in another process
OpenThread Opens an existing thread

ExitThread Ends execution of a thread normally
TerminateThread Terminates a thread

GetExitCodeThread Gets another thread'’s exit code
GetThreadTimes Returns timing information for a thread
GetCurrentProcess Returns a pseudo handle for the current thread
GetCurrentProcessld Returns the thread ID of the current thread
GetThreadld Returns the thread ID of the specified thread
Get/SetThreadContext Returns or changes a thread’s CPU registers

GetThreadSelectorEntry

Returns another thread’s descriptor table entry (applies only to x86
systems)

Birth of a Thread

A thread’s life cycle starts when a program creates a new thread. The request filters down to
the Windows executive, where the process manager allocates space for a thread object and
calls the kernel to initialize the kernel thread block. The steps in the following list are taken
inside the Windows CreateThread function in Kernel32.dll to create a Windows thread.

1. CreateThread creates a user-mode stack for the thread in the process’s address space.

2. CreateThread initializes the thread’s hardware context (CPU architecture-specific). (For
further information on the thread context block, see the Windows API reference docu-
mentation on the CONTEXT structure.)

3. NitCreateThread is called to create the executive thread object in the suspended state. For
a description of the steps performed by this function, see the description of Stage 3 and
Stage 6 in the section “Flow of CreateProcess.”

4. CreateThread notifies the Windows subsystem about the new thread, and the subsystem
does some setup work for the new thread.

5. The thread handle and the thread ID (generated during step 3) are returned to the

caller.

Chapter 6: Processes, Threads, and Jobs 323

6. Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread
is now resumed so that it can be scheduled for execution. When the thread starts run-
ning, it executes the steps described in the earlier section “Stage 6: Performing Process
Initialization in the Context of the New Process” before calling the actual user’s specified
start address.

Examining Thread Activity

Besides the Performance tool, several other tools expose various elements of the state of Win-
dows threads. (The tools that show thread-scheduling information are listed in the section
“Thread Scheduling.”) These tools are itemized in Figure 6-10.

Note To display thread details with Tlist, you must type tlist xxx, where xxx is a process
image name or window title. (Wildcards are supported.)

KD Process

Object Perfmon Pviewer Pstat Qslice Tlist !thread Explorer Pslist

Thread ID v v v v v v v
Actual start address v v v v v v
Win32 start address v v v
Current address v v v v
Number of context switches v v v v v
Total user time v v v v v
Total privileged time v v v v v
Elapsed time v v v v v
Thread state v v v v v v
Reason for wait state v v v v v v
Last error v v
Percentage of CPU time 4 v v
Percentage of user time v 4 v

v v v

Percentage of privileged time
Address of TEB

Address of ETHREAD

Objects waiting on

NSRNRN

Figure 6-10 Thread-related tools and their functions

Process Explorer provides easy access to thread activity within a process. This is especially impor-
tant if you are trying to determine why a process is running that is hosting multiple services (such
as Svchost.exe, Dllhost.exe, Inetinfo.exe, or the System process) or why a process is hung.

324

Microsoft Windows Internals, Fourth Edition

To view the threads in a process, select a process and open the process properties (double-
click on the process or click on the Process, Properties menu item). Then click on the Threads
tab. This tab shows a list of the threads in the process. For each thread it shows the percentage
of CPU consumed (based on the refresh interval configured), the number of context switches
to the thread, and the thread start address. You can sort by any of these three columns.

New threads that are created are highlighted in green, and threads that exit are highlighted in
red. (The highlight duration can be configured with the Options, Configure Highlighting
menu item.) This might be helpful to discover unnecessary thread creation occurring in a pro-
cess. (In general, threads should be created at process startup, not every time a request is pro-
cessed inside a process.)

As you select each thread in the list, Process Explorer displays the thread ID, start time, state,
CPU time counters, number of context switches, and the base and current priority. There is a
Kill button, which will terminate an individual thread, but this should be used with extreme
care.

The context switch delta represents the number of times that thread began running in
between the refreshes configured for Process Explorer. It provides a different way to deter-
mine thread activity than using the percentage of CPU consumed. In some ways it is better
because many threads run for such a short amount of time that they are seldom (if ever) the
currently running thread when the interval clock timer interrupt occurs, and therefore, are
not charged for their CPU time. For example, if you add the context switch delta column to
the process display and sort by that column, you will see processes that have threads running
but that also have a CPU time percentage of zero (or very small).

The thread start address is displayed in the form “module!function”, where module is the name
of the .exe or .dll. The function name relies on access to symbol files for the module. (See
“Experiment: Viewing Process Details with Process Explorer” in Chapter 1.) If you are unsure
what the module is, press the Module button. This opens an Explorer file properties window
for the module containing the thread’s start address (for example, the .exe or .dll).

Note For threads created by the Windows CreateThread function, Process Explorer displays
the function passed to CreateThread, not the actual thread start function. That is because all
Windows threads start at a common process or thread startup wrapper function (BasePro-
cessStart or BaseThreadStart in Kernel32.dll). If Process Explorer showed the actual start
address, most threads in processes would appear to have started at the same address, which
would not be helpful in trying to understand what code the thread was executing.

However, the thread start address displayed might not be enough information to pinpoint what
the thread is doing and which component within the process is responsible for the CPU con-
sumed by the thread. This is especially true if the thread start address is a generic startup
function (for example, if the function name does not indicate what the thread is actually doing).
In this case, examining the thread stack might answer the question. To view the stack for a

Chapter 6: Processes, Threads, and Jobs 325

thread, double-click on the thread of interest (or select it and click the Stack button). Process
Explorer displays the thread’s stack (both user and kernel, if the thread was in kernel mode).

Note While the user-mode debuggers (Windbg, Ntsd, and Cdb) permit you to attach to a
process and display the user stack for a thread, Process Explorer shows both the user and ker-
nel stack in one easy click of a button. You can also examine user and kernel thread stacks using
Livekd from www.sysinternals.com. However, it is more difficult to use. Note that running
Windbg in local kernel debugging mode, which is supported only on Windows XP or Windows
Server 2003, does not show thread stacks.

Viewing the thread stack can also help you determine why a process is hung. As an example,
on one system, Microsoft PowerPoint was hanging for one minute on startup. To determine
why it was hung, after starting PowerPoint, Process Explorer was used to examine the thread
stack of the one thread in the process. The result is shown in Figure 6-11.

Stack for thread 3532 X

| 0 riedlldi+0x2090304 ol
1 ntdl di2wR equests aitR eplyPort+0xc -
2 RPCRT4.dILRPC_CCALL:SendReceive+0x22a
3 RPCRT4.dI_RpcSendReceive+0x20
4 RPCRT4.dMNdiS endReceive+0x28
5 RPCRT4.dIMdiClientCall2+0x1ca
B wingpool.drvlRpcOpenPrinter+0x14
7 wingpool.dr!0penPrinterRPC+0xa2
8 winzpool.drvl0penPrinters +0=46
9 mso.dilOrdinal2926+0:28

10 POWERPMT.EXE+0xbd704 v

Figure 6-11 Hung Thread Stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a function in Mso.dll (the central
Microsoft Office DII), which called the OpenPrinterW function in Winspool.drv (a DIl used to
connect to printers). Winspool.drv then dispatched to a function OpenPrinterRPC, which then
called a function in the RPC runtime DII, indicating it was sending the request to a remote
printer. So, without having to understand the internals of PowerPoint, the module and func-
tion names displayed on the thread stack indicate that the thread was waiting to connect to a
network printer. On this particular system, there was a network printer that was not respond-
ing, which explained the delay starting PowerPoint. (Microsoft Office applications connect to
all configured printers at process startup.) The connection to that printer was deleted from
the user’s system, and the problem went away.

Thread Scheduling

This section describes the Windows scheduling policies and algorithms. The first subsection
provides a condensed description of how scheduling works on Windows and a definition of
key terms. Then Windows priority levels are described from both the Windows API and the
Windows kernel points of view. After a review of the relevant Windows functions and

326

Microsoft Windows Internals, Fourth Edition

_Windows utilities and tools that relate to scheduling, the detailed data structures and algo-
rithms that make up the Windows scheduling system are presented, with uniprocessor sys-
tems examined first and then multiprocessor systems.

Overview of Windows Scheduling

Windows implements a priority-driven, preemptive scheduling system—the highest-priority
runnable (ready) thread always runs, with the caveat that the thread chosen to run might be
limited by the processors on which the thread is allowed to run, a phenomenon called proces-
sor affinity. By default, threads can run on any available processor, but you can alter processor
affinity by using one of the Windows scheduling functions listed in Table 6-13 (shown later in
the chapter) or by setting an affinity mask in the image header.

EXPERIMENT: Viewing Ready Threads

You can view the list of ready threads with the kernel debugger !ready command. This
command displays the thread or list of threads that are ready to run at each priority
level. In the following example, two threads are ready to run at priority 10 and six at pri-
ority 8. Because this output was generated using LiveKd on a uniprocessor system, the
current thread will always be the kernel debugger (Kd or WinDbg).

kd> !'ready 1

Ready Threads at priority 10

THREAD 810de030 Cid 490.4a8 Teb: 7ffd9000 win32Thread: €297e008 READY
THREAD 81110030 Cid 490.48c Teb: 7ffde000 Wwin32Thread: e29425a8 READY
Ready Threads at priority 8

THREAD 811fe790 Cid 23c.274 Teb: 7ffdb000 win32Thread: e258cda8 READY
THREAD 810bec70 cCid 23c.50c Teb: 7ffd9000 win32Thread: e2ccf748 READY
THREAD 80032950 Cid 23c.550 Teb: 7ffda000 Wwin32Thread: e29a7ae8 READY
THREAD 85ac2db0 cCid 23c.5e4 Teb: 7ffd8000 win32Thread: e297a%9e8 READY
THREAD 827318d0 Cid 514.560 Teb: 7ffd9000 win32Thread: 00000000 READY
THREAD 8117adb0 cCid 2d4.338 Teb: 7ffaf000 win32Thread: 00000000 READY

When a thread is selected to run, it runs for an amount of time called a quantum. A quantum
is the length of time a thread is allowed to run before another thread at the same priority level
(or higher, which can occur on a multiprocessor system) is given a turn to run. Quantum val-
ues can vary from system to system and process to process for any of three reasons: system
configuration settings (long or short quantums), foreground/background status of the pro-
cess, or use of the job object to alter the quantum. (Quantums are described in more detail in
the “Quantum” section later in the chapter.) A thread might not get to complete its quantum,
however. Because Windows implements a preemptive scheduler, if another thread with a
higher priority becomes ready to run, the currently running thread might be preempted
before finishing its time slice. In fact, a thread can be selected to run next and be preempted
before even beginning its quantum!

Chapter 6: Processes, Threads, and Jobs 327

The Windows scheduling code is implemented in the kernel. There’s no single “scheduler”
module or routine, however—the code is spread throughout the kernel in which scheduling-
related events occur. The routines that perform these duties are collectively called the kernel’s
dispatcher. The following events might require thread dispatching:

m A thread becomes ready to execute—for example, a thread has been newly created or has
just been released from the wait state.

m A thread leaves the running state because its time quantum ends, it terminates, it yields
execution, or it enters a wait state.

m A thread’s priority changes, either because of a system service call or because Windows
itself changes the priority value.

m A thread’s processor affinity changes so that it will no longer run on the processor on
which it was running.

At each of these junctions, Windows must determine which thread should run next. When
Windows selects a new thread to run, it performs a context switch to it. A context switch is the
procedure of saving the volatile machine state associated with a running thread, loading
another thread’s volatile state, and starting the new thread’s execution.

As already noted, Windows schedules at the thread granularity. This approach makes sense
when you consider that processes don’t run but only provide resources and a context in
which their threads run. Because scheduling decisions are made strictly on a thread basis, no
consideration is given to what process the thread belongs to. For example, if process A has 10
runnable threads, process B has 2 runnable threads, and all 12 threads are at the same prior-
ity, each thread would theoretically receive one-twelfth of the CPU time—Windows wouldn’t
give 50 percent of the CPU to process A and 50 percent to process B.

Priority Levels

To understand the thread-scheduling algorithms, you must first understand the priority levels
that Windows uses. As illustrated in Figure 6-12, internally, Windows uses 32 priority levels,
ranging from O through 31. These values divide up as follows:

m Sixteen real-time levels (16 through 31)
m Fifteen variable levels (1 through 15)

B One system level (0), reserved for the zero page thread

328

Microsoft Windows Internals, Fourth Edition

31—
— 16 real-time levels
16 _
15 7]
— 15 variable levels
1__
10— 1 system level

(Zero page thread, one per system)

Figure 6-12 Thread priority levels

Thread priority levels are assigned from two different perspectives: those of the Windows API
and those of the Windows kernel. The Windows API first organizes processes by the priority
class to which they are assigned at creation (Real-time, High, Above Normal, Normal, Below
Normal, and Idle) and then by the relative priority of the individual threads within those pro-
cesses (Time-critical, Highest, Above-normal, Normal, Below-normal, Lowest, and Idle).

In the Windows API, each thread has a base priority that is a function of its process priority
class and its relative thread priority. The mapping from Windows priority to internal Win-
dows numeric priority is shown in Figure 6-13.

Whereas a process has only a single base priority value, each thread has two priority values:
current and base. Scheduling decisions are made based on the current priority. As explained
in the following section on priority boosting, the system under certain circumstances
increases the priority of threads in the dynamic range (1 through 15) for brief periods. Win-
dows never adjusts the priority of threads in the real-time range (16 through 31), so they
always have the same base and current priority.

A thread’s initial base priority is inherited from the process base priority. A process, by default,
inherits its base priority from the process that created it. This behavior can be overridden on
the CreateProcess function or by using the command-line START command. A process priority
can also be changed after being created by using the SetPriorityClass function or various tools
that expose that function such as Task Manager and Process Explorer (by right-clicking on the
process and choosing a new priority class). For example, you can lower the priority of a CPU-
intensive process so that it does not interfere with normal system activities. Changing the pri-
ority of a process changes the thread priorities up or down, but their relative settings remain
the same. It usually doesn’t make sense, however, to change individual thread priorities within
a process, because unless you wrote the program or have the source code, you don’t really
know what the individual threads are doing, and changing their relative importance might
cause the program not to behave in the intended fashion.

Real-time
time critical

Real-time
Levels 16-31

Real-time idle

Dynamic time
critical

Dynamic
Levels 1-15

Dynamic idle

Chapter 6: Processes, Threads, and Jobs 329

Above
Normal

Normal

31
Real-time
24
16 High
15
13
1

0 Used for zero page thread—not available to Win32 applications

10

Below
Normal

Idle

Figure 6-13 Mapping of Windows kernel priorities to the Windows API

Normally, the process base priority (and therefore the starting thread base priority) will
default to the value at the middle of each process priority range (24, 13, 10, 8, 6, or 4). How-
ever, some Windows system processes (such as the Session Manager, service controller, and
local security authentication server) have a base process priority slightly higher than the
default for the Normal class (8). This higher default value ensures that the threads in these
processes will all start at a higher priority than the default value of 8. These system processes
use an internal system call (NtSetInformationProcess) to set its process base priority to a
numeric value other than the normal default starting base priority.

330

Microsoft Windows Internals, Fourth Edition

Windows Scheduling APIs

The Windows API functions that relate to thread scheduling are listed in Table 6-13. (For
more information, see the Windows API reference documentation.)

Table 6-13 Scheduling-Related APIs and Their Functions

API Function

Suspend/ResumeThread Suspends or resumes a paused thread from execution.
Get/SetPriorityClass Returns or sets a process's priority class (base priority).
Get/SetThreadPriority Returns or sets a thread'’s priority (relative to its process base

priority).

Get/SetProcessAffinityMask

Returns or sets a process’s affinity mask.

SetThreadAffinityMask

Sets a thread's affinity mask (must be a subset of the pro-
cess's affinity mask) for a particular set of processors, restrict-
ing it to running on those processors.

SetInformationJobObject

Sets attributes for a job; some of the attributes affect sched-
uling, such as affinity and priority. (See the “Job Objects” sec-
tion later in the chapter for a description of the job object.)

GetLogicalProcessorinformation

Returns details about processor hardware configuration (for
hyperthreaded and NUMA systems).

Get/SetThreadPriorityBoost

Returns or sets the ability for Windows to boost the priority
of a thread temporarily. (This ability applies only to threads
in the dynamic range.)

SetThreadIdealProcessor

Establishes a preferred processor for a particular thread, but
doesn't restrict the thread to that processor.

Get/SetProcessPriorityBoost

Returns or sets the default priority boost control state of the
current process. (This function is used to set the thread pri-
ority boost control state when a thread is created.)

SwitchToThread

Yields execution to another thread (at priority 1 or higher)
that is ready to run on the current processor.

Sleep

Puts the current thread into a wait state for a specified time
interval (figured in milliseconds [msec]). A zero value relin-
quishes the rest of the thread’s quantum.

SleepEx

Causes the current thread to go into a wait state until either
an 1/0 completion callback is completed, an APC is queued
to the thread, or the specified time interval ends.

Chapter 6: Processes, Threads, and Jobs 331

Relevant Tools

The following table lists the tools related to thread scheduling. You can change (and view) the
base process priority with a number of different tools, such as Task Manager, Process
Explorer, Pview, or Pviewer. Note that you can kill individual threads in a process with Process
Explorer. This should be done, of course, with extreme care.

You can view individual thread priorities with the Performance tool, Process Explorer, Pslist,
Pview, Pviewer, and Pstat. While it might be useful to increase or lower the priority of a pro-
cess, it typically does not make sense to adjust individual thread priorities within a process
because only a person who thoroughly understands the program would understand the rela-
tive importance of the threads within the process.

KD Process

Object Taskman Perfmon Pviewer Pview Pstat !thread Explorer
Process priority class 4 v v v
Process base priority v v v
Thread base priority v v

v v v v v v

Thread current priority

The only way to specily a starting priority class for a process is with the start command in the
Windows command prompt. If you want to have a program start every time with a specific pri-
ority, you can define a shortcut to use the start command by beginning the command with
cmd /c. This runs the command prompt, execut