
289

Chapter 6

Processes, Threads, and Jobs

In this chapter, we’ll explain the data structures and algorithms that deal with processes,
threads, and jobs in Microsoft Windows. The first section focuses on the internal structures
that make up a process. The second section outlines the steps involved in creating a process
(and its initial thread). The internals of threads and thread scheduling are then described. The
chapter concludes with a description of the job object.

Where relevant performance counters or kernel variables exist, they are mentioned. Although
this book isn’t a Windows programming book, the pertinent process, thread, and job Win-
dows functions are listed so that you can pursue additional information on their use.

Because processes and threads touch so many components in Windows, a number of terms
and data structures (such as working sets, objects and handles, system memory heaps, and so
on) are referred to in this chapter but are explained in detail elsewhere in the book. To fully
understand this chapter, you need to be familiar with the terms and concepts explained in
chapters 1 and 2, such as the difference between a process and a thread, the Windows virtual
address space layout, and the difference between user mode and kernel mode.

Process Internals
This section describes the key Windows process data structures. Also listed are key kernel
variables, performance counters, and functions and tools that relate to processes.

Data Structures

Each Windows process is represented by an executive process (EPROCESS) block. Besides
containing many attributes relating to a process, an EPROCESS block contains and points to
a number of other related data structures. For example, each process has one or more threads
represented by executive thread (ETHREAD) blocks. (Thread data structures are explained in
the section “Thread Internals” later in this chapter.) The EPROCESS block and its related data
structures exist in system space, with the exception of the process environment block (PEB),
which exists in the process address space (because it contains information that is modified by
user-mode code).

290 Microsoft Windows Internals, Fourth Edition

In addition to the EPROCESS block, the Windows subsystem process (Csrss) maintains a par-
allel structure for each Windows process that executes a Windows program. Also, the kernel-
mode part of the Windows subsystem (Win32k.sys) has a per-process data structure that is
created the first time a thread calls a Windows USER or GDI function that is implemented in
kernel mode.

Figure 6-1 is a simplified diagram of the process and thread data structures. Each data struc-
ture shown in the figure is described in detail in this chapter.

Figure 6-1 Data structures associated with processes and threads

First let’s focus on the process block. (We’ll get to the thread block in the section “Thread
Internals” later in the chapter.) Figure 6-2 shows the key fields in an EPROCESS block.

Thread
environment

block

Process
environment

block

Process
block

Windows process block

Handle table

Thread
block

System address space

Process address space

…

Chapter 6: Processes, Threads, and Jobs 291

Figure 6-2 Structure of an executive process block

EXPERIMENT: Displaying the Format of an EPROCESS Block
For a list of the fields that make up an EPROCESS block and their offsets in hexadeci-
mal, type dt _eprocess in the kernel debugger. (See Chapter 1 for more information on
the kernel debugger and how to perform kernel debugging on the local system.) The
output (truncated for the sake of space) looks like this:

lkd> dt _eprocess

nt!_EPROCESS

+0x000 Pcb : _KPROCESS

+0x06c ProcessLock : _EX_PUSH_LOCK

+0x070 CreateTime : _LARGE_INTEGER

+0x078 ExitTime : _LARGE_INTEGER

+0x080 RundownProtect : _EX_RUNDOWN_REF

+0x084 UniqueProcessId : Ptr32 Void

+0x088 ActiveProcessLinks : _LIST_ENTRY

+0x090 QuotaUsage : [3] Uint4B

+0x09c QuotaPeak : [3] Uint4B

+0x0a8 CommitCharge : Uint4B

+0x0ac PeakVirtualSize : Uint4B

+0x0b0 VirtualSize : Uint4B

+0x0b4 SessionProcessLinks : _LIST_ENTRY

+0x0bc DebugPort : Ptr32 Void

+0x0c0 ExceptionPort : Ptr32 Void

+0x0c4 ObjectTable : Ptr32 _HANDLE_TABLE

Kernel process block (or PCB)

Process ID

Parent process ID

Exit status

Create and exit times

Active process link

Primary access token

EPROCESS

Handle table

Quota block

Memory management information

Exception port

Debugger port

Device map

Process environment block

Image filename

Image base address

Process priority class

Job object

Windows process block

PsActiveProcessHead

292 Microsoft Windows Internals, Fourth Edition

+0x0c8 Token : _EX_FAST_REF

+0x0cc WorkingSetLock : _FAST_MUTEX

+0x0ec WorkingSetPage : Uint4B

+0x0f0 AddressCreationLock : _FAST_MUTEX

+0x110 HyperSpaceLock : Uint4B

+0x114 ForkInProgress : Ptr32 _ETHREAD

+0x118 HardwareTrigger : Uint4B

Note that the first field (Pcb) is actually a substructure, the kernel process block (KPRO-
CESS), which is where scheduling-related information is stored. To display the format of
the kernel process block, type dt_kprocess:

lkd> dt _kprocess

nt!_KPROCESS

+0x000 Header : _DISPATCHER_HEADER

+0x010 ProfileListHead : _LIST_ENTRY

+0x018 DirectoryTableBase : [2] Uint4B

+0x020 LdtDescriptor : _KGDTENTRY

+0x028 Int21Descriptor : _KIDTENTRY

+0x030 IopmOffset : Uint2B

+0x032 Iopl : UChar

+0x033 Unused : UChar

+0x034 ActiveProcessors : Uint4B

+0x038 KernelTime : Uint4B

+0x03c UserTime : Uint4B

+0x040 ReadyListHead : _LIST_ENTRY

+0x048 SwapListEntry : _SINGLE_LIST_ENTRY

+0x04c VdmTrapcHandler : Ptr32 Void

+0x050 ThreadListHead : _LIST_ENTRY

+0x058 ProcessLock : Uint4B

+0x05c Affinity : Uint4B

+0x060 StackCount : Uint2B

+0x062 BasePriority : Char

+0x063 ThreadQuantum : Char

+0x064 AutoAlignment : UChar

+0x065 State : UChar

+0x066 ThreadSeed : UChar

+0x067 DisableBoost : UChar

+0x068 PowerState : UChar

+0x069 DisableQuantum : UChar

+0x06a IdealNode : UChar

+0x06b Spare : UChar

An alternate way to see the KPROCESS (and other substructures in the EPROCESS) is
to use the recursion (-r) switch of the dt command. For example, typing dt _eprocess –
r1 will recurse and display all substructures one level deep.

The dt command shows the format of a process block, not its contents. To show an
instance of an actual process, you can specify the address of an EPROCESS structure as
an argument to the dt command. You can get the address of all the EPROCESS blocks in
the system by using the !process 0 0 command. An annotated example of the output from
this command is included later in this chapter.

Chapter 6: Processes, Threads, and Jobs 293

Table 6-1 explains some of the fields in the preceding experiment in more detail and includes
references to other places in the book where you can find more information about them. As
we’ve said before and will no doubt say again, processes and threads are such an integral part
of Windows that it’s impossible to talk about them without referring to many other parts of
the system. To keep the length of this chapter manageable, however, we’ve covered those
related subjects (such as memory management, security, objects, and handles) elsewhere.

Table 6-1 Contents of the EPROCESS Block

Element Purpose Additional Reference

Kernel process (KPROCESS)
block

Common dispatcher object header,
pointer to the process page directory,
list of kernel thread (KTHREAD)
blocks belonging to the process, de-
fault base priority, quantum, affinity
mask, and total kernel and user time
for the threads in the process.

Thread Scheduling
(Chapter 6)

Process identification Unique process ID, creating process
ID, name of image being run, win-
dow station process is running on.

Quota block Limits on nonpaged pool, paged
pool, and page file usage plus cur-
rent and peak process nonpaged
and paged pool usage. (Note: Sever-
al processes can share this structure:
all the system processes point to the
single systemwide default quota
block; all the processes in the inter-
active session share a single quota
block that Winlogon sets up.)

Virtual address descriptors
(VADs)

Series of data structures that de-
scribes the status of the portions of
the address space that exist in the
process.

Virtual Address
Descriptors
(Chapter 7)

Working set information Pointer to working set list (MMWSL
structure); current, peak, minimum,
and maximum working set size; last
trim time; page fault count; memory
priority; outswap flags; page fault
history.

Working Sets
(Chapter 7)

Virtual memory information Current and peak virtual size, page
file usage, hardware page table en-
try for process page directory.

Chapter 7

Exception local procedure call
(LPC) port

Interprocess communication chan-
nel to which the process manager
sends a message when one of the
process’s threads causes an excep-
tion.

Exception Dispatching
(Chapter 3)

294 Microsoft Windows Internals, Fourth Edition

The kernel process (KPROCESS) block, which is part of the EPROCESS block, and the pro-
cess environment block (PEB), which is pointed to by the EPROCESS block, contain addi-
tional details about the process object. The KPROCESS block (which is sometimes called the
PCB, or process control block) is illustrated in Figure 6-3. It contains the basic information
that the Windows kernel needs to schedule threads. (Page directories are covered in
Chapter 7, and kernel thread blocks are described in more detail later in this chapter.)

The PEB, which lives in the user process address space, contains information needed by the
image loader, the heap manager, and other Windows system DLLs that need to modify it from
user mode. (The EPROCESS and KPROCESS blocks are accessible only from kernel mode.)
The basic structure of the PEB is illustrated in Figure 6-4 and is explained in more detail later
in this chapter.

Debugging LPC port Interprocess communication chan-
nel to which the process manager
sends a message when one of the
process’s threads causes a debug
event.

Local Procedure Calls
(LPCs) (Chapter 3)

Access token (ACCESS_TOKEN) Executive object describing the se-
curity profile of this process.

Chapter 8

Handle table Address of per-process handle ta-
ble.

Object Handles and the
Process Handle Table
(Chapter 3)

Device map Address of object directory to re-
solve device name references in
(supports multiple users).

Object Names
(Chapter 3)

Process environment block
(PEB)

Image information (base address,
version numbers, module list), pro-
cess heap information, and thread-
local storage utilization. (Note: The
pointers to the process heaps start
at the first byte after the PEB.)

Chapter 6

Windows subsystem process
block (W32PROCESS)

Process details needed by the ker-
nel-mode component of the Win-
dows subsystem.

Table 6-1 Contents of the EPROCESS Block

Element Purpose Additional Reference

Chapter 6: Processes, Threads, and Jobs 295

Figure 6-3 Structure of the executive process block

Figure 6-4 Fields of the process environment block

Dispatcher header

Kernel time

Process spinlock

Processor affinity

Resident kernel stack count

Process base priority

Default thread quantum

Process state

Thread seed

Disable boost flag

User time

Inswap/Outswap list entry

Process page directory

KTHREAD …

Image base address

Module list

Thread-local storage data

Code page data

Critical section timeout

Number of heaps

Heap size information

GDI shared handle table

Image version information

Image process affinity mask

Process heap

Operating system version number information

296 Microsoft Windows Internals, Fourth Edition

EXPERIMENT: Examining the PEB
You can dump the PEB structure with the !peb command in the kernel debugger. To get
the address of the PEB, use the !process command as follows:

lkd> !process

PROCESS 8575f030 SessionId: 0 Cid: 08d0 Peb: 7ffdf000 ParentCid: 0360

DirBase: 1a81b000 ObjectTable: e12bd418 HandleCount: 66.

Image: windbg.exe

Then specify that address to the !peb command as follows:

lkd> !peb 7ffdf000

PEB at 7ffdf000

InheritedAddressSpace: No

ReadImageFileExecOptions: No

BeingDebugged: No

ImageBaseAddress: 01000000

Ldr 00181e90

Ldr.Initialized: Yes

Ldr.InInitializationOrderModuleList: 00181f28 . 00183188

Ldr.InLoadOrderModuleList: 00181ec0 . 00183178

Ldr.InMemoryOrderModuleList: 00181ec8 . 00183180

Base TimeStamp Module

1000000 40478dbd Mar 04 15:12:45 2004 C:\Program Files\Debugging Tools for

Windows\windbg.exe

77f50000 3eb1b41a May 01 19:56:10 2003 C:\WINDOWS\System32\ntdll.dll

77e60000 3d6dfa28 Aug 29 06:40:40 2002 C:\WINDOWS\system32\kernel32.dll

2000000 40476db2 Mar 04 12:56:02 2004 C:\Program Files\Debugging Tools for

Windows\dbgeng.dll

 .

SubSystemData: 00000000

ProcessHeap: 00080000

ProcessParameters: 00020000

WindowTitle: 'C:\Documents and Settings\All Users\Start Menu\Programs\Debugging

Tools for Windows\WinDbg.lnk'

ImageFile: 'C:\Program Files\Debugging Tools for Windows\windbg.exe'

CommandLine: '"C:\Program Files\Debugging Tools for Windows\windbg.exe" '

DllPath: 'C:\Program Files\Debugging Tools for Windows;C:\WINDOWS\System32;C:

\WINDOWS\system;C:\WINDOWS;.;C:\Program Files\Windows Resource Kits\Tools\;C:\WINDOWS\

system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\Program Files\Support Tools\;c:\sysint

;C:\Program Files\ATI Technologies\ATI Control Panel;C:\Program Files\Resource Kit\;C:

\PROGRA~1\CA\Common\SCANEN~1;C:\PROGRA~1\CA\eTrust\ANTIVI~1;C:\Program Files\Common

Files\Roxio Shared\DLLShared;C:\SFU\common\'

Environment: 00010000

=::=::\

ALLUSERSPROFILE=C:\Documents and Settings\All Users

APPDATA=C:\Documents and Settings\dsolomon\Application Data

.

.

.

Chapter 6: Processes, Threads, and Jobs 297

Kernel Variables

A few key kernel global variables that relate to processes are listed in Table 6-2. These variables
are referred to later in the chapter, when the steps in creating a process are described.

Performance Counters

Windows maintains a number of counters with which you can track the processes running on
your system; you can retrieve these counters programmatically or view them with the Perfor-
mance tool. Table 6-3 lists the performance counters relevant to processes (except for mem-
ory management and I/O-related counters, which are described in Chapters 7 and 9,
respectively).

Table 6-2 Process-Related Kernel Variables

Variable Type Description

PsActiveProcessHead Queue header List head of process blocks

PsIdleProcess EPROCESS Idle process block

PsInitialSystemProcess Pointer to EPROCESS Pointer to the process block
of the initial system process
that contains the system
threads

PspCreateProcessNotifyRoutine Array of pointers Array of pointers to routines
to be called on process cre-
ation and deletion (maxi-
mum of eight)

PspCreateProcessNotifyRoutineCount DWORD Count of registered process
notification routines

PspLoadImageNotifyRoutine Array of pointers Array of pointers to routines
to be called on image load

PspLoadImageNotifyRoutineCount DWORD Count of registered image-
load notification routines

PspCidTable Pointer to
HANDLE_TABLE

Handle table for process
and thread client IDs

Table 6-3 Process-Related Performance Counters

Object: Counter Function

Process: % Privileged Time Describes the percentage of time that the threads in the process
have run in kernel mode during a specified interval.

Process: % Processor Time Describes the percentage of CPU time that the threads in the
process have used during a specified interval. This count is the
sum of % Privileged Time and % User Time.

Process: % User Time Describes the percentage of time that the threads in the process
have run in user mode during a specified interval.

298 Microsoft Windows Internals, Fourth Edition

Relevant Functions

For reference purposes, some of the Windows functions that apply to processes are described
in Table 6-4. For further information, consult the Windows API documentation in the MSDN
Library.

Process: Elapsed Time Describes the total elapsed time in seconds since this process was
created.

Process: ID Process Returns the process ID. This ID applies only while the process ex-
ists because process IDs are reused.

Process: Creating Process ID Returns the process ID of the creating process. This value isn’t up-
dated if the creating process exits.

Process: Thread Count Returns the number of threads in the process.

Process: Handle Count Returns the number of handles open in the process.

Table 6-3 Process-Related Performance Counters

Object: Counter Function

Table 6-4 Process-Related Functions

Function Description

CreateProcess Creates a new process and thread using the caller’s security
identification

CreateProcessAsUser Creates a new process and thread with the specified alternate
security token

CreateProcessWithLogonW Creates a new process and thread to run under the credentials
of the specified username and password

CreateProcessWithTokenW Creates a new process and thread with the specified alternate
security token, with additional options such as allowing the user
profile to be loaded

OpenProcess Returns a handle to the specified process object

ExitProcess Ends a process, and notifies all attached DLLs

TerminateProcess Ends a process without notifying the DLLs

FlushInstructionCache Empties the specified process’s instruction cache

GetProcessTimes Obtains a process’s timing information, describing how much
time the process has spent in user and kernel mode

GetExitCodeProcess Returns the exit code for a process, indicating how and why the
process shut down

GetCommandLine Returns a pointer to the command-line string passed to the cur-
rent process

GetCurrentProcess Returns a pseudo handle for the current process

GetCurrentProcessId Returns the ID of the current process

Chapter 6: Processes, Threads, and Jobs 299

EXPERIMENT: Using the Kernel Debugger !process Command
The kernel debugger !process command displays a subset of the information in an EPRO-
CESS block. This output is arranged in two parts for each process. First you see the infor-
mation about the process, as shown here (when you don’t specify a process address or
ID, !process lists information for the active process on the current CPU):

lkd> !process

PROCESS 8575f030 SessionId: 0 Cid: 08d0 Peb: 7ffdf000 ParentCid: 0360

DirBase: 1a81b000 ObjectTable: e12bd418 HandleCount: 65.

Image: windbg.exe

VadRoot 857f05e0 Vads 71 Clone 0 Private 1152. Modified 98. Locked 1.

DeviceMap e1e96c88

Token e1f5b8a8

ElapsedTime 1:23:06.0219

UserTime 0:00:11.0897

KernelTime 0:00:07.0450

QuotaPoolUsage[PagedPool] 38068

QuotaPoolUsage[NonPagedPool] 2840

Working Set Sizes (now,min,max) (2552, 50, 345) (10208KB, 200KB, 1380KB)

PeakWorkingSetSize 2715

VirtualSize 41 Mb

PeakVirtualSize 41 Mb

PageFaultCount 3658

MemoryPriority BACKGROUND

BasePriority 8

CommitCharge 1566

After the basic process output comes a list of the threads in the process. That output is
explained in the “Experiment: Using the Kernel Debugger !thread Command” section
later in the chapter. Other commands that display process information include !handle,
which dumps the process handle table (which is described in more detail in the section
“Object Handles and the Process Handle Table” in Chapter 3). Process and thread secu-
rity structures are described in Chapter 8.

GetProcessVersion Returns the major and minor versions of the Windows version on
which the specified process expects to run

GetStartupInfo Returns the contents of the STARTUPINFO structure specified
during CreateProcess

GetEnvironmentStrings Returns the address of the environment block

GetEnvironmentVariable Returns a specific environment variable

Get/SetProcessShutdownParame-
ters

Defines the shutdown priority and number of retries for the cur-
rent process

GetGuiResources Returns a count of User and GDI handles

Table 6-4 Process-Related Functions

Function Description

300 Microsoft Windows Internals, Fourth Edition

Flow of CreateProcess
So far in this chapter, you’ve seen the structures that are part of a process and the API func-
tions with which you (and the operating system) can manipulate processes. You’ve also found
out how you can use tools to view how processes interact with your system. But how did those
processes come into being, and how do they exit once they’ve fulfilled their purpose? In the
following sections, you’ll discover how a Windows process comes to life.

A Windows process is created when an application calls one of the process creation functions,
such as CreateProcess, CreateProcessAsUser, CreateProcessWithTokenW, or CreateProcessWith-
LogonW. Creating a Windows process consists of several stages carried out in three parts of
the operating system: the Windows client-side library Kernel32.dll, the Windows executive,
and the Windows subsystem process (Csrss). Because of the multiple environment subsystem
architecture of Windows, creating a Windows executive process object (which other subsystems
can use) is separated from the work involved in creating a Windows process. So, although the
following description of the flow of the Windows CreateProcess function is complicated, keep in
mind that part of the work is specific to the semantics added by the Windows subsystem as
opposed to the core work needed to create a Windows executive process object.

The following list summarizes the main stages of creating a process with the Windows Cre-
ateProcess function. The operations performed in each stage are described in detail in the sub-
sequent sections.

Note Many steps of CreateProcess are related to the setup of the process virtual address
space and therefore refer to many memory management terms and structures that are defined
in Chapter 7.

1. Open the image file (.exe) to be executed inside the process.

2. Create the Windows executive process object.

3. Create the initial thread (stack, context, and Windows executive thread object).

4. Notify the Windows subsystem of the new process so that it can set up for the new pro-
cess and thread.

5. Start execution of the initial thread (unless the CREATE_ SUSPENDED flag was speci-
fied).

6. In the context of the new process and thread, complete the initialization of the address
space (such as load required DLLs) and begin execution of the program.

Figure 6-5 shows an overview of the stages Windows follows to create a process.

Chapter 6: Processes, Threads, and Jobs 301

Figure 6-5 The main stages of process creation

Before opening the executable image to run, CreateProcess performs the following steps:

■ In CreateProcess, the priority class for the new process is specified as independent bits in
the CreationFlags parameter. Thus, you can specify more than one priority class for a sin-
gle CreateProcess call. Windows resolves the question of which priority class to assign to
the process by choosing the lowest-priority class set.

■ If no priority class is specified for the new process, the priority class defaults to Normal
unless the priority class of the process that created it is Idle or Below Normal, in which
case the priority class of the new process will have the same priority as the creating class.

■ If a Real-time priority class is specified for the new process and the process’s caller
doesn’t have the Increase Scheduling Priority privilege, the High priority class is used
instead. In other words, CreateProcess doesn’t fail just because the caller has insufficient
privileges to create the process in the Real-time priority class; the new process just won’t
have as high a priority as Real-time.

■ All windows are associated with desktops, the graphical representation of a workspace.
If no desktop is specified in CreateProcess, the process is associated with the caller’s cur-
rent desktop.

Open EXE and
create section

object

Set up for new
process and

thread

Final
process/image
initialization

Create
Windows

process object

Create
Windows

thread object

Notify
Windows
subsystem

Start execution
of the initial

thread

Return
to caller!

Start execution
at entry point

to image

Creating process

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Windows subsystem

New process

Stage 6

302 Microsoft Windows Internals, Fourth Edition

Stage 1: Opening the Image to Be Executed

As illustrated in Figure 6-6, the first stage in CreateProcess is to find the appropriate Windows
image that will run the executable file specified by the caller and to create a section object to
later map it into the address space of the new process. If no image name is specified, the first
token of the command line (defined to be the first part of the command-line string ending
with a space or tab that is a valid file specification) is used as the image filename.

On Windows XP and Windows Server 2003, CreateProcess checks whether software restric-
tion policies on the machine prevent the image from being run. (See Chapter 8 for a complete
description of software restriction policies.)

If the executable file specified is a Windows .exe, it is used directly. If it’s not a Windows .exe
(for example, if it’s an MS-DOS, Win16, or a POSIX application), CreateProcess goes through a
series of steps to find a Windows support image to run it. This process is necessary because
non-Windows applications aren’t run directly—Windows instead uses one of a few special
support images that in turn are responsible for actually running the non-Windows program.
For example, if you attempt to run a POSIX application, CreateProcess identifies it as such and
changes the image to be run on the Windows executable file Posix.exe. If you attempt to run
an MS-DOS or a Win16 executable, the image to be run becomes the Windows executable
Ntvdm.exe. In short, you can’t directly create a process that is not a Windows process. If Win-
dows can’t find a way to resolve the activated image as a Windows process (as shown in Table
6-5), CreateProcess fails.

Figure 6-6 Choosing a Windows image to activate

Run Cmd.exe Run Ntvdm.exe Use .exe directly

What kind of
application is it?

Win16 Windows
MS-DOS .bat

or .cmd

OS/2 1.x POSIX
MS-DOS .exe,
.com, or .pif

Run Os2.exe Run Posix.exe Run Ntvdm.exe

Chapter 6: Processes, Threads, and Jobs 303

Specifically, the decision tree that CreateProcess goes through to run an image is as follows:

■ If the image is an MS-DOS application with an .exe, a .com, or a .pif extension, a message
is sent to the Windows subsystem to check whether an MS-DOS support process
(Ntvdm.exe, specified in the registry value HKLM\SYSTEM\CurrentControlSet\Con-
trol\WOW\ cmdline) has already been created for this session. If a support process has
been created, it is used to run the MS-DOS application. (The Windows subsystem sends
the message to the VDM [Virtual DOS Machine] process to run the new image.) Then
CreateProcess returns. If a support process hasn’t been created, the image to be run
changes to Ntvdm.exe and CreateProcess restarts at Stage 1.

■ If the file to run has a .bat or a .cmd extension, the image to be run becomes Cmd.exe,
the Windows command prompt, and CreateProcess restarts at Stage 1. (The name of the
batch file is passed as the first parameter to Cmd.exe.)

■ If the image is a Win16 (Windows 3.1) executable, CreateProcess must decide whether a
new VDM process must be created to run it or whether it should use the default session-
wide shared VDM process (which might not yet have been created). The CreateProcess
flags CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM control
this decision. If these flags aren’t specified, the registry value HKLM\SYSTEM\Current-
ControlSet\Control\WOW\ DefaultSeparateVDM dictates the default behavior. If the
application is to be run in a separate VDM, the image to be run changes to the value of
HKLM\SYSTEM\CurrentControlSet\Control\WOW\wowcmdline and CreateProcess
restarts at Stage 1. Otherwise, the Windows subsystem sends a message to see whether
the shared VDM process exists and can be used. (If the VDM process is running on a dif-
ferent desktop or isn’t running under the same security as the caller, it can’t be used and
a new VDM process must be created.) If a shared VDM process can be used, the Win-
dows subsystem sends a message to it to run the new image and CreateProcess returns. If
the VDM process hasn’t yet been created (or if it exists but can’t be used), the image to
be run changes to the VDM support image and CreateProcess restarts at Stage 1.

Table 6-5 Decision Tree for Stage 1 of CreateProcess

If the image is a/an And this will happen This image will run

POSIX executable file Posix.exe CreateProcess restarts Stage 1.

MS-DOS application with an .exe,
a .com, or a .pif extension

Ntvdm.exe CreateProcess restarts Stage 1.

Win16 application Ntvdm.exe CreateProcess restarts Stage 1.

Command procedure (application with
a .bat or a .cmd extension)

Cmd.exe CreateProcess restarts Stage 1.

304 Microsoft Windows Internals, Fourth Edition

At this point, CreateProcess has successfully opened a valid Windows executable file and
created a section object for it. The object isn’t mapped into memory yet, but it is open. Just
because a section object has been successfully created doesn’t mean that the file is a valid
Windows image, however; it could be a DLL or a POSIX executable. If the file is a POSIX
executable, the image to be run changes to Posix.exe and CreateProcess restarts from the begin-
ning of Stage 1. If the file is a DLL, CreateProcess fails.

Now that CreateProcess has found a valid Windows executable image, it looks in the registry
under HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options to see whether a subkey with the filename and extension of the executable image
(but without the directory and path information—for example, Image.exe) exists there. If it
does, CreateProcess looks for a value named Debugger for that key. If this is present, the image
to be run becomes the string in that value and CreateProcess restarts at Stage 1.

Tip You can take advantage of this CreateProcess behavior and debug the startup code of
Windows service processes before they start rather than attach the debugger after starting the
service, which doesn’t allow you to debug the startup code.

Stage 2: Creating the Windows Executive Process Object

At this point, CreateProcess has opened a valid Windows executable file and created a section
object to map it into the new process address space. Next it creates a Windows executive pro-
cess object to run the image by calling the internal system function NtCreateProcess. Creating
the executive process object (which is done by the creating thread) involves the following sub-
stages:

■ Setting up the EPROCESS block

■ Creating the initial process address space

■ Initializing the kernel process block (KPROCESS)

■ Concluding the setup of the process address space (which includes initializing the
working set list and virtual address space descriptors and mapping the image into
address space)

■ Setting up the PEB

■ Completing the setup of the executive process object

Note The only time there won’t be a parent process is during system initialization. After that
point, a parent process is always required to provide a security context for the new process.

Chapter 6: Processes, Threads, and Jobs 305

Stage 2A: Setting Up the EPROCESS Block

This substage involves nine steps:

1. Allocate and initialize the Windows EPROCESS block.

2. Inherit the process affinity mask from the parent process.

3. The process minimum and maximum working set size are set to the values of PsMini-
mumWorkingSet and PsMaximumWorkingSet, respectively.

4. Set the new process’s quota block to the address of its parent process’s quota block, and
increment the reference count for the parent’s quota block.

5. Inherit the Windows device name space (including the definition of drive letters, COM
ports, and so on).

6. Store the parent process’s process ID in the InheritedFromUniqueProcessId field in the
new process object.

7. Create the process’s primary access token (a duplicate of its parent’s primary token).
New processes inherit the security profile of their parents. If the CreateProcessAsUser
function is being used to specify a different access token for the new process, the token
is then changed appropriately.

8. The process handle table is initialized. If the inherit handles flag is set for the parent pro-
cess, any inheritable handles are copied from the parent’s object handle table into the
new process. (For more information about object handle tables, see Chapter 3.)

9. Set the new process’s exit status to STATUS_PENDING.

Stage 2B: Creating the Initial Process Address Space

The initial process address space consists of the following pages:

■ Page directory (and it’s possible there’ll be more than one for systems with page tables
more than two levels, such as x86 systems in PAE mode or 64-bit systems)

■ Hyperspace page

■ Working set list

To create these three pages, the following steps are taken:

1. Page table entries are created in the appropriate page tables to map the initial pages.

The number of pages is deducted from the kernel variable MmTotalCommittedPages and
added to MmProcessCommit.

2. The systemwide default process minimum working set size (PsMinimumWorkingSet) is
deducted from MmResidentAvailablePages.

3. The page table pages for the nonpaged portion of system space and the system cache are
mapped into the process.

306 Microsoft Windows Internals, Fourth Edition

Stage 2C: Creating the Kernel Process Block

The next stage of CreateProcess is the initialization of the KPROCESS block, which contains a
pointer to a list of kernel threads. (The kernel has no knowledge of handles, so it bypasses the
object table.) The kernel process block also points to the process’s page table directory (which
is used to keep track of the process’s virtual address space), the total time the process’s
threads have executed, the process’s default base-scheduling priority (which starts as Normal,
or 8, unless the parent process was set to Idle or Below Normal, in which case the setting is
inherited), the default processor affinity for the threads in the process, and the initial value of
the process default quantum (which is described in more detail in the “Thread Scheduling”
section later in the chapter), which is taken from the value of PspForegroundQuantum[0], the
first entry in the systemwide quantum array.

Note The default initial quantum differs between Windows client and server systems. For more
information on thread quantums, turn to their discussion in the section “Thread Scheduling.”

Stage 2D: Concluding the Setup of the Process Address Space

Setting up the address space for a new process is somewhat complicated, so let’s look at what’s
involved one step at a time. To get the most out of this section, you should have some familiarity
with the internals of the Windows memory manager, which are described in Chapter 7.

■ The virtual memory manager sets the value of the process’s last trim time to the current
time. The working set manager (which runs in the context of the balance set manager
system thread) uses this value to determine when to initiate working set trimming.

■ The memory manager initializes the process’s working set list—page faults can now be
taken.

■ The section (created when the image file was opened) is now mapped into the new pro-
cess’s address space, and the process section base address is set to the base address of
the image.

■ Ntdll.dll is mapped into the process.

■ The systemwide national language support (NLS) tables are mapped into the process’s
address space.

Note POSIX processes clone the address space of their parents, so they don’t have to go
through these steps to create a new address space. In the case of POSIX applications, the new
process’s section base address is set to that of its parent process and the parent’s PEB is cloned
for the new process.

Chapter 6: Processes, Threads, and Jobs 307

Stage 2E: Setting Up the PEB

CreateProcess allocates a page for the PEB and initializes a number of fields, which are
described in Table 6-6.

If the image file specifies explicit Windows version values, this information replaces the initial
values shown in Table 6-6. The mapping from image version information fields to PEB fields
is described in Table 6-7.

Stage 2F: Completing the Setup of the Executive Process Object

Before the handle to the new process can be returned, a few final setup steps must be completed:

1. If systemwide auditing of processes is enabled (either as a result of local policy settings
or group policy settings from a domain controller), the process’s creation is written to
the Security event log.

Table 6-6 Initial Values of the Fields of the PEB

Field Initial Value

ImageBaseAddress Base address of section

NumberOfProcessors KeNumberProcessors kernel variable

NtGlobalFlag NtGlobalFlag kernel variable

CriticalSectionTimeout MmCriticalSectionTimeout kernel variable

HeapSegmentReserve MmHeapSegmentReserve kernel variable

HeapSegmentCommit MmHeapSegmentCommit kernel variable

HeapDeCommitTotalFreeThreshold MmHeapDeCommitTotalFreeThreshold kernel variable

HeapDeCommitFreeBlockThreshold MmHeapDeCommitFreeBlockThreshold kernel variable

NumberOfHeaps 0

MaximumNumberOfHeaps (Size of a page - size of a PEB) / 4

ProcessHeaps First byte after PEB

OSMajorVersion NtMajorVersion kernel variable

OSMinorVersion NtMinorVersion kernel variable

OSBuildNumber NtBuildNumber kernel variable & 0x3FFF

OSPlatformId 2

Table 6-7 Windows Replacements for Initial PEB Values

Field Name Value Taken from Image Header

OSMajorVersion OptionalHeader.Win32VersionValue & 0xFF

OSMinorVersion (OptionalHeader.Win32VersionValue >> 8) & 0xFF

OSBuildNumber (OptionalHeader.Win32VersionValue >> 16) & 0x3FFF

OSPlatformId (OptionalHeader.Win32VersionValue >> 30) ^ 0x2

308 Microsoft Windows Internals, Fourth Edition

2. If the parent process was contained in a job, the new process is added to the job. (Jobs
are described at the end of this chapter.)

3. If the image header characteristic’s IMAGE_FILE_UP_SYSTEM_ ONLY flag is set (indi-
cating that the image can run only on a uniprocessor system), a single CPU is chosen for
all the threads in this new process to run on. This choosing process is done by simply
cycling through the available processors—each time this type of image is run, the next
processor is used. In this way, these types of images are spread out across the processors
evenly.

4. If the image specifies an explicit processor affinity mask (for example, a field in the con-
figuration header), this value is copied to the PEB and later set as the default process
affinity mask.

5. CreateProcess inserts the new process block at the end of the Windows list of active pro-
cesses (PsActiveProcessHead).

6. The process’s creation time is set, the handle to the new process is returned to the caller
(CreateProcess in Kernel32.dll).

Stage 3: Creating the Initial Thread and Its Stack and Context

At this point, the Windows executive process object is completely set up. It still has no thread,
however, so it can’t do anything yet. Before the thread can be created, it needs a stack and a
context in which to run, so these are set up now. The stack size for the initial thread is taken
from the image—there’s no way to specify another size.

Now the initial thread can be created, which is done by calling NtCreateThread. The thread
parameter (which can’t be specified in CreateProcess but can be specified in CreateThread) is
the address of the PEB. This parameter will be used by the initialization code that runs in the
context of this new thread (as described in Stage 6). However, the thread won’t do anything
yet—it is created in a suspended state and isn’t resumed until the process is completely initial-
ized (as described in Stage 5). NtCreateThread calls PspCreateThread (a function also used to
create system threads) and performs the following steps:

1. The thread count in the process object is incremented.

2. An executive thread block (ETHREAD) is created and initialized.

3. A thread ID is generated for the new thread.

4. The TEB is set up in the user-mode address space of the process.

5. The user-mode thread start address is stored in the ETHREAD. For Windows threads, this
is the system-supplied thread startup function in Kernel32.dll (BaseProcessStart for the
first thread in a process and BaseThreadStart for additional threads). The user’s specified
Windows start address is stored in the ETHREAD block in a different location so that the
system-supplied thread startup function can call the user-specified startup function.

Chapter 6: Processes, Threads, and Jobs 309

6. KeInitThread is called to set up the KTHREAD block. The thread’s initial and current base
priorities are set to the process’s base priority, and its affinity and quantum are set to that
of the process. This function also sets the initial thread ideal processor. (See the section
“Ideal and Last Processor” for a description of how this is chosen.) KeInitThread next allo-
cates a kernel stack for the thread and initializes the machine-dependent hardware con-
text for the thread, including the context, trap, and exception frames. The thread’s context
is set up so that the thread will start in kernel mode in KiThreadStartup. Finally, KeInit-
Thread sets the thread’s state to Initialized and returns to PspCreateThread.

7. Any registered systemwide thread creation notification routines are called.

8. The thread’s access token is set to point to the process access token, and an access check
is made to determine whether the caller has the right to create the thread. This check
will always succeed if you’re creating a thread in the local process, but it might fail if
you’re using CreateRemoteThread to create a thread in another process and the process
creating the thread doesn’t have the debug privilege enabled.

9. Finally, the thread is readied for execution.

Stage 4: Notifying the Windows Subsystem about the New Process

If software restriction policies dictate, a restricted token is created for the new process. At this
point, all the necessary executive process and thread objects have been created. Kernel32.dll
next sends a message to the Windows subsystem so that it can set up for the new process and
thread. The message includes the following information:

■ Process and thread handles

■ Entries in the creation flags

■ ID of the process’s creator

■ Flag indicating whether the process belongs to a Windows application (so that Csrss
can determine whether or not to show the startup cursor)

The Windows subsystem performs the following steps when it receives this message:

1. CreateProcess duplicates a handle for the process and thread. In this step, the usage
count of the process and the thread is incremented from 1 (which was set at creation
time) to 2.

2. If a process priority class isn’t specified, CreateProcess sets it according to the algorithm
described earlier in this section.

3. The Csrss process block is allocated.

4. The new process’s exception port is set to be the general function port for the Windows
subsystem so that the Windows subsystem will receive a message when an exception
occurs in the process. (For further information on exception handling, see Chapter 3.)

310 Microsoft Windows Internals, Fourth Edition

5. If the process is being debugged (that is, if it is attached to a debugger process), the pro-
cess debug port is set to the Windows subsystem’s general function port. This setting
ensures that Windows will send debug events that occur in the new process (such as
thread creation and deletion, exceptions, and so on) as messages to the Windows sub-
system so that it can then dispatch the events to the process that is acting as the new
process’s debugger.

6. The Csrss thread block is allocated and initialized.

7. CreateProcess inserts the thread in the list of threads for the process.

8. The count of processes in this session is incremented.

9. The process shutdown level is set to 0x280 (the default process shutdown level—see Set-
ProcessShutdownParameters in the MSDN Library documentation for more information).

10. The new process block is inserted into the list of Windows subsystemwide processes.

11. The per-process data structure used by the kernel-mode part of the Windows subsystem
(W32PROCESS structure) is allocated and initialized.

12. The application start cursor is displayed. This cursor is the familiar arrow with an hour-
glass attached—the way that Windows says to the user, “I’m starting something, but you
can use the cursor in the meantime.” If the process doesn’t make a GUI call after 2 sec-
onds, the cursor reverts to the standard pointer. If the process does make a GUI call in
the allotted time, CreateProcess waits 5 seconds for the application to show a window.
After that time, CreateProcess will reset the cursor again.

Stage 5: Starting Execution of the Initial Thread

At this point, the process environment has been determined, resources for its threads to use
have been allocated, the process has a thread, and the Windows subsystem knows about the
new process. Unless the caller specified the CREATE_ SUSPENDED flag, the initial thread is
now resumed so that it can start running and perform the remainder of the process initializa-
tion work that occurs in the context of the new process (Stage 6).

Stage 6: Performing Process Initialization in the Context of the New
Process

The new thread begins life running the kernel-mode thread startup routine KiThreadStartup.
KiThreadStartup lowers the thread’s IRQL level from DPC/dispatch level to APC level and
then calls the system initial thread routine, PspUserThreadStartup. The user-specified thread
start address is passed as a parameter to this routine.

On Windows 2000, PspUserThreadStartup first enables working set expansion. If the process
being created is a debuggee, all threads in the process are suspended. (Threads might have been
created during Stage 3.) A create process message is then sent to the process’s debug port
(which is the Windows subsystem function port, because this is a Windows process) so that the

Chapter 6: Processes, Threads, and Jobs 311

subsystem can deliver the process startup debug event (CREATE_PROCESS_DEBUG_INFO) to
the appropriate debugger process. PspUserThreadStartup then waits for the Windows subsystem
to get the reply from the debugger (via the ContinueDebugEvent function). When the Windows
subsystem replies, all the threads are resumed.

On Windows XP and Windows Server 2003, PspUserThreadStartup checks whether applica-
tion prefetching is enabled on the system and, if so, calls the logical prefetcher to process the
prefetch instruction file (if it exists) and prefetch pages referenced during the first 10 seconds
the process started last time. (For details on the prefetcher, see Chapter 3.) Finally, PspUser-
ThreadStartup queues a user-mode APC to run the image loader initialization routine (LdrIni-
tializeThunk in Ntdll.dll). The APC will be delivered when the thread attempts to return to
user mode.

When PspUserThreadStartup returns to KiThreadStartup, it returns from kernel mode, the APC is
delivered, and LdrInitializeThunk is called. The LdrInitializeThunk routine initializes the loader,
heap manager, NLS tables, thread-local storage (TLS) array, and critical section structures. It
then loads any required DLLs and calls the DLL entry points with the DLL_PROCESS_
ATTACH function code. (See the sidebar “Side-by-Side Assemblies” for a description of a
mechanism introduced in Windows XP to address DLL versioning problems.)

Finally, the image begins execution in user mode when the loader initialization returns to the
user mode APC dispatcher, which then calls the thread’s start function that was pushed on
the user stack when the user APC was delivered.

Side-by-Side Assemblies
A problem that has long plagued Windows users is “DLL hell.” You enter DLL hell when
you install an application that replaces one or more core system DLLs, such as those for
common controls, the Microsoft Visual Basic runtime, or MFC. Application installation
programs make these replacements to ensure that the application runs properly, but at
the same time, updated DLLs might have incompatibilities with other already-installed
applications.

Windows 2000 partly addressed DLL hell by preventing the modification of core
system DLLs with the Windows File Protection feature, and by allowing applications to
use private copies of these core DLLs. To use a private copy of a DLL instead of the one
in the system directory, an application’s installation must include a file named
Application.exe.local (where Application is the name of the application’s executable),
which directs the loader to first look for DLLs in that directory. This type of DLL redirec-
tion avoids application/DLL incompatibility problems, but it does so at the expense of
sharing DLLs, which is one of the points of DLLs in the first place. In addition, any DLLs
that are loaded from the list of KnownDLLs (DLLs that are permanently mapped into
memory) or that are loaded by those DLLs cannot be redirected using this mechanism.

312 Microsoft Windows Internals, Fourth Edition

To further address application and DLL compatibility while allowing sharing, Windows
XP introduces shared assemblies. An assembly consists of a group of resources, includ-
ing DLLs, and an XML manifest file that describes the assembly and its contents. An
application references an assembly through the existence of its own XML manifest. The
manifest can be a file in the application’s installation directory that has the same name
as the application with “.manifest” appended (for example, application.exe.manifest), or
it can be linked into the application as a resource. The manifest describes the application
and its dependence on assemblies.

There are two types of assemblies: private and shared. The difference between the two is
that shared assemblies are digitally signed so that corruption or modification of their
contents can be detected. In addition, shared assemblies are stored under the \Win-
dows\Winsxs directory, whereas private assemblies are stored in an application’s instal-
lation directory. Thus, shared assemblies also have an associated catalog file (.cat) that
contains its digital signature information. Shared assemblies can be “side-by-side”
assemblies because multiple versions of a DLL can reside on a system simultaneously,
with applications dependent on a particular version of a DLL always using that particu-
lar version.

An assembly’s manifest file typically has a name that includes the name of the assembly,
version information, some text that represents a unique signature, and the extension
“.manifest”. The manifests are stored in \Windows\Winsxs\Manifests, and the rest of
the assembly’s resources are stored in subdirectories of \Windows\Winsxs that have
the same name as the corresponding manifest files, with the exception of the trailing
.manifest extension.

An example of a shared assembly is version 6 of the Windows common controls DLL,
comctl32.dll, which is new to Windows XP. Its manifest file is named \Windows\Win-
sxs\Manifest\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.0.0_x-ww_1382d70a.manifest. It has an associated
catalog file (which is the same name with the .cat extension) and a subdirectory of Win-
sxs that includes comctl32.dll.

Version 6 of Comctl32.dll includes integration with Windows XP themes, and because
applications not written with themes-support in mind might not appear correctly with
the new DLL, it’s available only to applications that explicitly reference the shared
assembly containing it—the version of Comctl32.dll installed in \Windows\System32 is
an instance of version 5.x, which is not theme aware. When an application loads, the
loader looks for the application’s manifest, and if one exists, loads the DLLs from the
assemblies specified. DLLs not included in assemblies referenced in the manifest are
loaded in the traditional way. Legacy applications, therefore, link against the version in
\Windows\System32, whereas theme-aware applications can specify the new version in
their manifest.

Chapter 6: Processes, Threads, and Jobs 313

You can see the effect of a manifest that directs the system to use the new common con-
trol library on Windows XP by running the User State Migration Wizard (\Win-
dows\System32\Usmt\Migwiz.exe) with and without its manifest file:

1. Run it, and notice the Windows XP themes on the buttons in the wizard.

2. Open the Migwiz.exe.manifest file in Notepad, and locate the inclusion of the ver-
sion 6 common control library.

3. Rename the Migwiz.exe.manifest to Migwiz.exe.manifest.bak.

4. Rerun the wizard, and notice the unthemed buttons.

5. Restore the manifest file to its original name.

A final advantage that shared assemblies have is that a publisher can issue a publisher
configuration, which can redirect all applications that use a particular assembly to use
an updated version. Publishers would do this if they were preserving backward compat-
ibility while addressing bugs. Ultimately, however, because of the flexibility inherent in
the assembly model, an application could decide to override the new setting and con-
tinue to use an older version.

Thread Internals
Now that we’ve dissected processes, let’s turn our attention to the structure of a thread.
Unless explicitly stated otherwise, you can assume that anything in this section applies to
both user-mode threads and kernel-mode system threads (which are described in Chapter 2).

Data Structures

At the operating-system level, a Windows thread is represented by an executive thread
(ETHREAD) block, which is illustrated in Figure 6-7. The ETHREAD block and the structures
it points to exist in the system address space, with the exception of the thread environment
block (TEB), which exists in the process address space. In addition, the Windows subsystem
process (Csrss) maintains a parallel structure for each thread created in a Windows process.
Also, for threads that have called a Windows subsystem USER or GDI function, the kernel-
mode portion of the Windows subsystem (Win32k.sys) maintains a per-thread data structure
(called the W32THREAD structure) that the ETHREAD block points to.

314 Microsoft Windows Internals, Fourth Edition

Figure 6-7 Structure of the executive thread block

Most of the fields illustrated in Figure 6-7 are self-explanatory. The first field is the kernel
thread (KTHREAD) block. Following that are the thread identification information, the pro-
cess identification information (including a pointer to the owning process so that its environ-
ment information can be accessed), security information in the form of a pointer to the access
token and impersonation information, and finally, fields relating to LPC messages and pend-
ing I/O requests. As you can see in Table 6-8, some of these key fields are covered in more
detail elsewhere in this book. For more details on the internal structure of an ETHREAD
block, you can use the kernel debugger dt command to display the format of the structure.

Let’s take a closer look at two of the key thread data structures referred to in the preceding
text: the KTHREAD block and the TEB. The KTHREAD block contains the information that

Table 6-8 Key Contents of the Executive Thread Block

Element Description Additional Reference

KTHREAD See Table 6-9.

Thread time Thread create and exit time
information.

Process identification Process ID and pointer to
EPROCESS block of the process
that the thread belongs to.

Start address Address of thread start routine.

Impersonation information Access token and impersonation
level (if the thread is imperson-
ating a client).

Chapter 8

LPC information Message ID that the thread is
waiting for and address of
message.

Local procedure calls
(Chapter 3)

I/O information List of pending I/O request
packets (IRPs).

I/O system (Chapter 9)

KTHREAD

Create and exit times

Process ID

Thread start address

Impersonation information

Timer information

Access token

EPROCESS

TEB

Pending I/O requests

LPC message information

Chapter 6: Processes, Threads, and Jobs 315

the Windows kernel needs to access to perform thread scheduling and synchronization on
behalf of running threads. Its layout is illustrated in Figure 6-8.

Figure 6-8 Structure of the kernel thread block

The key fields of the KTHREAD block are described briefly in Table 6-9.

Table 6-9 Key Contents of the KTHREAD Block

Element Description Additional Reference

Dispatcher header Because the thread is an object that
can be waited on, it starts with a stan-
dard kernel dispatcher object header.

Kernel Dispatcher objects
(Chapter 3)

Execution time Total user and kernel CPU time.

Pointer to kernel stack
information

Base and upper address of the kernel
stack.

Memory management
(Chapter 7)

Pointer to system service
table

Each thread starts out with this field
service table pointing to the main
system service table
(KeServiceDescriptorTable). When a
thread first calls a Windows GUI ser-
vice, its system service table is changed
to one that includes the GDI and USER
services in Win32k.sys.

System Service Dispatch-
ing (Chapter 3)

Scheduling information Base and current priority, quantum, af-
finity mask, ideal processor, scheduling
state, freeze count, and suspend count.

Thread Scheduling

Wait blocks The thread block contains four built-in
wait blocks so that wait blocks don’t
have to be allocated and initialized
each time the thread waits for some-
thing. (One wait block is dedicated to
timers.)

Synchronization
(Chapter 3)

Dispatcher header

Total user time

Total kernel time

Thread-scheduling information

Trap frame

Synchronization information

Timer block and wait block

List of objects thread is waiting on

Thread-local storage array

Kernel stack information

System service table

List of pending APCs

TEB

316 Microsoft Windows Internals, Fourth Edition

EXPERIMENT: Displaying ETHREAD and KTHREAD Structures
The ETHREAD and KTHREAD structures can be displayed with the dt command in the
kernel debugger. The following output shows the format of an ETHREAD:

lkd> dt nt!_ethread

nt!_ETHREAD

+0x000 Tcb : _KTHREAD

+0x1c0 CreateTime : _LARGE_INTEGER

+0x1c0 NestedFaultCount : Pos 0, 2 Bits

+0x1c0 ApcNeeded : Pos 2, 1 Bit

+0x1c8 ExitTime : _LARGE_INTEGER

+0x1c8 LpcReplyChain : _LIST_ENTRY

+0x1c8 KeyedWaitChain : _LIST_ENTRY

+0x1d0 ExitStatus : Int4B

+0x1d0 OfsChain : Ptr32 Void

+0x1d4 PostBlockList : _LIST_ENTRY

+0x1dc TerminationPort : Ptr32 _TERMINATION_PORT

+0x1dc ReaperLink : Ptr32 _ETHREAD

+0x1dc KeyedWaitValue : Ptr32 Void

+0x1e0 ActiveTimerListLock : Uint4B

+0x1e4 ActiveTimerListHead : _LIST_ENTRY

+0x1ec Cid : _CLIENT_ID

+0x1f4 LpcReplySemaphore : _KSEMAPHORE

+0x1f4 KeyedWaitSemaphore : _KSEMAPHORE

+0x208 LpcReplyMessage : Ptr32 Void

+0x208 LpcWaitingOnPort : Ptr32 Void

+0x20c ImpersonationInfo : Ptr32 _PS_IMPERSONATION_INFORMATION

+0x210 IrpList : _LIST_ENTRY

+0x218 TopLevelIrp : Uint4B

+0x21c DeviceToVerify : Ptr32 _DEVICE_OBJECT

+0x220 ThreadsProcess : Ptr32 _EPROCESS

Wait information List of objects the thread is waiting for,
wait reason, and time at which the
thread entered the wait state.

Synchronization
(Chapter 3)

Mutant list List of mutant objects the thread owns. Synchronization
(Chapter 3)

APC queues List of pending user-mode and kernel-
mode APCs, and alertable flag.

Aynchronous Procedure
Call (APC) Interrrupts
(Chapter 3)

Timer block Built-in timer block (also a corre-
sponding wait block).

Queue list Pointer to queue object that the
thread is associated with.

Synchronization
(Chapter 3)

Pointer to TEB Thread ID, TLS information, PEB point-
er, and GDI and OpenGL information.

Table 6-9 Key Contents of the KTHREAD Block

Element Description Additional Reference

Chapter 6: Processes, Threads, and Jobs 317

+0x224 StartAddress : Ptr32 Void

+0x228 Win32StartAddress : Ptr32 Void

+0x228 LpcReceivedMessageId : Uint4B

+0x22c ThreadListEntry : _LIST_ENTRY

+0x234 RundownProtect : _EX_RUNDOWN_REF

+0x238 ThreadLock : _EX_PUSH_LOCK

+0x23c LpcReplyMessageId : Uint4B

+0x240 ReadClusterSize : Uint4B

+0x244 GrantedAccess : Uint4B

+0x248 CrossThreadFlags : Uint4B

+0x248 Terminated : Pos 0, 1 Bit

+0x248 DeadThread : Pos 1, 1 Bit

+0x248 HideFromDebugger : Pos 2, 1 Bit

+0x248 ActiveImpersonationInfo : Pos 3, 1 Bit

+0x248 SystemThread : Pos 4, 1 Bit

+0x248 HardErrorsAreDisabled : Pos 5, 1 Bit

+0x248 BreakOnTermination : Pos 6, 1 Bit

+0x248 SkipCreationMsg : Pos 7, 1 Bit

+0x248 SkipTerminationMsg : Pos 8, 1 Bit

+0x24c SameThreadPassiveFlags : Uint4B

+0x24c ActiveExWorker : Pos 0, 1 Bit

+0x24c ExWorkerCanWaitUser : Pos 1, 1 Bit

+0x24c MemoryMaker : Pos 2, 1 Bit

+0x250 SameThreadApcFlags : Uint4B

+0x250 LpcReceivedMsgIdValid : Pos 0, 1 Bit

+0x250 LpcExitThreadCalled : Pos 1, 1 Bit

+0x250 AddressSpaceOwner : Pos 2, 1 Bit

+0x254 ForwardClusterOnly : UChar

+0x255 DisablePageFaultClustering : UChar

The KTHREAD can be displayed with a similar command:

lkd> dt nt!_kthread

nt!_KTHREAD

+0x000 Header : _DISPATCHER_HEADER

+0x010 MutantListHead : _LIST_ENTRY

+0x018 InitialStack : Ptr32 Void

+0x01c StackLimit : Ptr32 Void

+0x020 Teb : Ptr32 Void

+0x024 TlsArray : Ptr32 Void

+0x028 KernelStack : Ptr32 Void

+0x02c DebugActive : UChar

+0x02d State : UChar

+0x02e Alerted : [2] UChar

+0x030 Iopl : UChar

+0x031 NpxState : UChar

+0x032 Saturation : Char

+0x033 Priority : Char

+0x034 ApcState : _KAPC_STATE

+0x04c ContextSwitches : Uint4B

+0x050 IdleSwapBlock : UChar

+0x051 Spare0 : [3] UChar

+0x054 WaitStatus : Int4B

318 Microsoft Windows Internals, Fourth Edition

EXPERIMENT: Using the Kernel Debugger !thread Command
The kernel debugger !thread command dumps a subset of the information in the thread
data structures. Some key elements of the information the kernel debugger displays
can’t be displayed by any utility: internal structure addresses; priority details; stack
information; the pending I/O request list; and, for threads in a wait state, the list of
objects the thread is waiting for.

To display thread information, use either the !process command (which displays all the
thread blocks after displaying the process block) or the !thread command to dump a
specific thread. The output of the thread information, along with some annotations of
key fields, is shown here:

EXPERIMENT: Viewing Thread Information
The following output is the detailed display of a process produced by using the Tlist util-
ity in the Windows Debugging Tools. Notice that the thread list shows the
“Win32StartAddress.” This is the address passed to the CreateThread function by the

THREAD 83160f0 Cid: 9f.3d Teb: 7ffdc000 Win32Thread: e153d2c8
WAIT: (WrUserRequest) UserMode Non-Alertable

808e9d60 SynchronizationEvent

Not imersonating

Owning Process 81b44880

Wait Time (seconds)

Context Switch Count

UserTime

KernelTime

Start Address kernal32!BaseProcessStart (0x77e8f268)

Win32 Start Address 0x020d9d98

Stack Init f7818000 Current f7817bb0 Base f7818000 Limit f7812000 Call 0

Priority 14 BasePriority 9 PriorityDecrement 6 DecrementCount 13

953945

2697 LargeStack

0:00:00.0289

0:00:04.0644

ChildEBP RetAddr Args to Child

F7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl!KiSwapThreadExit

F7817c50 de0119ec 00000001 00000000 00000000 ntoskrnl!KeWaitForSingleObject+0x2a0

F7817cc0 de0123f4 00000001 00000000 00000000 win32k!xxxSleepThread+0x23c

F7817d10 de01f2f0 00000001 00000000 00000000 win32k!xxxInternalGetMessage+0x504

F7817d80 800bab58 00000001 00000000 00000000 win32k!NtUserGetMessage+0x58

F7817df0 77d887d0 00000001 00000000 00000000 ntoskrnl!KiSystemServiceEndAddress+0x4

0012fef0 00000000 00000001 00000000 00000000 user32!GetMessageW+0x30

Address of
ETHREAD Thread ID

Address of thread
environment block

Priority
information

Address of user thread function

Actual thread
start address

Thread state

Objects being waited on

Address of EPROCESS for owning process

Stack dump

Kernal stack not resident.

Chapter 6: Processes, Threads, and Jobs 319

application. All the other utilities, except Process Explorer, that show the thread start
address show the actual start address (a function in Kernel32.dll), not the application-
specified start address.

C:\> tlist winword

155 WINWORD.EXE Document1 - Microsoft Word

CWD: C:\book\

CmdLine: "C:\Program Files\Microsoft Office\Office\WINWORD.EXE"

VirtualSize: 64448 KB PeakVirtualSize: 106748 KB

WorkingSetSize: 1104 KB PeakWorkingSetSize: 6776 KB

NumberOfThreads: 2

156 Win32StartAddr:0x5032cfdb LastErr:0x00000000 State:Waiting

167 Win32StartAddr:0x00022982 LastErr:0x00000000 State:Waiting

0x50000000 WINWORD.EXE

5.0.2163.1 shp 0x77f60000 ntdll.dll

5.0.2191.1 shp 0x77f00000 KERNEL32.dll

§ list of DLLs loaded in process

The TEB, illustrated in Figure 6-9, is the only data structure explained in this section that
exists in the process address space (as opposed to the system space).

The TEB stores context information for the image loader and various Windows DLLs. Because
these components run in user mode, they need a data structure writable from user mode.
That’s why this structure exists in the process address space instead of in the system space,
where it would be writable only from kernel mode. You can find the address of the TEB with
the kernel debugger !thread command.

Figure 6-9 Fields of the thread environment block

Exception list

Stack base

Stack limit

Thread ID

Active RPC handle

LastError value

Current locale

User32 client information

Subsystem thread information block (TIB)

Fiber information

Winsock data

Count of owned critical sections

OpenGL information

TLS array

GDI32 information

PEB

320 Microsoft Windows Internals, Fourth Edition

EXPERIMENT: Examining the TEB
You can dump the TEB structure with the !teb command in the kernel debugger. The
output looks like this:

kd> !teb

TEB at 7ffde000

ExceptionList: 0006b540

StackBase: 00070000

StackLimit: 00065000

SubSystemTib: 00000000

FiberData: 00001e00

ArbitraryUserPointer: 00000000

Self: 7ffde000

EnvironmentPointer: 00000000

ClientId: 00000254 . 000007ac

RpcHandle: 00000000

Tls Storage: 00000000

PEB Address: 7ffdf000

LastErrorValue: 2

LastStatusValue: c0000034

Count Owned Locks: 0 HardErrorMode: 0

Kernel Variables

As with processes, a number of Windows kernel variables control how threads run. Table 6-10
shows the kernel-mode kernel variables that relate to threads.

Table 6-10 Thread-Related Kernel Variables

Variable Type Description

PspCreateThreadNotifyRoutine Array of pointers Array of pointers to routines to
be called on during thread cre-
ation and deletion (maximum of
eight).

PspCreateThreadNotifyRoutineCount DWORD Count of registered thread-noti-
fication routines.

PspCreateProcessNotifyRoutine Array of pointers Array of pointers to routines to
be called on during process cre-
ation and deletion (maximum of
eight).

Chapter 6: Processes, Threads, and Jobs 321

Performance Counters

Most of the key information in the thread data structures is exported as performance
counters, which are listed in Table 6-11. You can extract much information about the internals
of a thread just by using the Performance tool in Windows.

Table 6-11 Thread-Related Performance Counters

Object: Counter Function

Process: Priority Base Returns the current base priority of the process. This is the
starting priority for threads created within this process.

Thread: % Privileged Time Describes the percentage of time that the thread has run in
kernel mode during a specified interval.

Thread: % Processor Time Describes the percentage of CPU time that the thread has
used during a specified interval. This count is the sum of %
Privileged Time and % User Time.

Thread: % User Time Describes the percentage of time that the thread has run in
user mode during a specified interval.

Thread: Context Switches/Sec Returns the number of context switches per second that the
system is executing.

Thread: Elapsed Time Returns the amount of CPU time (in seconds) that the thread
has consumed.

Thread: ID Process Returns the process ID of the thread’s process. This ID is valid
only during the process’s lifetime because process IDs are re-
used.

Thread: ID Thread Returns the thread’s thread ID. This ID is valid only during the
thread’s lifetime because thread IDs are reused.

Thread: Priority Base Returns the thread’s current base priority. This number might
be different from the thread’s starting base priority.

Thread: Priority Current Returns the thread’s current dynamic priority.

Thread: Start Address Returns the thread’s starting virtual address (Note: This ad-
dress will be the same for most threads.)

Thread: Thread State Returns a value from 0 through 7 relating to the current state
of the thread.

Thread: Thread Wait Reason Returns a value from 0 through 19 relating to the reason why
the thread is in a wait state.

322 Microsoft Windows Internals, Fourth Edition

Relevant Functions

Table 6-12 shows the Windows functions for creating and manipulating threads. This table
doesn’t include functions that have to do with thread scheduling and priorities—those are
included in the section “Thread Scheduling” later in this chapter.

Birth of a Thread

A thread’s life cycle starts when a program creates a new thread. The request filters down to
the Windows executive, where the process manager allocates space for a thread object and
calls the kernel to initialize the kernel thread block. The steps in the following list are taken
inside the Windows CreateThread function in Kernel32.dll to create a Windows thread.

1. CreateThread creates a user-mode stack for the thread in the process’s address space.

2. CreateThread initializes the thread’s hardware context (CPU architecture–specific). (For
further information on the thread context block, see the Windows API reference docu-
mentation on the CONTEXT structure.)

3. NtCreateThread is called to create the executive thread object in the suspended state. For
a description of the steps performed by this function, see the description of Stage 3 and
Stage 6 in the section “Flow of CreateProcess.”

4. CreateThread notifies the Windows subsystem about the new thread, and the subsystem
does some setup work for the new thread.

5. The thread handle and the thread ID (generated during step 3) are returned to the
caller.

Table 6-12 Windows Thread Functions

Function Description

CreateThread Creates a new thread

CreateRemoteThread Creates a thread in another process

OpenThread Opens an existing thread

ExitThread Ends execution of a thread normally

TerminateThread Terminates a thread

GetExitCodeThread Gets another thread’s exit code

GetThreadTimes Returns timing information for a thread

GetCurrentProcess Returns a pseudo handle for the current thread

GetCurrentProcessId Returns the thread ID of the current thread

GetThreadId Returns the thread ID of the specified thread

Get/SetThreadContext Returns or changes a thread’s CPU registers

GetThreadSelectorEntry Returns another thread’s descriptor table entry (applies only to x86
systems)

Chapter 6: Processes, Threads, and Jobs 323

6. Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread
is now resumed so that it can be scheduled for execution. When the thread starts run-
ning, it executes the steps described in the earlier section “Stage 6: Performing Process
Initialization in the Context of the New Process” before calling the actual user’s specified
start address.

Examining Thread Activity
Besides the Performance tool, several other tools expose various elements of the state of Win-
dows threads. (The tools that show thread-scheduling information are listed in the section
“Thread Scheduling.”) These tools are itemized in Figure 6-10.

Note To display thread details with Tlist, you must type tlist xxx, where xxx is a process
image name or window title. (Wildcards are supported.)

Figure 6-10 Thread-related tools and their functions

Process Explorer provides easy access to thread activity within a process. This is especially impor-
tant if you are trying to determine why a process is running that is hosting multiple services (such
as Svchost.exe, Dllhost.exe, Inetinfo.exe, or the System process) or why a process is hung.

Thread ID

Actual start address

Win32 start address

Current address

Number of context switches

Total user time

Total privileged time

Elapsed time

Thread state

Reason for wait state

Last error

Percentage of CPU time

Percentage of user time

Percentage of privileged time

Address of TEB

Address of ETHREAD

Objects waiting on

Object Perfmon Pviewer Pstat Qslice Tlist
KD

!thread
Process
Explorer Pslist

324 Microsoft Windows Internals, Fourth Edition

To view the threads in a process, select a process and open the process properties (double-
click on the process or click on the Process, Properties menu item). Then click on the Threads
tab. This tab shows a list of the threads in the process. For each thread it shows the percentage
of CPU consumed (based on the refresh interval configured), the number of context switches
to the thread, and the thread start address. You can sort by any of these three columns.

New threads that are created are highlighted in green, and threads that exit are highlighted in
red. (The highlight duration can be configured with the Options, Configure Highlighting
menu item.) This might be helpful to discover unnecessary thread creation occurring in a pro-
cess. (In general, threads should be created at process startup, not every time a request is pro-
cessed inside a process.)

As you select each thread in the list, Process Explorer displays the thread ID, start time, state,
CPU time counters, number of context switches, and the base and current priority. There is a
Kill button, which will terminate an individual thread, but this should be used with extreme
care.

The context switch delta represents the number of times that thread began running in
between the refreshes configured for Process Explorer. It provides a different way to deter-
mine thread activity than using the percentage of CPU consumed. In some ways it is better
because many threads run for such a short amount of time that they are seldom (if ever) the
currently running thread when the interval clock timer interrupt occurs, and therefore, are
not charged for their CPU time. For example, if you add the context switch delta column to
the process display and sort by that column, you will see processes that have threads running
but that also have a CPU time percentage of zero (or very small).

The thread start address is displayed in the form “module!function”, where module is the name
of the .exe or .dll. The function name relies on access to symbol files for the module. (See
“Experiment: Viewing Process Details with Process Explorer” in Chapter 1.) If you are unsure
what the module is, press the Module button. This opens an Explorer file properties window
for the module containing the thread’s start address (for example, the .exe or .dll).

Note For threads created by the Windows CreateThread function, Process Explorer displays
the function passed to CreateThread, not the actual thread start function. That is because all
Windows threads start at a common process or thread startup wrapper function (BasePro-
cessStart or BaseThreadStart in Kernel32.dll). If Process Explorer showed the actual start
address, most threads in processes would appear to have started at the same address, which
would not be helpful in trying to understand what code the thread was executing.

However, the thread start address displayed might not be enough information to pinpoint what
the thread is doing and which component within the process is responsible for the CPU con-
sumed by the thread. This is especially true if the thread start address is a generic startup
function (for example, if the function name does not indicate what the thread is actually doing).
In this case, examining the thread stack might answer the question. To view the stack for a

Chapter 6: Processes, Threads, and Jobs 325

thread, double-click on the thread of interest (or select it and click the Stack button). Process
Explorer displays the thread’s stack (both user and kernel, if the thread was in kernel mode).

Note While the user-mode debuggers (Windbg, Ntsd, and Cdb) permit you to attach to a
process and display the user stack for a thread, Process Explorer shows both the user and ker-
nel stack in one easy click of a button. You can also examine user and kernel thread stacks using
Livekd from www.sysinternals.com. However, it is more difficult to use. Note that running
Windbg in local kernel debugging mode, which is supported only on Windows XP or Windows
Server 2003, does not show thread stacks.

Viewing the thread stack can also help you determine why a process is hung. As an example,
on one system, Microsoft PowerPoint was hanging for one minute on startup. To determine
why it was hung, after starting PowerPoint, Process Explorer was used to examine the thread
stack of the one thread in the process. The result is shown in Figure 6-11.

Figure 6-11 Hung Thread Stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a function in Mso.dll (the central
Microsoft Office Dll), which called the OpenPrinterW function in Winspool.drv (a Dll used to
connect to printers). Winspool.drv then dispatched to a function OpenPrinterRPC, which then
called a function in the RPC runtime Dll, indicating it was sending the request to a remote
printer. So, without having to understand the internals of PowerPoint, the module and func-
tion names displayed on the thread stack indicate that the thread was waiting to connect to a
network printer. On this particular system, there was a network printer that was not respond-
ing, which explained the delay starting PowerPoint. (Microsoft Office applications connect to
all configured printers at process startup.) The connection to that printer was deleted from
the user’s system, and the problem went away.

Thread Scheduling
This section describes the Windows scheduling policies and algorithms. The first subsection
provides a condensed description of how scheduling works on Windows and a definition of
key terms. Then Windows priority levels are described from both the Windows API and the
Windows kernel points of view. After a review of the relevant Windows functions and

326 Microsoft Windows Internals, Fourth Edition

_Windows utilities and tools that relate to scheduling, the detailed data structures and algo-
rithms that make up the Windows scheduling system are presented, with uniprocessor sys-
tems examined first and then multiprocessor systems.

Overview of Windows Scheduling

Windows implements a priority-driven, preemptive scheduling system—the highest-priority
runnable (ready) thread always runs, with the caveat that the thread chosen to run might be
limited by the processors on which the thread is allowed to run, a phenomenon called proces-
sor affinity. By default, threads can run on any available processor, but you can alter processor
affinity by using one of the Windows scheduling functions listed in Table 6-13 (shown later in
the chapter) or by setting an affinity mask in the image header.

EXPERIMENT: Viewing Ready Threads
You can view the list of ready threads with the kernel debugger !ready command. This
command displays the thread or list of threads that are ready to run at each priority
level. In the following example, two threads are ready to run at priority 10 and six at pri-
ority 8. Because this output was generated using LiveKd on a uniprocessor system, the
current thread will always be the kernel debugger (Kd or WinDbg).

kd> !ready 1

Ready Threads at priority 10

THREAD 810de030 Cid 490.4a8 Teb: 7ffd9000 Win32Thread: e297e008 READY

THREAD 81110030 Cid 490.48c Teb: 7ffde000 Win32Thread: e29425a8 READY

Ready Threads at priority 8

THREAD 811fe790 Cid 23c.274 Teb: 7ffdb000 Win32Thread: e258cda8 READY

THREAD 810bec70 Cid 23c.50c Teb: 7ffd9000 Win32Thread: e2ccf748 READY

THREAD 8003a950 Cid 23c.550 Teb: 7ffda000 Win32Thread: e29a7ae8 READY

THREAD 85ac2db0 Cid 23c.5e4 Teb: 7ffd8000 Win32Thread: e297a9e8 READY

THREAD 827318d0 Cid 514.560 Teb: 7ffd9000 Win32Thread: 00000000 READY

THREAD 8117adb0 Cid 2d4.338 Teb: 7ffaf000 Win32Thread: 00000000 READY

When a thread is selected to run, it runs for an amount of time called a quantum. A quantum
is the length of time a thread is allowed to run before another thread at the same priority level
(or higher, which can occur on a multiprocessor system) is given a turn to run. Quantum val-
ues can vary from system to system and process to process for any of three reasons: system
configuration settings (long or short quantums), foreground/background status of the pro-
cess, or use of the job object to alter the quantum. (Quantums are described in more detail in
the “Quantum” section later in the chapter.) A thread might not get to complete its quantum,
however. Because Windows implements a preemptive scheduler, if another thread with a
higher priority becomes ready to run, the currently running thread might be preempted
before finishing its time slice. In fact, a thread can be selected to run next and be preempted
before even beginning its quantum!

Chapter 6: Processes, Threads, and Jobs 327

The Windows scheduling code is implemented in the kernel. There’s no single “scheduler”
module or routine, however—the code is spread throughout the kernel in which scheduling-
related events occur. The routines that perform these duties are collectively called the kernel’s
dispatcher. The following events might require thread dispatching:

■ A thread becomes ready to execute—for example, a thread has been newly created or has
just been released from the wait state.

■ A thread leaves the running state because its time quantum ends, it terminates, it yields
execution, or it enters a wait state.

■ A thread’s priority changes, either because of a system service call or because Windows
itself changes the priority value.

■ A thread’s processor affinity changes so that it will no longer run on the processor on
which it was running.

At each of these junctions, Windows must determine which thread should run next. When
Windows selects a new thread to run, it performs a context switch to it. A context switch is the
procedure of saving the volatile machine state associated with a running thread, loading
another thread’s volatile state, and starting the new thread’s execution.

As already noted, Windows schedules at the thread granularity. This approach makes sense
when you consider that processes don’t run but only provide resources and a context in
which their threads run. Because scheduling decisions are made strictly on a thread basis, no
consideration is given to what process the thread belongs to. For example, if process A has 10
runnable threads, process B has 2 runnable threads, and all 12 threads are at the same prior-
ity, each thread would theoretically receive one-twelfth of the CPU time—Windows wouldn’t
give 50 percent of the CPU to process A and 50 percent to process B.

Priority Levels

To understand the thread-scheduling algorithms, you must first understand the priority levels
that Windows uses. As illustrated in Figure 6-12, internally, Windows uses 32 priority levels,
ranging from 0 through 31. These values divide up as follows:

■ Sixteen real-time levels (16 through 31)

■ Fifteen variable levels (1 through 15)

■ One system level (0), reserved for the zero page thread

328 Microsoft Windows Internals, Fourth Edition

Figure 6-12 Thread priority levels

Thread priority levels are assigned from two different perspectives: those of the Windows API
and those of the Windows kernel. The Windows API first organizes processes by the priority
class to which they are assigned at creation (Real-time, High, Above Normal, Normal, Below
Normal, and Idle) and then by the relative priority of the individual threads within those pro-
cesses (Time-critical, Highest, Above-normal, Normal, Below-normal, Lowest, and Idle).

In the Windows API, each thread has a base priority that is a function of its process priority
class and its relative thread priority. The mapping from Windows priority to internal Win-
dows numeric priority is shown in Figure 6-13.

Whereas a process has only a single base priority value, each thread has two priority values:
current and base. Scheduling decisions are made based on the current priority. As explained
in the following section on priority boosting, the system under certain circumstances
increases the priority of threads in the dynamic range (1 through 15) for brief periods. Win-
dows never adjusts the priority of threads in the real-time range (16 through 31), so they
always have the same base and current priority.

A thread’s initial base priority is inherited from the process base priority. A process, by default,
inherits its base priority from the process that created it. This behavior can be overridden on
the CreateProcess function or by using the command-line START command. A process priority
can also be changed after being created by using the SetPriorityClass function or various tools
that expose that function such as Task Manager and Process Explorer (by right-clicking on the
process and choosing a new priority class). For example, you can lower the priority of a CPU-
intensive process so that it does not interfere with normal system activities. Changing the pri-
ority of a process changes the thread priorities up or down, but their relative settings remain
the same. It usually doesn’t make sense, however, to change individual thread priorities within
a process, because unless you wrote the program or have the source code, you don’t really
know what the individual threads are doing, and changing their relative importance might
cause the program not to behave in the intended fashion.

16 real-time levels

15 variable levels

1 system level
(Zero page thread, one per system)

31

16
15

1
0

Chapter 6: Processes, Threads, and Jobs 329

Figure 6-13 Mapping of Windows kernel priorities to the Windows API

Normally, the process base priority (and therefore the starting thread base priority) will
default to the value at the middle of each process priority range (24, 13, 10, 8, 6, or 4). How-
ever, some Windows system processes (such as the Session Manager, service controller, and
local security authentication server) have a base process priority slightly higher than the
default for the Normal class (8). This higher default value ensures that the threads in these
processes will all start at a higher priority than the default value of 8. These system processes
use an internal system call (NtSetInformationProcess) to set its process base priority to a
numeric value other than the normal default starting base priority.

Real-time
time critical

Real-time
Levels 16–31

Real-time idle
Dynamic time

critical

Dynamic
Levels 1–15

Dynamic idle

Used for zero page thread—not available to Win32 applications

Idle

Below
Normal

Normal

Above
Normal

High

Real-time

31

24

16

15

13

10

8

6

4

0

1

330 Microsoft Windows Internals, Fourth Edition

Windows Scheduling APIs

The Windows API functions that relate to thread scheduling are listed in Table 6-13. (For
more information, see the Windows API reference documentation.)

Table 6-13 Scheduling-Related APIs and Their Functions

API Function

Suspend/ResumeThread Suspends or resumes a paused thread from execution.

Get/SetPriorityClass Returns or sets a process’s priority class (base priority).

Get/SetThreadPriority Returns or sets a thread’s priority (relative to its process base
priority).

Get/SetProcessAffinityMask Returns or sets a process’s affinity mask.

SetThreadAffinityMask Sets a thread’s affinity mask (must be a subset of the pro-
cess’s affinity mask) for a particular set of processors, restrict-
ing it to running on those processors.

SetInformationJobObject Sets attributes for a job; some of the attributes affect sched-
uling, such as affinity and priority. (See the “Job Objects” sec-
tion later in the chapter for a description of the job object.)

GetLogicalProcessorInformation Returns details about processor hardware configuration (for
hyperthreaded and NUMA systems).

Get/SetThreadPriorityBoost Returns or sets the ability for Windows to boost the priority
of a thread temporarily. (This ability applies only to threads
in the dynamic range.)

SetThreadIdealProcessor Establishes a preferred processor for a particular thread, but
doesn’t restrict the thread to that processor.

Get/SetProcessPriorityBoost Returns or sets the default priority boost control state of the
current process. (This function is used to set the thread pri-
ority boost control state when a thread is created.)

SwitchToThread Yields execution to another thread (at priority 1 or higher)
that is ready to run on the current processor.

Sleep Puts the current thread into a wait state for a specified time
interval (figured in milliseconds [msec]). A zero value relin-
quishes the rest of the thread’s quantum.

SleepEx Causes the current thread to go into a wait state until either
an I/O completion callback is completed, an APC is queued
to the thread, or the specified time interval ends.

Chapter 6: Processes, Threads, and Jobs 331

Relevant Tools

The following table lists the tools related to thread scheduling. You can change (and view) the
base process priority with a number of different tools, such as Task Manager, Process
Explorer, Pview, or Pviewer. Note that you can kill individual threads in a process with Process
Explorer. This should be done, of course, with extreme care.

You can view individual thread priorities with the Performance tool, Process Explorer, Pslist,
Pview, Pviewer, and Pstat. While it might be useful to increase or lower the priority of a pro-
cess, it typically does not make sense to adjust individual thread priorities within a process
because only a person who thoroughly understands the program would understand the rela-
tive importance of the threads within the process.

The only way to specify a starting priority class for a process is with the start command in the
Windows command prompt. If you want to have a program start every time with a specific pri-
ority, you can define a shortcut to use the start command by beginning the command with
cmd /c. This runs the command prompt, executes the command on the command line, and
terminates the command prompt. For example, to run Notepad in the low-process priority,
the shortcut would be cmd /c start /low notepad.exe.

EXPERIMENT: Examining and Specifying Process and Thread
Priorities
Try the following experiment:

1. From the command prompt, type start /realtime notepad. Notepad should open.

2. Run either Process Explorer or the Process Viewer utility in the Support Tools
(Pviewer.exe), and select Notepad.exe from the list of processes, as shown here.
Notice that the dynamic priority of the thread in Notepad is 24. This matches the
real-time value shown in Figure 6-13.

Process priority class

Process base priority

Thread base priority

Thread current priority

Object Taskman Perfmon Pviewer Pview Pstat
KD

!thread
Process
Explorer

332 Microsoft Windows Internals, Fourth Edition

3. Task Manager can show you similar information. Press Ctrl+Shift+Esc to start Task
Manager, and go to the Processes tab. Right-click on the Notepad.exe process, and
select the Set Priority option. You can see that Notepad’s process priority class is
Realtime, as shown in the following dialog box.

Chapter 6: Processes, Threads, and Jobs 333

Windows System Resource Manager
Windows Server 2003, Enterprise Edition and Windows Server 2003, Datacenter Edi-
tion include an optionally installable component called Windows System Resource
Manager (WSRM). It permits the administrator to configure policies that specify CPU
utilization, affinity settings, and memory limits (both physical and virtual) for processes.
In addition, WSRM can generate resource utilization reports that can be used for
accounting and verification of service-level agreements with users.

Policies can be applied for specific applications (by matching the name of the image
with or without specific command-line arguments), users, or groups. The policies can
be scheduled to take effect at certain periods or can be enabled all the time.

After you have set a resource-allocation policy to manage specific processes, the WSRM
service monitors CPU consumption of managed processes and adjusts process base pri-
orities when those processes do not meet their target CPU allocations.

The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a
hard-working set maximum. The virtual memory limit is implemented by the service
checking the private virtual memory consumed by the processes. (See Chapter 7 for an
explanation of these memory limits.) If this limit is exceeded, WSRM can be configured
to either kill the processes or write an entry to the event log. This behavior could be
used to detect a process with a memory leak before it consumes all the available com-
mitted virtual memory on the system. Note that WSRM memory limits do not apply to
Address Windowing Extensions (AWE) memory, large page memory, or kernel memory
(nonpaged or paged pool).

Real-Time Priorities

You can raise or lower thread priorities within the dynamic range in any application; however,
you must have the increase scheduling priority privilege to enter the real-time range. Be aware
that many important Windows kernel-mode system threads run in the real-time priority
range, so if threads spend excessive time running in this range, they might block critical sys-
tem functions (such as in the memory manager, cache manager, or other device drivers).

Note As illustrated in the following figure showing the x86 Interrupt Request Levels (IRQLs),
although Windows has a set of priorities called real-time, they are not real-time in the common
definition of the term. This is because Windows doesn’t provide true real-time operating sys-
tem facilities, such as guaranteed interrupt latency or a way for threads to obtain a guaranteed
execution time. For more information, see the sidebar “Windows and Real-Time Processing” in
Chapter 3 as well as the MSDN Library article “Real-Time Systems and Microsoft Windows NT.”

334 Microsoft Windows Internals, Fourth Edition

Interrupt Levels vs. Priority Levels
As illustrated in the following figure, threads normally run at IRQL 0 or 1. (For a
description of how Windows uses interrupt levels, see Chapter 3.) User-mode threads
always run at IRQL 0. Because of this, no user-mode thread, regardless of its priority,
blocks hardware interrupts (although high-priority real-time threads can block the exe-
cution of important system threads). Only kernel-mode APCs execute at IRQL 1
because they interrupt the execution of a thread. (For more information on APCs, see
Chapter 3.) Threads running in kernel mode can raise IRQL to higher levels, though—
for example, while executing a system call that involves thread dispatching.

Thread States

Before you can comprehend the thread-scheduling algorithms, you need to understand the
various execution states that a thread can be in. Figure 6-14 illustrates the state transitions for
threads on Windows 2000 and Windows XP. (The numeric values shown represent the value
of the thread state performance counter.) More details on what happens at each transition are
included later in this section.

31

30

29

28

27

26

3

1

2

0
Thread priorities 0–31

Hardware interrupts

Software interrupts

IRQLs

Device 1

DPC/dispatch

APC

Passive

High

Power fail

Inter-processor interrupt

Clock

Profile

Device n

Chapter 6: Processes, Threads, and Jobs 335

Figure 6-14 Thread states on Windows 2000 and Windows XP

The thread states are as follows:

■ Ready A thread in the ready state is waiting to execute. When looking for a thread to
execute, the dispatcher considers only the pool of threads in the ready state.

■ Standby A thread in the standby state has been selected to run next on a particular pro-
cessor. When the correct conditions exist, the dispatcher performs a context switch to
this thread. Only one thread can be in the standby state for each processor on the sys-
tem. Note that a thread can be preempted out of the standby state before it ever executes
(if, for example, a higher priority thread becomes runnable before the standby thread
begins execution).

■ Running Once the dispatcher performs a context switch to a thread, the thread enters
the running state and executes. The thread’s execution continues until its quantum
ends (and another thread at the same priority is ready to run), it is preempted by a
higher priority thread, it terminates, it yields execution, or it voluntarily enters the wait
state.

■ Waiting A thread can enter the wait state in several ways: a thread can voluntarily wait
for an object to synchronize its execution, the operating system can wait on the thread’s
behalf (such as to resolve a paging I/O), or an environment subsystem can direct the
thread to suspend itself. When the thread’s wait ends, depending on the priority, the
thread either begins running immediately or is moved back to the ready state.

Ready (1) Running (2)

Waiting (5)

voluntary
switch

preemption,
quantum end

Init (0)

Terminate (4)Transition (6)

Standby (3)preempt

336 Microsoft Windows Internals, Fourth Edition

■ Transition A thread enters the transition state if it is ready for execution but its kernel
stack is paged out of memory. Once its kernel stack is brought back into memory, the
thread enters the ready state.

■ Terminated When a thread finishes executing, it enters the terminated state. Once the
thread is terminated, the executive thread block (the data structure in nonpaged pool
that describes the thread) might or might not be deallocated. (The object manager sets
policy regarding when to delete the object.)

■ Initialized This state is used internally while a thread is being created.

EXPERIMENT: Thread-Scheduling State Changes
You can watch thread-scheduling state changes with the Performance tool in Windows.
This utility can be useful when you’re debugging a multithreaded application if you’re
unsure about the state of the threads running in the process. To watch thread-schedul-
ing state changes by using the Performance tool, follow these steps:

1. Run the Microsoft Notepad utility (Notepad.exe).

2. Start the Performance tool by selecting Programs from the Start menu and then
selecting Performance from the Adminstrative Tools menu.

3. Select chart view if you’re in some other view.

4. Right-click on the graph, and choose Properties.

5. Click the Graph tab, and change the chart vertical scale maximum to 7. (As you’ll
see from the explanation text for the performance counter, thread states are num-
bered from 0 through 7.) Click OK.

6. Click the Add button on the toolbar to bring up the Add Counters dialog box.

7. Select the Thread performance object, and then select the Thread State counter.
Click the Explain button to see the definition of the values:

8. In the Instances box, scroll down until you see the Notepad process (notepad/0);
select it, and click the Add button.

9. Scroll back up in the Instances box to the Mmc process (the Microsoft Manage-
ment Console process running the System Monitor), select all the threads (mmc/
0, mmc/1, and so on), and add them to the chart by clicking the Add button.
Before you click Add, you should see something like the following dialog box.

Chapter 6: Processes, Threads, and Jobs 337

10. Now close the Add Counters dialog box by clicking Close.

11. You should see the state of the Notepad thread (the very top line in the following
figure) as a 5, which, as shown in the explanation text you saw under step 5, rep-
resents the waiting state (because the thread is waiting for GUI input):

12. Notice that one thread in the Mmc process (running the Performance tool snap-
in) is in the running state (number 2). This is the thread that’s querying the thread
states, so it’s always displayed in the running state.

13. You’ll never see Notepad in the running state (unless you’re on a multiprocessor
system) because Mmc is always in the running state when it gathers the state of
the threads you’re monitoring.

338 Microsoft Windows Internals, Fourth Edition

The state diagram for threads on Windows Server 2003 is shown in Figure 6-15. Notice the
new state called deferred ready. This state is used for threads that have been selected to run on
a specific processor but have not yet been scheduled. This new state exists so that the kernel
can minimize the amount of time the systemwide lock on the scheduling database is held.
(This process is explained further in the section “Multiprocessor Dispatcher Database.”)

Figure 6-15 Thread states on Windows Server 2003

Dispatcher Database

To make thread-scheduling decisions, the kernel maintains a set of data structures known col-
lectively as the dispatcher database, illustrated in Figure 6-16. The dispatcher database keeps
track of which threads are waiting to execute and which processors are executing which
threads.

Note The dispatcher database on a uniprocessor system has the same structure as on mul-
tiprocessor Windows 2000 and Windows XP systems, but is different on Windows Server 2003
systems. These differences, as well as the differences in the way Windows selects threads to run
on multiprocessor systems, are explained in the section “Multiprocessor Systems.”

Ready (1)

Deferred
Ready (7) Running (2)

Waiting (5)

voluntary
switch

preemption,
quantum end

Init (0)

Terminate (4)Transition (6)

Standby (3)preempt

Chapter 6: Processes, Threads, and Jobs 339

Figure 6-16 Dispatcher database (uniprocessor and Windows 2000/XP multiprocessor)

The dispatcher ready queues (KiDispatcherReadyListHead) contain the threads that are in the
ready state, waiting to be scheduled for execution. There is one queue for each of the 32 pri-
ority levels. To speed up the selection of which thread to run or preempt, Windows maintains
a 32-bit bit mask called the ready summary (KiReadySummary). Each bit set indicates one or
more threads in the ready queue for that priority level. (Bit 0 represents priority 0, and so on.)

Table 6-15 lists the kernel-mode kernel variables that are related to thread scheduling on uni-
processor systems.

On uniprocessor systems, the dispatcher database is synchronized by raising IRQL to DPC/
dispatch level and SYNCH_LEVEL (both of which are defined as level 2). (For an explanation
of interrupt priority levels, see the “Trap Dispatching” section in Chapter 3.) Raising IRQL in

Table 6-14 Thread-Scheduling Kernel Variables

Variable Type Description

KiReadySummary Bitmask (32 bits) Bitmask of priority levels that have
one or more ready threads

KiDispatcherReadyListHead Array of 32 list entries List heads for the 32 ready queues

Process

Thread 1 Thread 2

Process

Thread 3 Thread 4

Ready summary

Ready queues

31

0

31 0

340 Microsoft Windows Internals, Fourth Edition

this way prevents other threads from interrupting thread dispatching because threads normally
run at IRQL 0 or 1. On multiprocessor systems, more is required than raising IRQL because
each processor can, at the same time, raise to the same IRQL and attempt to operate on the dis-
patcher database. How Windows synchronizes access to the dispatcher database on multipro-
cessor systems is explained in the “Multiprocessor Systems” section later in the chapter.

Quantum

As mentioned earlier in the chapter, a quantum is the amount of time a thread gets to run
before Windows checks to see whether another thread at the same priority is waiting to run.
If a thread completes its quantum and there are no other threads at its priority, Windows per-
mits the thread to run for another quantum.

On Windows 2000 Professional and Windows XP, threads run by default for 2 clock intervals;
on Windows Server systems, by default, a thread runs for 12 clock intervals. (We’ll explain
how you can change these values later.) The rationale for the longer default value on server
systems is to minimize context switching. By having a longer quantum, server applications
that wake up as the result of a client request have a better chance of completing the request
and going back into a wait state before their quantum ends.

The length of the clock interval varies according to the hardware platform. The frequency of
the clock interrupts is up to the HAL, not the kernel. For example, the clock interval for most
x86 uniprocessors is about 10 milliseconds and for most x86 multiprocessors it is about 15
milliseconds. (The actual clock rate is not exactly a round number of milliseconds—see the fol-
lowing experiment for a way to check the actual clock interval.)

EXPERIMENT: Determining the Clock Interval Frequency
The Windows GetSystemTimeAdjustment function returns the clock interval. To deter-
mine the clock interval, download and run the Clockres program from www.sysinter-
nals.com. Here’s the output from a uniprocessor x86 system:

C:\>clockres

ClockRes - View the system clock resolution

By Mark Russinovich

SysInternals - www.sysinternals.com

The system clock interval is 10.014400 ms

Quantum Accounting

Each process has a quantum value in the kernel process block. This value is used when giving
a thread a new quantum. As a thread runs, its quantum is reduced at each clock interval. If
there is no remaining thread quantum, the quantum end processing is triggered. If there is

Chapter 6: Processes, Threads, and Jobs 341

another thread at the same priority waiting to run, a context switch occurs to the next thread
in the ready queue. Note that when the clock interrupt interrupts a DPC or another interrupt
that was in progress, the thread that was in the running state has its quantum deducted, even
if it hadn’t been running for a full clock interval. If this was not done and device interrupts or
DPCs occurred right before the clock interval timer interrupts, threads might not ever get
their quantum reduced.

Internally, the quantum value is stored as a multiple of three times the number of clock ticks.
This means that on Windows 2000 and Windows XP systems, threads, by default, have a
quantum value of 6 (2 * 3), and Windows Server systems have a quantum value of 36 (12 * 3).
Each time the clock interrupts, the clock-interrupt routine deducts a fixed value (3) from the
thread quantum.

The reason quantum is stored internally in terms of a multiple of 3 quantum units per clock
tick rather than as single units is to allow for partial quantum decay on wait completion.
When a thread that has a current priority less than 16 and a base priority less than 14 executes
a wait function (such as WaitForSingleObject or WaitForMultipleObjects) that is satisfied imme-
diately (for example, without having to wait), its quantum is reduced by 1 quantum unit. In
this way, threads that wait will eventually expire their quantum.

In the case where a wait is not satisfied immediately, threads below priority 16 also have their
quantum reduced by 1 unit (except if the thread is waking up to execute a kernel APC because
the wait code will charge the quantum after the wait is actually satisfied). However, before
doing the reduction, if the thread is at priority 14 or above, its quantum is reset to a full turn.
This is also done for threads running at less than 14 if they are not running with a special pri-
ority boost (such as is done for foreground processes or in the case of CPU starvation) and if
they are receiving a priority boost as a result of the unwait operation. (Priority boosting is
explained in the next section.)

This partial decay addresses the case in which a thread enters a wait state before the clock
interval timer fires. If this adjustment were not made, it would be possible for threads never to
have their quantums reduced. For example, if a thread ran, entered a wait state, ran again, and
entered another wait state but was never the currently running thread when the clock interval
timer fired, it would never have its quantum charged for the time it was running. Note that this
does not apply to zero timeout waits, but only wait operations that do not require waiting
because all the wait conditions are fulfilled at the time of the wait.

Controlling the Quantum

You can change the thread quantum for all processes, but you can choose only one of two set-
tings: short (2 clock ticks, the default for client machines) or long (12 clock ticks, the default
for server systems).

342 Microsoft Windows Internals, Fourth Edition

Note By using the job object on a system running with long quantums, you can select other
quantum values for the processes in the job. For more information on the job object, see the
“Job Objects” section later in the chapter.

To change this on Windows 2000, right click My Computer, Properties (or go to Control Panel
and open the System settings applet), click the Advanced tab, and then click the Performance
Options button. The dialog box you will see is shown in Figure 6-17.

Figure 6-17 Quantum Configuration on Windows 2000

To change this on Windows XP and Windows Server 2003, right click My Computer, Proper-
ties, click the Advanced tab, click the Settings button in the Performance section, and finally
click the Advanced tab. The dialog box displayed is slightly different for Windows XP and
Windows Server 2003. These are shown in Figure 6-18.

Figure 6-18 Quantum Configuration on Windows XP and Windows Server 2003

Chapter 6: Processes, Threads, and Jobs 343

The Programs setting (called “Applications” on Windows 2000) designates the use of short,
variable quantums—the default for Windows 2000 Professional and Windows XP. If you
install Terminal Services on Windows Server systems and configure the server as an applica-
tion server, this setting is selected so that the users on the terminal server will have the same
quantum settings that would normally be set on a desktop or client system. You might also
select this manually if you were running Windows Server as your desktop operating system.

The Background Services option designates the use of long, fixed quantums—the default for
Windows Server systems. The only reason why you might select this on a workstation system
is if you were using the workstation as a server system.

One additional difference between the Programs and Background Services settings is the
effect they have on the quantum of the threads in the foreground process. This is explained in
the next section.

Quantum Boosting

Prior to Windows NT 4.0, when a window was brought into the foreground on a workstation
or client system, all the threads in the foreground process (the process that owns the thread
that owns the window that’s in focus) received a priority boost of 2. This priority boost
remained in effect while any thread in the process owned the foreground window. The prob-
lem with this approach was that if you started a long-running, CPU-intensive process (such as
a spreadsheet recalculation) and then switched to another CPU-intensive process (such as a
computer-aided design tool, graphics editor, or a game), the process now running in the back-
ground would get little or no CPU time because the foreground process would have its
threads boosted by 2 (assuming the base priority of the threads in both processes are the
same) while it remained in the foreground.

This default behavior was changed as of Windows NT 4.0 Workstation to instead triple the
quantum of the threads in the foreground process. Thus, threads in the foreground process
run with a quantum of 6 clock ticks, whereas threads in other processes have the default
workstation quantum of 2 clock ticks. In this way, when you switch away from a CPU-inten-
sive process, the new foreground process will get proportionally more of the CPU, because
when its threads run they will have a longer turn that background threads (again, assuming
the thread priorities are the same in both the foreground and background processes).

Note that this adjustment of quantums applies only to processes with a priority higher than
Idle on systems configured to Programs (or Applications, in Windows 2000) in the Perfor-
mance Options settings described in the previous section. Thread quantums are not changed
for the foreground process on systems configured to Background Services (the default on
Windows Server systems).

344 Microsoft Windows Internals, Fourth Edition

Quantum Settings Registry Value

The user interface to control quantum settings described earlier modify the registry value
HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation. In
addition to specifying the relative length of thread quantums (short or long), this registry
value also defines whether or not threads in the foreground process should have their quan-
tums boosted (and if so, the amount of the boost). This value consists of 6 bits divided into
the three 2-bit fields shown in Figure 6-19.

Figure 6-19 Fields of the Win32PrioritySeparation registry value

The fields shown in Figure 6-19 can be defined as follows:

■ Short vs. Long A setting of 1 specifies long, and 2 specifies short. A setting of 0 or 3
indicates that the default will be used (short for Windows 2000 Professional and Win-
dows XP, long for Windows Server systems).

■ Variable vs. Fixed A setting of 1 means to vary the quantum for the foreground process,
and 2 means that quantum values don’t change for foreground processes. A setting of 0
or 3 means that the default (which is variable for Windows 2000 Professional and Win-
dows XP and fixed for Windows Server systems) will be used.

■ Foreground Quantum Boost This field (stored in the kernel variable PsPrioritySepara-
tion) must have a value of 0, 1, or 2. (A setting of 3 is invalid and treated as 2.) It is used
as an index into a three-element byte array named PspForegroundQuantum to obtain the
quantum for the threads in the foreground process. The quantum for threads in back-
ground processes is taken from the first entry in this quantum table. Table 6-16 shows
the possible settings for PspForegroundQuantum.

Note that when you’re using the Performance Options dialog box described earlier, you can
choose from only two combinations: short quantums with foreground quantums tripled, or
long quantums with no quantum changes for foreground threads. However, you can select
other combinations by modifying the Win32PrioritySeparation registry value directly.

Table 6-15 Quantum Values

Short Long

Variable 6 12 18 12 24 36

Fixed 18 18 18 36 36 36

Foreground
Quantum Boost

Variable vs.
Fixed

Short vs.
Long

024

Chapter 6: Processes, Threads, and Jobs 345

Scheduling Scenarios

Windows bases the question of “Who gets the CPU?” on thread priority; but how does this
approach work in practice? The following sections illustrate just how priority-driven preemp-
tive multitasking works on the thread level.

Voluntary Switch

First a thread might voluntarily relinquish use of the processor by entering a wait state on
some object (such as an event, a mutex, a semaphore, an I/O completion port, a process, a
thread, a window message, and so on) by calling one of the Windows wait functions (such as
WaitForSingleObject or WaitForMultipleObjects). Waiting for objects is described in more detail
in Chapter 3.

Figure 6-20 illustrates a thread entering a wait state and Windows selecting a new thread to
run.

Figure 6-20 Voluntary switching

In Figure 6-20, the top block (thread) is voluntarily relinquishing the processor so that the
next thread in the ready queue can run (as represented by the halo it has when in the Running
column). Although it might appear from this figure that the relinquishing thread’s priority is
being reduced, it’s not—it’s just being moved to the wait queue of the objects the thread is
waiting for. What about any remaining quantum for the thread? The quantum value isn’t reset
when a thread enters a wait state—in fact, as explained earlier, when the wait is satisfied, the
thread’s quantum value is decremented by 1 quantum unit, equivalent to one-third of a clock
interval (except for threads running at priority 14 or higher, which have their quantum reset
after a wait to a full turn).

Priority

20

19

18

17

16

15

14

Running Ready

To wait state

346 Microsoft Windows Internals, Fourth Edition

Preemption

In this scheduling scenario, a lower-priority thread is preempted when a higher-priority thread
becomes ready to run. This situation might occur for a couple of reasons:

■ A higher-priority thread’s wait completes. (The event that the other thread was waiting
for has occurred.)

■ A thread priority is increased or decreased.

In either of these cases, Windows must determine whether the currently running thread
should still continue to run or whether it should be preempted to allow a higher-priority
thread to run.

Note Threads running in user mode can preempt threads running in kernel mode—the mode
in which the thread is running doesn’t matter. The thread priority is the determining factor.

When a thread is preempted, it is put at the head of the ready queue for the priority it was run-
ning at. Figure 6-21 illustrates this situation.

Figure 6-21 Preemptive thread scheduling

In Figure 6-21, a thread with priority 18 emerges from a wait state and repossesses the CPU,
causing the thread that had been running (at priority 16) to be bumped to the head of the
ready queue. Notice that the bumped thread isn’t going to the end of the queue but to the
beginning; when the preempting thread has finished running, the bumped thread can com-
plete its quantum.

Priority

18

17

16

15

14

13

Running Ready

From wait state

Chapter 6: Processes, Threads, and Jobs 347

Quantum End

When the running thread exhausts its CPU quantum, Windows must determine whether the
thread’s priority should be decremented and then whether another thread should be sched-
uled on the processor.

If the thread priority is reduced, Windows looks for a more appropriate thread to schedule.
(For example, a more appropriate thread would be a thread in a ready queue with a higher pri-
ority than the new priority for the currently running thread.) If the thread priority isn’t
reduced and there are other threads in the ready queue at the same priority level, Windows
selects the next thread in the ready queue at that same priority level and moves the previously
running thread to the tail of that queue (giving it a new quantum value and changing its state
from running to ready). This case is illustrated in Figure 6-22. If no other thread of the same
priority is ready to run, the thread gets to run for another quantum.

Figure 6-22 Quantum end thread scheduling

Termination

When a thread finishes running (either because it returned from its main routine, called Exit-
Thread, or was killed with TerminateThread), it moves from the running state to the terminated
state. If there are no handles open on the thread object, the thread is removed from the pro-
cess thread list and the associated data structures are deallocated and released.

Context Switching

A thread’s context and the procedure for context switching vary depending on the processor’s
architecture. A typical context switch requires saving and reloading the following data:

■ Instruction pointer

■ User and kernel stack pointers

■ A pointer to the address space in which the thread runs (the process’s page table direc-
tory)

Priority

14

13

15

12

11

Running Ready

348 Microsoft Windows Internals, Fourth Edition

The kernel saves this information from the old thread by pushing it onto the current (old
thread’s) kernel-mode stack, updating the stack pointer, and saving the stack pointer in the
old thread’s KTHREAD block. The kernel stack pointer is then set to the new thread’s kernel
stack, and the new thread’s context is loaded. If the new thread is in a different process, it loads
the address of its page table directory into a special processor register so that its address space
is available. (See the description of address translation in Chapter 7.) If a kernel APC that needs
to be delivered is pending, an interrupt at IRQL 1 is requested. Otherwise, control passes to the
new thread’s restored instruction pointer and the new thread resumes execution.

Idle Thread

When no runnable thread exists on a CPU, Windows dispatches the per-CPU idle thread.
Each CPU is allotted one idle thread because on a multiprocessor system one CPU can be exe-
cuting a thread while other CPUs might have no threads to execute.

Various Windows process viewer utilities report the idle process using different names. Task
Manager and Process Explorer call it “System Idle Process,” Process Viewer reports it as “Idle,”
Pstat calls it “Idle Process,” Process Explode and Tlist call it “System Process,” and Qslice calls
it “SystemProcess.” Windows reports the priority of the idle thread as 0. In reality, however,
the idle threads don’t have a priority level because they run only when there are no real
threads to run. (Remember, only one thread per Windows system is actually running at prior-
ity 0—the zero page thread, explained in Chapter 7.)

The idle loop runs at DPC/dispatch level, polling for work to do, such as delivering deferred
procedure calls (DPCs) or looking for threads to dispatch to. Although some details of the
flow vary between architectures, the basic flow of control of the idle thread is as follows:

1. Enables and disables interrupts (allowing any pending interrupts to be delivered).

2. Checks whether any DPCs (described in Chapter 3) are pending on the processor. If
DPCs are pending, clears the pending software interrupt and delivers them.

3. Checks whether a thread has been selected to run next on the processor, and if so, dis-
patches that thread.

4. Calls the HAL processor idle routine (in case any power management functions need to
be performed).

In Windows Server 2003, the idle thread also scans for threads waiting to run on other pro-
cessors. (This is explained in the upcoming multiprocessor scheduling section.)

Priority Boosts

In five cases, Windows can boost (increase) the current priority value of threads:

■ On completion of I/O operations

■ After waiting for executive events or semaphores

Chapter 6: Processes, Threads, and Jobs 349

■ After threads in the foreground process complete a wait operation

■ When GUI threads wake up because of windowing activity

■ When a thread that’s ready to run hasn’t been running for some time (CPU starvation)

The intent of these adjustments is to improve overall system throughput and responsiveness
as well as resolve potentially unfair scheduling scenarios. Like any scheduling algorithms,
however, these adjustments aren’t perfect, and they might not benefit all applications.

Note Windows never boosts the priority of threads in the real-time range (16 through 31).
Therefore, scheduling is always predictable with respect to other threads in the real-time
range. Windows assumes that if you’re using the real-time thread priorities, you know what
you’re doing.

Priority Boosting after I/O Completion

Windows gives temporary priority boosts upon completion of certain I/O operations so that
threads that were waiting for an I/O will have more of a chance to run right away and process
whatever was being waited for. Recall that 1 quantum unit is deducted from the thread’s remain-
ing quantum when it wakes up so that I/O bound threads aren’t unfairly favored. Although
you’ll find recommended boost values in the DDK header files (by searching for “#define IO” in
Wdm.h or Ntddk.h), the actual value for the boost is up to the device driver. (These values are
listed in Table 6-17.) It is the device driver that specifies the boost when it completes an I/O
request on its call to the kernel function IoCompleteRequest. In Table 6-17, notice that I/O
requests to devices that warrant better responsiveness have higher boost values.

The boost is always applied to a thread’s base priority, not its current priority. As illustrated in
Figure 6-23, after the boost is applied, the thread gets to run for one quantum at the elevated
priority level. After the thread has completed its quantum, it decays one priority level and then
runs another quantum. This cycle continues until the thread’s priority level has decayed back
to its base priority. A thread with a higher priority can still preempt the boosted thread, but
the interrupted thread gets to finish its time slice at the boosted priority level before it decays
to the next lower priority.

Table 6-16 Recommended Boost Values

Device Boost

Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8

350 Microsoft Windows Internals, Fourth Edition

Figure 6-23 Priority boosting and decay

As noted earlier, these boosts apply only to threads in the dynamic priority range (0 through
15). No matter how large the boost is, the thread will never be boosted beyond level 15 into
the real-time priority range. In other words, a priority 14 thread that receives a boost of 5 will
go up to priority 15. A priority 15 thread that receives a boost will remain at priority 15.

Boosts after Waiting for Events and Semaphores

When a thread that was waiting for an executive event or a semaphore object has its wait satis-
fied (because of a call to the function SetEvent, PulseEvent, or ReleaseSemaphore), it receives a
boost of 1. (See the value for EVENT_ INCREMENT and SEMAPHORE_INCREMENT in the
DDK header files.) Threads that wait for events and semaphores warrant a boost for the same
reason that threads that wait for I/O operations do—threads that block on events are requesting
CPU cycles less frequently than CPU-bound threads. This adjustment helps balance the scales.

This boost operates the same as the boost that occurs after I/O completion, as described in
the previous section:

■ The boost is always applied to the base priority (not the current priority).

■ The priority will never be boosted over 15.

■ The thread gets to run at the elevated priority for its remaining quantum (as described
earlier, quantums are reduced by 1 when threads exit a wait) before decaying one prior-
ity level at a time until it reaches its original base priority.

A special boost is applied to threads that are awoken as a result of setting an event with the spe-
cial functions NtSetEventBoostPriority (used in Ntdll.dll for critical sections) and KeSetEvent-
BoostPriority (used for executive resources and push locks). If a thread waiting for an event is
woken up as a result of the special event boost function and its priority is 13 or below, it will
have its priority boosted to be the setting thread’s priority plus one. If its quantum is less than 4
quantum units, it is set to 4 quantum units. This boost is removed at quantum end.

Round-robin at
base priority

Boost upon
wait complete

Quantum

Priority decay at
quantum end

Preempt
(before quantum end)

RunRunWaitRun

Base
priority

Priority

Time

Chapter 6: Processes, Threads, and Jobs 351

Priority Boosts for Foreground Threads after Waits

Whenever a thread in the foreground process completes a wait operation on a kernel object,
the kernel function KiUnwaitThread boosts its current (not base) priority by the current value
of PsPrioritySeparation. (The windowing system is responsible for determining which process
is considered to be in the foreground.) As described in the section on quantum controls,
PsPrioritySeparation reflects the quantum-table index used to select quantums for the threads
of foreground applications. However, in this case, it is being used as a priority boost value.

The reason for this boost is to improve the responsiveness of interactive applications—by giv-
ing the foreground application a small boost when it completes a wait, it has a better chance
of running right away, especially when other processes at the same base priority might be run-
ning in the background.

Unlike other types of boosting, this boost applies to all Windows systems, and you can’t dis-
able this boost, even if you’ve disabled priority boosting using the Windows SetThreadPriori-
tyBoost function.

EXPERIMENT: Watching Foreground Priority Boosts and Decays
Using the CPU Stress tool (in the resource kit and the Platform SDK), you can watch pri-
ority boosts in action. Take the following steps:

1. Open the System utility in Control Panel (or right-click My Computer and select
Properties), click the Advanced tab, and click the Performance Options button.
Select the Applications option. This causes PsPrioritySeparation to get a value of 2.

2. Run Cpustres.exe.

3. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows
2000 resource kits). This older version of the Performance tool is needed for this
experiment because it can query performance counter values at a frequency faster
than the Windows Performance tool (which has a maximum interval of once per
second).

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To
Chart dialog box.

5. Select the Thread object, and then select the Priority Current counter.

6. In the Instance box, scroll down the list until you see the cpustres process. Select
the second thread (thread 1). (The first thread is the GUI thread.) You should see
something like this:

352 Microsoft Windows Internals, Fourth Edition

7. Click the Add button, and then click the Done button.

8. Select Chart from the Options menu. Change the Vertical Maximum to 16 and the
Interval to 0.010, as follows, and click OK:

9. Now bring the Cpustres process to the foreground. You should see the priority of
the Cpustres thread being boosted by 2 and then decaying back to the base prior-
ity as follows:

Chapter 6: Processes, Threads, and Jobs 353

10. The reason Cpustres receives a boost of 2 periodically is because the thread you’re
monitoring is sleeping about 75 percent of the time and then waking up—the
boost is applied when the thread wakes up. To see the thread get boosted more fre-
quently, increase the Activity level from Low to Medium to Busy. If you set the
Activity level to Maximum, you won’t see any boosts because Maximum in
Cpustres puts the thread into an infinite loop. Therefore, the thread doesn’t
invoke any wait functions and therefore doesn’t receive any boosts.

11. When you’ve finished, exit Performance Monitor and CPU Stress.

Priority Boosts after GUI Threads Wake Up

Threads that own windows receive an additional boost of 2 when they wake up because of win-
dowing activity, such as the arrival of window messages. The windowing system (Win32k.sys)
applies this boost when it calls KeSetEvent to set an event used to wake up a GUI thread. The rea-
son for this boost is similar to the previous one—to favor interactive applications.

EXPERIMENT: Watching Priority Boosts on GUI Threads
You can also see the windowing system apply its boost of 2 for GUI threads that wake
up to process window messages by monitoring the current priority of a GUI application
and moving the mouse across the window. Just follow these steps:

1. Open the System utility in Control Panel (or right-click My Computer and select
Properties), click the Advanced tab, and click the Performance Options button. If
you’re running Windows XP or Windows Server 2003 select the Advanced tab
and ensure that the Programs option is selected; if you’re running Windows 2000
ensure that the Applications option is selected. This causes PsPrioritySeparation to
get a value of 2.

2. Run Notepad from the Start menu by selecting Programs/Accessories/Notepad.

3. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows
2000 resource kits). This older version of the Performance tool is needed for this
experiment because it can query performance counter values at a faster frequency.
(The Windows Performance tool has a maximum interval of once per second.)

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To
Chart dialog box.

5. Select the Thread object, and then select the Priority Current counter.

6. In the Instance box, scroll down the list until you see Notepad thread 0. Click it,
click the Add button, and then click the Done button.

7. As in the previous experiment, select Chart from the Options menu. Change the
Vertical Maximum to 16 and the Interval to 0.010, and click OK.

354 Microsoft Windows Internals, Fourth Edition

8. You should see the priority of thread 0 in Notepad at 8, 9, or 10. Because Notepad
entered a wait state shortly after it received the boost of 2 that threads in the fore-
ground process receive, it might not yet have decayed from 10 to 9 and then to 8.

9. With Performance Monitor in the foreground, move the mouse across the Note-
pad window. (Make both windows visible on the desktop.) You’ll see that the pri-
ority sometimes remains at 10 and sometimes at 9, for the reasons just explained.
(The reason you won’t likely catch Notepad at 8 is that it runs so little after receiv-
ing the GUI thread boost of 2 that it never experiences more than one priority
level of decay before waking up again because of additional windowing activity
and receiving the boost of 2 again.)

10. Now bring Notepad to the foreground. You should see the priority rise to 12 and
remain there (or drop to 11, because it might experience the normal priority decay
that occurs for boosted threads on the quantum end) because the thread is receiv-
ing two boosts: the boost of 2 applied to GUI threads when they wake up to pro-
cess windowing input and an additional boost of 2 because Notepad is in the
foreground.

11. If you then move the mouse over Notepad (while it’s still in the foreground), you
might see the priority drop to 11 (or maybe even 10) as it experiences the priority
decay that normally occurs on boosted threads as they complete quantums. How-
ever, the boost of 2 that is applied because it’s the foreground process remains as
long as Notepad remains in the foreground.

12. When you’ve finished, exit Performance Monitor and Notepad.

Priority Boosts for CPU Starvation

Imagine the following situation: you have a priority 7 thread that’s running, preventing a pri-
ority 4 thread from ever receiving CPU time; however, a priority 11 thread is waiting for some
resource that the priority 4 thread has locked. But because the priority 7 thread in the middle
is eating up all the CPU time, the priority 4 thread will never run long enough to finish what-
ever it’s doing and release the resource blocking the priority 11 thread. What does Windows
do to address this situation? Once per second, the balance set manager (a system thread that
exists primarily to perform memory management functions and is described in more detail in
Chapter 7) scans the ready queues for any threads that have been in the ready state (that is,
haven’t run) for approximately 4 seconds. If it finds such a thread, the balance set manager
boosts the thread’s priority to 15. On Windows 2000 and Windows XP, the thread quantum
is set to twice the process quantum. On Windows Server 2003, the quantum is set to 4 quan-
tum units. Once the quantum is expired, the thread’s priority decays immediately to its origi-
nal base priority. If the thread wasn’t finished and a higher priority thread is ready to run, the
decayed thread will return to the ready queue, where it again becomes eligible for another
boost if it remains there for another 4 seconds.

Chapter 6: Processes, Threads, and Jobs 355

The balance set manager doesn’t actually scan all ready threads every time it runs. To minimize
the CPU time it uses, it scans only 16 ready threads; if there are more threads at that priority
level, it remembers where it left off and picks up again on the next pass. Also, it will boost only
10 threads per pass—if it finds 10 threads meriting this particular boost (which would indicate
an unusually busy system), it stops the scan at that point and picks up again on the next pass.

Will this algorithm always solve the priority inversion issue? No—it’s not perfect by any
means. But over time, CPU-starved threads should get enough CPU time to finish whatever
processing they were doing and reenter a wait state.

EXPERIMENT: Watching Priority Boosts for CPU Starvation
Using the CPU Stress tool (in the resource kit and the Platform SDK), you can watch pri-
ority boosts in action. In this experiment, we’ll see CPU usage change when a thread’s
priority is boosted. Take the following steps:

1. Run Cpustres.exe. Change the activity level of the active thread (by default, Thread
1) from Low to Maximum. Change the thread priority from Normal to Below Nor-
mal. The screen should look like this:

2. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows
2000 resource kits). Again, you need the older version for this experiment because
it can query performance counter values at a frequency faster than once per sec-
ond.

3. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To
Chart dialog box.

4. Select the Thread object, and then select the % Processor Time counter.

356 Microsoft Windows Internals, Fourth Edition

5. In the Instance box, scroll down the list until you see the cpustres process. Select
the second thread (thread 1). (The first thread is the GUI thread.) You should see
something like this:

6. Click the Add button, and then click the Done button.

7. Raise the priority of Performance Monitor to real-time by running Task Manager,
clicking the Processes tab, and selecting the Perfmon4.exe process. Right-click the
process, select Set Priority, and then select Realtime. (If you receive a Task Man-
ager Warning message box warning you of system instability, click the Yes button.)

8. Run another copy of CPU Stress. In this copy, change the activity level of Thread 1
from Low to Maximum.

9. Now switch back to Performance Monitor. You should see CPU activity every 4 or
so seconds because the thread is boosted to priority 15.

When you’ve finished, exit Performance Monitor and the two copies of CPU Stress.

Chapter 6: Processes, Threads, and Jobs 357

EXPERIMENT: “Listening” to Priority Boosting
To “hear” the effect of priority boosting for CPU starvation, perform the following steps
on a system with a sound card:

1. Run Windows Media Player (or some other audio playback program), and begin
playing some audio content.

2. Run Cpustres from the Windows 2000 resource kits, and set the activity level of
thread 1 to maximum.

3. Raise the priority of thread 1 from Normal to Time Critical.

4. You should hear the music playback stop as the compute-bound thread begins
consuming all available CPU time.

5. Every so often, you should hear bits of sound as the starved thread in the audio
playback process gets boosted to 15 and runs enough to send more data to the
sound card.

6. Stop Cpustres and Windows Media Player.

Multiprocessor Systems

On a uniprocessor system, scheduling is relatively simple: the highest priority thread that
wants to run is always running. On a multiprocessor system, it is more complex, as Windows
attempts to schedule threads on the most optimal processor for the thread, taking into
account the thread’s preferred and previous processors, as well as the configuration of the
multiprocessor system. Therefore, while Windows attempts to schedule the highest priority
runnable threads on all available CPUs, it only guarantees to be running the (single) highest
priority thread somewhere.

Before we describe the specific algorithms used to choose which threads run where and when,
let’s examine the additional information Windows maintains to track thread and processor
state on multiprocessor systems and the two new types of multiprocessor systems supported
by Windows (hyperthreaded and NUMA).

Multiprocessor Dispatcher Database

As explained in the “Dispatcher Database” section earlier in the chapter, the dispatcher data-
base refers to the information maintained by the kernel to perform thread scheduling. As
shown in Figure 6-16, on multiprocessor Windows 2000 and Windows XP systems, the ready
queues and ready summary have the same structure as they do on uniprocessor systems. In
addition to the ready queues and the ready summary, Windows maintains two bitmasks that
track the state of the processors on the system. (How these bitmasks are used is explained in
the upcoming section “Multiprocessor Thread-Scheduling Algorithms”.) Following are the
two bitmasks that Windows maintains:

358 Microsoft Windows Internals, Fourth Edition

■ The active processor mask (KeActiveProcessors), which has a bit set for each usable proces-
sor on the system (This might be less than the number of actual processors if the licens-
ing limits of the version of Windows running supports less than the number of available
physical processors.)

■ The idle summary (KiIdleSummary), in which each set bit represents an idle processor

Whereas on uniprocessor systems, the dispatcher database is locked by raising IRQL (to DPC/
dispatch level on Windows 2000 and Windows XP and to both DPC/dispatch level and Synch
level on Windows Server 2003), on multiprocessor systems more is required, because each pro-
cessor could, at the same time, raise IRQL and attempt to operate on the dispatcher database.
(This is true for any systemwide structure accessed from high IRQL.) (See Chapter 3 for a gen-
eral description of kernel synchronization and spinlocks.) On Windows 2000 and Windows XP,
two kernel spinlocks are used to synchronize access to thread dispatching: the dispatcher spin-
lock (KiDispatcherLock) and the context swap spinlock (KiContextSwapLock). The former is held
while changes are made to structures that might affect which thread should run. The latter is
held after the decision is made but during the thread context swap operation itself.

To improve scalability including thread dispatching concurrency, Windows Server 2003 mul-
tiprocessor systems have per-processor dispatcher ready queues, as illustrated in Figure 6-24.
In this way, on Windows Server 2003, each CPU can check its own ready queues for the next
thread to run without having to lock the systemwide ready queues.

Figure 6-24 Windows Server 2003 multiprocessor dispatcher database

Process

Thread 1 Thread 2

Ready summary

Deferred
ready queue

CPU 0
ready queues

31

0

31 0

Process

Thread 3 Thread 4

Ready summary

31 0
Deferred

ready queue

CPU 1
ready queues

31

0

Chapter 6: Processes, Threads, and Jobs 359

The per-processor ready queues, as well as the per-processor ready summary are part of the
processor control block (PRCB) structure. (To see the fields in the PRCB, type dt nt!_prcb in
the Kernel Debugger.) Because on a multiprocessor system one processor might need to mod-
ify another processor’s per-CPU scheduling data structures (such as inserting a thread that
would like to run on a certain processor), these structures are synchronized by using a new
per-PRCB queued spinlock, which is held at IRQL SYNCH_LEVEL. (See Table 6-18 for the var-
ious values of SYNCH_LEVEL). Thus, thread selection can occur while locking only an indi-
vidual processor’s PRCB, in contrast to doing this on Windows 2000 and Windows XP, where
the systemwide dispatcher spinlock had to be held.

There is also a per-CPU list of threads in the deferred ready state. These represent threads that
are ready to run but have not yet been readied for execution; the actual ready operation has
been deferred to a more appropriate time. Because each processor manipulates only its own
per-processor deferred ready list, this list is not synchronized by the PRCB spinlock. The
deferred ready thread list is processed before exiting the thread dispatcher, before performing
a context switch, and after processing a DPC. Threads on the deferred ready list are either dis-
patched immediately or are moved to the per-process ready queue for their priority level.

Note that the systemwide dispatcher spinlock still exists and is used on Windows Server
2003, but it is held only for the time needed to modify systemwide state that might affect
which thread runs next. For example, changes to synchronization objects (mutexes, events,
and semaphores) and their wait queues require holding the dispatcher lock to prevent more
than one processor from changing the state of such objects (and the consequential action of
possibly readying threads for execution). Other examples include changing the priority of a
thread, timer expiration, and swapping of thread kernel stacks.

Finally, synchronization of thread context switching has also been improved on Windows
Server 20003, as it is now synchronized by using a per-thread spinlock, whereas in Windows
2000 and Windows XP context switching was synchronized by holding a systemwide context
swap spinlock.

Table 6-17 IRQL SYNCH_LEVEL on Multiprocessor Systems

Windows Version IRQL

Windows 2000 2

Windows XP on x86 2

Windows Server 2003 on x86 27

Windows XP on x64 12

Windows XP on IA-64 2

Windows Server 2003 on x64 & IA-64 12

360 Microsoft Windows Internals, Fourth Edition

Hyperthreaded Systems

As described in the “Symmetric Multiprocessing” section in Chapter 2, Windows XP and Win-
dows Server 2003 support hyperthreaded multiprocessor systems in two primary ways:

1. Logical processors do not count against physical processor licensing limits. For exam-
ple, Windows XP Home Edition, which has a licensed processor limit of 1, will use both
logical processors on a single processor hyperthreaded system.

2. When choosing a processor for a thread, if there is a physical processor with all logical
processors idle, a logical processor from that physical processor will be selected, as
opposed to choosing an idle logical processor on a physical processor that has another
logical processor running a thread.

EXPERIMENT: Viewing Hyperthreading Information
You can examine the information Windows maintains for hyperthreaded processors
using the !smt command in the kernel debugger. The following output is from a dual
processor hyperthreaded Xeon system (four logical processors):

lkd> !smt

SMT Summary:

KeActiveProcessors: ****---------------------------- (0000000f)

KiIdleSummary: -***---------------------------- (0000000e)

No PRCB Set Master SMT Set #LP IAID

0 ffdff120 Master *-*----------------------------- (00000005) 2 00

1 f771f120 Master -*-*---------------------------- (0000000a) 2 06

2 f7727120 ffdff120 *-*----------------------------- (00000005) 2 01

3 f772f120 f771f120 -*-*---------------------------- (0000000a) 2 07

Number of licensed physical processors: 2

Logical processor 0 and 1 are on separate physical processors (as indicated by the term
“Master”).

NUMA Systems

Another type of multiprocessor system supported by Windows XP and Windows Server 2003
are those with nonuniform memory access (NUMA) architectures. In a NUMA system, proces-
sors are grouped together in smaller units called nodes. Each node has its own processors and
memory, and is connected to the larger system through a cache-coherent interconnect bus.
These systems are called “nonuniform” because each node has its own local high-speed mem-
ory. While any processor in any node can access all of memory, node-local memory is much
faster to access.

Chapter 6: Processes, Threads, and Jobs 361

The kernel maintains information about each node in a NUMA system in a data structure
called KNODE. The kernel variable KeNodeBlock is an array of pointers to the KNODE struc-
tures for each node. The format of the KNODE structure can be shown using the dt command
in the kernel debugger, as shown here:

lkd> dt nt!_knode

nt!_KNODE

+0x000 ProcessorMask : Uint4B

+0x004 Color : Uint4B

+0x008 MmShiftedColor : Uint4B

+0x00c FreeCount : [2] Uint4B

+0x018 DeadStackList : _SLIST_HEADER

+0x020 PfnDereferenceSListHead : _SLIST_HEADER

+0x028 PfnDeferredList : Ptr32 _SINGLE_LIST_ENTRY

+0x02c Seed : UChar

+0x02d Flags : _flags

EXPERIMENT: Viewing NUMA Information
You can examine the information Windows maintains for each node in a NUMA system
using the !numa command in the kernel debugger. The following partial output is from
a 32-processor NUMA system by NEC with 4 processors per node:

21: kd> !numa

NUMA Summary:

Number of NUMA nodes : 8

Number of Processors : 32

MmAvailablePages : 0x00F70D2C

KeActiveProcessors : ********************************---------------------------

----- (00000000ffffffff)

NODE 0 (E00000008428AE00):

ProcessorMask : ****---

Color : 0x00000000

MmShiftedColor : 0x00000000

Seed : 0x00000000

Zeroed Page Count: 0x00000000001CF330

Free Page Count : 0x0000000000000000

NODE 1 (E00001597A9A2200):

ProcessorMask : ----****---

Color : 0x00000001

MmShiftedColor : 0x00000040

Seed : 0x00000006

Zeroed Page Count: 0x00000000001F77A0

Free Page Count : 0x0000000000000004

362 Microsoft Windows Internals, Fourth Edition

The following partial output is from a 64-processor NUMA system from Hewlett Pack-
ard with 4 processors per node:

26: kd> !numa

NUMA Summary:

Number of NUMA nodes : 16

Number of Processors : 64

MmAvailablePages : 0x03F55E67

KeActiveProcessors : ***

***** (ffffffffffffffff)

NODE 0 (E000000084261900):

ProcessorMask : ****---

Color : 0x00000000

MmShiftedColor : 0x00000000

Seed : 0x00000001

Zeroed Page Count: 0x00000000003F4430

Free Page Count : 0x0000000000000000

NODE 1 (E0000145FF992200):

ProcessorMask : ----****---

Color : 0x00000001

MmShiftedColor : 0x00000040

Seed : 0x00000007

Zeroed Page Count: 0x00000000003ED59A

Free Page Count : 0x0000000000000000

Applications that want to gain the most performance out of NUMA systems can set the affinity
mask to restrict a process to the processors in a specific node. This information can be
obtained using the functions listed in Table 6-18. Functions that can alter thread affinity are
listed in Table 6-13.

How the scheduling algorithms take into account NUMA systems will be covered in the
upcoming section “Multiprocessor Thread-Scheduling Algorithms” (and the optimizations in
the memory manager to take advantage of node-local memory are covered in Chapter 7).

Affinity

Each thread has an affinity mask that specifies the processors on which the thread is allowed
to run. The thread affinity mask is inherited from the process affinity mask. By default, all pro-

Table 6-18 NUMA-Related Functions

Function Description

GetNumaHighestNodeNumber Retrieves the node that currently has the highest number.

GetNumaNodeProcessorMask Retrieves the processor mask for the specified node.

GetNumaProcessorNode Retrieves the node number for the specified processor.

Chapter 6: Processes, Threads, and Jobs 363

cesses (and therefore all threads) begin with an affinity mask that is equal to the set of active
processors on the system—in other words, the system is free to schedule all threads on any
available processor.

However, to optimize throughput and/or partition workloads to a specific set of processors,
applications can choose to change the affinity mask for a thread. This can be done at several
levels:

■ Calling the SetThreadAffinityMask function to set the affinity for an individual thread

■ Calling the SetProcessAffinityMask function to set the affinity for all the threads in a pro-
cess. Task Manager and Process Explorer provide a GUI interface to this function if you
right-click a process and choose Set Affinity. The Psexec tool (from www.sysinter-
nals.com) provides a command-line interface to this function. (See the –a switch.)

■ By making a process a member of a job that has a jobwide affinity mask set using the Set-
InformationJobObject function (Jobs are described in the upcoming “Job Objects” section.)

■ By specifying an affinity mask in the image header using, for example, the Imagecfg tool
in the Windows 2000 Server Resource Kit Supplement 1 (For more information on the
detailed format of Windows images, see the article “Portable Executable and Common
Object File Format Specification” in the MSDN Library.)

You can also set the “uniprocessor” flag for an image (using the Imagecfg –u switch). If this
flag is set, the system chooses a single processor at process creation time and assigns that as
the process affinity mask, starting with the first processor and then going round-robin across
all the processors. For example, on a dual-processor system, the first time you run an image
marked as uniprocessor, it is assigned to CPU 0; the second time, CPU 1; the third time, CPU
0; the fourth time, CPU 1; and so on. This flag can be useful as a temporary workaround for
programs that have multithreaded synchronization bugs that, as a result of race conditions,
surface on multiprocessor systems but that don’t occur on uniprocessor systems. (This has
actually saved the authors of this book on two different occasions.)

EXPERIMENT: Viewing and Changing Process Affinity
In this experiment, you will modify the affinity settings for a process and see that pro-
cess affinity is inherited by new processes:

1. Run the Command Prompt (cmd.exe).

2. Run Task Manager or Process Explorer, and find the cmd.exe process in the pro-
cess list.

3. Right-click the process, and select Affinity. A list of processors should be displayed.
For example, on a dual-processor system you will see this:

364 Microsoft Windows Internals, Fourth Edition

4. Select a subset of the available processors on the system, and press OK. The pro-
cess’s threads are now restricted to run on the processors you just selected.

5. Now run Notepad.exe from the Command Prompt (by typing Notepad.exe).

6. Go back to Task Manager or Process Explorer and find the new Notepad process.
Right-click it, and choose Affinity. You should see the same list of processors you
chose for the Command Prompt process. This is because processes inherit their
affinity settings from their parent.

EXPERIMENT: Changing the Image Affinity
In this experiment (which requires access to a multiprocessor system), you will change
the affinity mask of a program to force it to run on the first processor:

1. Make a copy of Cpustres.exe from the Windows 2000 resource kits. For example,
assuming there is a c:\temp folder on your system, from the command prompt,
type the following:

copy c:\program files\resource kit\cpustres.exe c:\temp\cpustres.exe

2. Set the image affinity mask to force the process’s threads to run on CPU 0 by typ-
ing the following in the command prompt (assuming that the path to the resource
kit tools is in your path):

imagecfg –a 1 c:\temp\cpustres.exe

3. Now run the modified Cpustres from the c:\temp folder.

4. Enable two worker threads, and set the activity level for both threads to Maximum
(not Busy). The Cpustres screen should look like this:

Chapter 6: Processes, Threads, and Jobs 365

5. Find the Cpustres process in Process Explorer or Task Manager, right click, and
choose Set Affinity. The affinity settings should show the process bound to CPU 0.

6. Examine the systemwide CPU usage by clicking Show, System Information (if run-
ning Process Explorer) or by clicking the Performance tab (if running Task Man-
ager). Assuming there are no other compute-bound processes, you should see the
total percentage of CPU time consumed, approximately 1/# CPUs (for example,
50% on a dual-CPU system, 25% on a four-CPU system), because the two threads
in Cpustres are forced to run on a single processor, leaving the other processor(s)
idle.

7. Finally, change the affinity mask of the Cpustres process to permit it to run on all
CPUs. Go back and examine the systemwide CPU usage. You should see 100% on
a dual-CPU system, 50% on a four-CPU system, and so forth.

Windows won’t move a running thread that could run on a different processor from one CPU
to a second processor to permit a thread with an affinity for the first processor to run on the
first processor. For example, consider this scenario: CPU 0 is running a priority 8 thread that
can run on any processor, and CPU 1 is running a priority 4 thread that can run on any pro-
cessor. A priority 6 thread that can run on only CPU 0 becomes ready. What happens? Win-
dows won’t move the priority 8 thread from CPU 0 to CPU 1 (preempting the priority 4
thread) so that the priority 6 thread can run; the priority 6 thread has to wait.

Therefore, changing the affinity mask for a process or a thread can result in threads getting
less CPU time than they normally would, as Windows is restricted from running the thread
on certain processors. Therefore, setting affinity should be done with extreme care—in most
cases, it is optimal to let Windows decide which threads run where.

366 Microsoft Windows Internals, Fourth Edition

Ideal and Last Processor

Each thread has two CPU numbers stored in the kernel thread block:

■ Ideal processor, or the preferred processor that this thread should run on

■ Last processor, or the processor on which the thread last ran

The ideal processor for a thread is chosen when a thread is created using a seed in the process
block. The seed is incremented each time a thread is created so that the ideal processor for
each new thread in the process will rotate through the available processors on the system. For
example, the first thread in the first process on the system is assigned an ideal processor of 0.
The second thread in that process is assigned an ideal processor of 1. However, the next pro-
cess in the system has its first thread’s ideal processor set to 1, the second to 2, and so on. In
that way, the threads within each process are spread evenly across the processors.

Note that this assumes the threads within a process are doing an equal amount of work. This
is typically not the case in a multithreaded process, which normally has one or more house-
keeping threads and then a number of worker threads. Therefore, a multithreaded application
that wants to take full advantage of the platform might find it advantageous to specify the
ideal processor numbers for its threads by using the SetThreadIdealProcessor function.

On hyperthreaded systems, the next ideal processor is the first logical processor on the next
physical processor. For example, on a dual-processor hyperthreaded system with four logical
processors, if the ideal processor for the first thread is assigned to logical processor 0, the sec-
ond thread would be assigned to logical processor 2, the third thread to logical processor 1,
the fourth thread to logical process 3, and so forth. In this way, the threads are spread evenly
across the physical processors.

On NUMA systems, when a process is created, an ideal node for the process is selected. The
first process is assigned to node 0, the second process to node 1, and so on. Then, the ideal
processors for the threads in the process are chosen from the process’s ideal node. The ideal
processor for the first thread in a process is assigned to the first processor in the node. As
additional threads are created in processes with the same ideal node, the next processor is
used for the next thread’s ideal processor, and so on.

Multiprocessor Thread-Scheduling Algorithms

Now that we’ve described the types of multiprocessor systems supported by Windows as well
as the thread affinity and ideal processor settings, we’re ready to examine how this informa-
tion is used to determine which threads run where. There are two basic decisions to describe:

■ Choosing a processor for a thread that wants to run

■ Choosing a thread on a processor that needs something to do

Chapter 6: Processes, Threads, and Jobs 367

Choosing a Processor for a Thread When There Are Idle Processors

When a thread becomes ready to run, Windows first tries to schedule the thread to run on an
idle processor. If there is a choice of idle processors, preference is given first to the thread’s
ideal processor, then to the thread’s previous processor, and then to the currently executing
processor (that is, the CPU on which the scheduling code is running).

On Windows 2000, if none of these CPUs are idle, the first idle processor the thread can run
on is selected by scanning the idle processor mask from highest to lowest CPU number.

On Windows XP and Windows Server 2003, the idle processor selection is more sophisticated.
First, the idle processor set is set to the idle processors that the thread’s affinity mask permits it
to run on. If the system is NUMA and there are idle CPUs in the node containing the thread’s
ideal processor, the list of idle processors is reduced to that set. If this eliminates all idle proces-
sors, the reduction is not done. Next, if the system is running hyperthreaded processors and
there is a physical processor with all logical processors idle, the list of idle processors is reduced
to that set. If that results in an empty set of processors, the reduction is not done.

If the current processor (the processor trying to determine what to do with the thread that
wants to run) is in the remaining idle processor set, the thread is scheduled on it. If the cur-
rent processor is not in the remaining set of idle processors, it is a hyperthreaded system, and
there is an idle logical processor on the physical processor containing the ideal processor for
the thread, the idle processors are reduced to that set. If not, the system checks whether there
are any idle logical processors on the physical processor containing the thread’s previous pro-
cessor. If that set is nonzero, the idle processors are reduced to that list.

In the set of idle processors remaining, any CPUs in a sleep state are eliminated from consid-
eration. (Again, this reduction is not performed if that would eliminate all possible proces-
sors.) Finally, the lowest numbered CPU in the remaining set is selected as the processor to
run the thread on.

Regardless of the Windows version, once a processor has been selected for the thread to run
on, that thread is put in the Standby state and the idle processor’s PRCB is updated to point
to this thread. When the idle loop on that processor runs, it will see that a thread has been
selected to run and will dispatch that thread.

Choosing a Processor for a Thread When There Are No Idle Processors

If there are no idle processors when a thread wants to run, Windows compares the priority of
the thread running (or the one in the standby state) on the thread’s ideal processor to deter-
mine whether it should preempt that thread. On Windows 2000, a thread’s affinity mask can
exclude the ideal processor. (This condition is not allowed as of Windows XP.) If that is the
case, Windows 2000 selects the thread’s previous processor. If that processor is not in the
thread’s affinity mask, the highest processor number that the thread can run on is selected.

368 Microsoft Windows Internals, Fourth Edition

If the thread’s ideal processor already has a thread selected to run next (waiting in the standby
state to be scheduled) and that thread’s priority is less than the priority of the thread being
readied for execution, the new thread preempts that first thread out of the standby state and
becomes the next thread for that CPU. If there is already a thread running on that CPU, Win-
dows checks whether the priority of the currently running thread is less than the thread being
readied for execution. If so, the currently running thread is marked to be preempted and Win-
dows queues an interprocessor interrupt to the target processor to preempt the currently run-
ning thread in favor of this new thread.

Note Windows doesn’t look at the priority of the current and next threads on all the CPUs—
just on the one CPU selected as just described. If no thread can be preempted on that one CPU,
the new thread is put in the ready queue for its priority level, where it awaits its turn to get
scheduled. Therefore, Windows does not guarantee to be running all the highest priority
threads, but it will always run the highest priority thread.

If the ready thread cannot be run right away, it is moved into the ready state where it awaits its
turn to run. Note that in Windows Server 2003, threads are always put on their ideal proces-
sor’s per-processor ready queues.

Selecting a Thread to Run on a Specific CPU (Windows 2000 and
Windows XP)

In several cases (such as when a thread enters a wait state, lowers its priority, changes its
affinity, or delays or yields execution), Windows must find a new thread to run on the CPU
that the currently executing thread is running on. As described earlier, on a single-processor
system, Windows simply picks the first thread in the highest-priority nonempty ready
queue. On a multiprocessor system, however, Windows 2000 and Windows XP don’t sim-
ply pick the first thread in the ready queue. Instead, they look for a thread in the highest-pri-
ority nonempty read queue that meets one of the following conditions:

■ Ran last on the specified processor

■ Has its ideal processor set to the specified processor

■ Has been ready to run for longer than 3 clock ticks

■ Has a priority greater than or equal to 24

Threads that don’t have the specified processor in their hard affinity mask are skipped, obvi-
ously. If there are no threads that meet one of these conditions, Windows picks the thread at
the head of the ready queue it began searching from.

Why does it matter which processor a thread was last running on? As usual, the answer is
speed—giving preference to the last processor a thread executed on maximizes the chances
that thread data remains in the secondary cache of the processor in question.

Chapter 6: Processes, Threads, and Jobs 369

Selecting a Thread to Run on a Specific CPU (Windows Server 2003)

Because each processor in Windows Server 2003 has its own list of threads waiting to run on
that processor, when a thread finishes running, the processor can simply check its per-proces-
sor ready queue for the next thread to run. If the per-processor ready queues are empty, the
idle thread for that processor is scheduled. The idle thread then begins scanning other proces-
sor’s ready queues for threads it can run. Note that on NUMA systems, the idle thread first
looks at processors on its node before looking at other nodes’ processors.

Job Objects
A job object is a nameable, securable, shareable kernel object that allows control of one or
more processes as a group. A job object’s basic function is to allow groups of processes to be
managed and manipulated as a unit. A process can be a member of only one job object. By
default, its association with the job object can’t be broken and all processes created by the
process and its descendents are associated with the same job object as well. The job object
also records basic accounting information for all processes associated with the job and for all
processes that were associated with the job but have since terminated. Table 6-20 lists the
Windows functions to create and manipulate job objects.

The following are some of the CPU-related and memory-related limits you can specify for a
job:

■ Maximum number of active processes Limits the number of concurrently existing
processes in the job.

■ Jobwide user-mode CPU time limit Limits the maximum amount of user-mode CPU
time that the processes in the job can consume (including processes that have run and
exited). Once this limit is reached, by default all the processes in the job will be termi-
nated with an error code and no new processes can be created in the job (unless the
limit is reset). The job object is signaled, so any threads waiting for the job will be
released. You can change this default behavior with a call to EndOfJobTimeAction.

Table 6-19 Windows API Functions for Jobs

Function Description

CreateJobObject Creates a job object (with an optional name)

OpenJobObject Opens an existing job object by name

AssignProcessToJobObject Adds a process to a job

TerminateJobObject Terminates all processes in a job

SetInformationJobObject Sets limits

QueryInformationJobObject Retrieves information about the job, such as CPU time, page
fault count, number of processes, list of process IDs, quotas or
limits, and security limits

370 Microsoft Windows Internals, Fourth Edition

■ Per-process user-mode CPU time limit Allows each process in the job to accumulate
only a fixed maximum amount of user-mode CPU time. When the maximum is reached,
the process terminates (with no chance to clean up).

■ Job scheduling class Sets the length of the time slice (or quantum) for threads in pro-
cesses in the job. This setting applies only to systems running with long, fixed quan-
tums (the default for Windows Server systems). The value of the job-scheduling class
determines the quantum as shown here:

■ Job processor affinity Sets the processor affinity mask for each process in the job. (Indi-
vidual threads can alter their affinity to any subset of the job affinity, but processes can’t
alter their process affinity setting.)

■ Job process priority class Sets the priority class for each process in the job. Threads
can’t increase their priority relative to the class (as they normally can). Attempts to
increase thread priority are ignored. (No error is returned on calls to SetThreadPriority,
but the increase doesn’t occur.)

■ Default working set minimum and maximum Defines the specified working set mini-
mum and maximum for each process in the job. (This setting isn’t jobwide—each pro-
cess has its own working set with the same minimum and maximum values.)

■ Process and job committed virtual memory limit Defines the maximum amount of
virtual address space that can be committed by either a single process or the entire job.

Jobs can also be set to queue an entry to an I/O completion port object, which other threads
might be waiting for, with the Windows GetQueuedCompletionStatus function.

You can also place security limits on processes in a job. You can set a job so that each process
runs under the same jobwide access token. You can then create a job to restrict processes from
impersonating or creating processes that have access tokens that contain the local administra-
tor’s group. In addition, you can apply security filters so that when threads in processes con-
tained in a job impersonate client threads, certain privileges and security IDs (SIDs) can be
eliminated from the impersonation token.

Scheduling Class Quantum Units

0 6

1 12

2 18

3 24

4 30

5 36

6 42

7 48

8 54

9 Infinite if real-time; 60 otherwise

Chapter 6: Processes, Threads, and Jobs 371

Finally, you can also place user-interface limits on processes in a job. Such limits include being
able to restrict processes from opening handles to windows owned by threads outside the job,
reading and/or writing to the clipboard, and changing the many user-interface system param-
eters via the Windows SystemParametersInfo function.

Windows 2000 Datacenter Server has a tool called the Process Control Manager that allows
an administrator to define job objects, the various quotas and limits that can be specified for
a job, and which processes, if run, should be added to the job. A service component monitors
process activity and adds the specified processes to the jobs. Note that this tool is no longer
shipped with Windows Server 2003 Datacenter Edition, but will remain on the system if a
Windows 2000 Datacenter Server is upgraded to Windows Server 2003 Datacenter Edition.

EXPERIMENT: Viewing the Job Object
You can view named job objects with the Performance tool. (See the Job Object and Job
Object Details performance objects.) You can view unnamed jobs with the kernel
debugger !job or dt nt!_ejob commands.

To see whether a process is associated with a job, you can use the kernel debugger
!process command, or on Windows XP and Windows Server 2003, Process Explorer.
Follow these steps to create and view an unnamed job object:

1. From the command prompt, use the runas command to create a process running
the command prompt (Cmd.exe). For example, type runas /user:<domain>\<
username> cmd. You’ll be prompted for your password. Enter your password, and
a command prompt window will appear. The Windows service that executes
runas commands creates an unnamed job to contain all processes (so that it can
terminate these processes at logoff time).

2. From the command prompt, run Notepad.exe.

3. Then run Process Explorer and notice that the Cmd.exe and Notepad.exe pro-
cesses are highlighted as part of a job. (You can configure the colors used to high-
light processes that are members of a job by clicking Options, Configure
Highlighting.) Here is a screen shot showing these two processes:

4. Double-click either the Cmd.exe or Notepad.exe process to bring up the process
properties. You will see a Job tab on the process properties dialog box.

372 Microsoft Windows Internals, Fourth Edition

5. Click the Job tab to view the details about the job. In this case, there are no quotas
associated with the job, but there are two member processes:

6. Now run the kernel debugger on the live system (either WinDbg in local kernel
debugging mode or LiveKd if you are on Windows 2000), display the process list
with !process, and find the recently created process running Cmd.exe. Then dis-
play the process block by using !process <process ID>, find the address of the job
object, and finally display the job object with the !job command. Here’s some par-
tial debugger output of these commands on a live system:

lkd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

.

.

PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0

DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.

Image: cmd.exe

PROCESS 856561a0 SessionId: 0 Cid: 0d70 Peb: 7ffdf000 ParentCid: 0fc4

DirBase: 2e341000 ObjectTable: e19437c8 HandleCount: 16.

Image: notepad.exe

lkd> !process 0fc4

Searching for Process with Cid == fc4

PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0

DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.

Image: cmd.exe

BasePriority 8

.

.

Job 85557988

lkd> !job 85557988

Job at 85557988

TotalPageFaultCount 0

TotalProcesses 2

ActiveProcesses 2

TotalTerminatedProcesses 0

Chapter 6: Processes, Threads, and Jobs 373

LimitFlags 0

MinimumWorkingSetSize 0

MaximumWorkingSetSize 0

ActiveProcessLimit 0

PriorityClass 0

UIRestrictionsClass 0

SecurityLimitFlags 0

Token 00000000

7. Finally, use the dt command to display the job object and notice the additional
fields shown about the job:

lkd> dt nt!_ejob 85557988

nt!_EJOB

+0x000 Event : _KEVENT

+0x010 JobLinks : _LIST_ENTRY [0x805455c8 - 0x85797888]

+0x018 ProcessListHead : _LIST_ENTRY [0x8567b8dc - 0x85656324]

+0x020 JobLock : _ERESOURCE

+0x058 TotalUserTime : _LARGE_INTEGER 0x0

+0x060 TotalKernelTime : _LARGE_INTEGER 0x0

+0x068 ThisPeriodTotalUserTime : _LARGE_INTEGER 0x0

+0x070 ThisPeriodTotalKernelTime : _LARGE_INTEGER 0x0

+0x078 TotalPageFaultCount : 0

+0x07c TotalProcesses : 2

+0x080 ActiveProcesses : 2

+0x084 TotalTerminatedProcesses : 0

+0x088 PerProcessUserTimeLimit : _LARGE_INTEGER 0x0

+0x090 PerJobUserTimeLimit : _LARGE_INTEGER 0x0

+0x098 LimitFlags : 0

+0x09c MinimumWorkingSetSize : 0

+0x0a0 MaximumWorkingSetSize : 0

+0x0a4 ActiveProcessLimit : 0

+0x0a8 Affinity : 0

+0x0ac PriorityClass : 0 ’’

+0x0b0 UIRestrictionsClass : 0

+0x0b4 SecurityLimitFlags : 0

+0x0b8 Token : (null)

+0x0bc Filter : (null)

+0x0c0 EndOfJobTimeAction : 0

+0x0c4 CompletionPort : 0x8619d8c0

+0x0c8 CompletionKey : (null)

+0x0cc SessionId : 0

+0x0d0 SchedulingClass : 5

+0x0d8 ReadOperationCount : 0

+0x0e0 WriteOperationCount : 0

+0x0e8 OtherOperationCount : 0

+0x0f0 ReadTransferCount : 0

+0x0f8 WriteTransferCount : 0

+0x100 OtherTransferCount : 0

+0x108 IoInfo : _IO_COUNTERS

+0x138 ProcessMemoryLimit : 0

+0x13c JobMemoryLimit : 0

+0x140 PeakProcessMemoryUsed : 0x256

+0x144 PeakJobMemoryUsed : 0x1f6

+0x148 CurrentJobMemoryUsed : 0x1f6

+0x14c MemoryLimitsLock : _FAST_MUTEX

+0x16c JobSetLinks : _LIST_ENTRY [0x85557af4 - 0x85557af4]

+0x174 MemberLevel : 0 +0x178 JobFlags : 0

374 Microsoft Windows Internals, Fourth Edition

Conclusion
In this chapter, we’ve examined the structure of processes and threads and jobs, seen how they
are created, and looked at how Windows decides which threads should run and for how long.

Many references in this chapter are to topics related to memory management. Because threads
run inside processes and processes in large part define an address space, the next logical topic
is how Windows performs virtual and physical memory management—the subjects of Chapter 7.

