
146   Summary of the XSP Client Side JavaScript Object Functions

Recall from reading the previous section “What Is the XSP Client Side JavaScript
Object?” that there is a hierarchy and extension tree for the XSP Client Side JavaScript
object, depending on the running platform. Therefore, Tables 4.2 and 4.3 list all public
and private XSP Client Side JavaScript object functions from the XSP web, mobile,
Notes, Composite Application, IBM Mashup Center, and Debug extensions (IBM
Mashup Center is not part of the Notes/Domino product family, but is an IBM Web-
Sphere offering). The first column of each table gives specifics about availability within
each platform. Where a function is available within all platforms, it is specified within
square brackets as All. Otherwise, the available platforms are listed individually. Sup-
ported platforms are Web, Mobile, Notes, CA (denoting composite application), and
MU (denoting IBM Mashup Center). The description column also includes the name of
the source JavaScript file, for your convenience.

Table 4.2  Summary of the Public XSP Client Side JavaScript Object Functions

Function Name Description

XSP.alert(message)

[All]

Displays a generic alert dialog. Standard dialog in a
web browser/mobile device, and RCP dialog in the
Notes client. This is an overridable extension point.

[xspClientDojo.js]

XSP.confirm(message)

[All]

Displays a generic confirm dialog, with OK and
Cancel buttons. Standard dialog in a web browser/
mobile device, and RCP dialog in the Notes client.
This is an overridable extension point.

[xspClientDojo.js]

XSP.error(message)

[All]

Displays a generic error dialog. This is an over
ridable extension point.

[xspClientDojo.js]

XSP.prompt(message,
defaultCaption)

[All]

Displays a generic prompt dialog containing the
given message, along with the defaultCaption,
if specified. The defaultCaption value appears
within the prompt dialog’s edit box, enabling the
user to input a value that returns when the dialog is
closed. This is an overridable extension point.

[xspClientDojo.js]

XSP.djRequire(name)

[All]

Loads a Dojo module into the context of the cur-
rent page. Use this only when you do not want to
include the required module in aggregated resources.
Otherwise, use dojo.require().

[xspClientDojo.js]

Summary of the XSP Client Side JavaScript Object Functions   147  

Function Name Description

XSP.addPreSubmit
Listener(formId,
listener, clientId,
scriptId)

[All]

This function adds a custom Client Side JavaScript
function, termed the listener, to a queue of zero or
more other listeners. This queue of listeners gets
executed just before the page is submitted to the
server side. The formId parameter must specify the
ID of the current form the listener will be triggered
against on submission—this is a mandatory parame-
ter. The listener parameter is a function reference
to a custom Client Side JavaScript function—this is
a mandatory parameter. The clientId parameter
can specify the client-side fully namespaced ID
of any single eventHandler or button control
within the current page. This causes the presubmit
listener to trigger only when the specified
clientId eventHandler or button is invoked.
This parameter is optional but should at least be
specified as null. When set to null, the presubmit
listener is triggered when any eventHandler or
button tries to submit the current page. Also note
that the custom client-side listener function does not
need to return any result because this is ignored in
the processing of the presubmit listener queue.

[xspClientDojo.js]

XSP.addQuerySubmit
Listener(formId,
listener, clientId,
scriptId)

[All]

Adds a custom Client Side JavaScript function,
termed the listener, to a queue of zero or more other
listeners. This queue of listeners is executed when
the page tries to submit to the server side. Based on
the return results from any querysubmit listener
functions in the queue, submission can proceed or
be stopped. The formId parameter must specify the
ID of the current form the listener will be triggered
against on submission—this is a mandatory parame-
ter. The listener parameter is a function reference
to a custom Client Side JavaScript function—this is
a mandatory parameter. The clientId parameter
can specify the client-side fully namespaced ID of
any single eventHandler or button control within
the current page. This causes the querysubmit lis-
tener to trigger only when the specified clientId
eventHandler or button is invoked. This param-
eter is optional but should at least be specified as
null. When set to null, the querysubmit listener
is triggered when any eventHandler or button
tries to submit the current page. Also note that the
custom client-side listener function should return a
Boolean result because this is used in the processing
of the querysubmit listener queue to either allow
or stop page submission.

[xspClientDojo.js]

148   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP.canSubmit()

[All]

Should be called before any page submission, to
prevent page resubmission, either accidentally
when a user double-clicks on a link or if the user is
impatient compared to the expected time for a page
refresh. If the page has recently been submitted, it
returns false and the submission should be aban-
doned. Otherwise, it assumes that the submission
will occur and updates the lastSubmit value, the
date stamp of the last submission. If the page is not
submitted after this is called, XSP.allowSubmit()
should be invoked so that further user actions can
submit the page. The time allowed between submis-
sions is configured through the submitLatency
variable. Avoid using this function—rare use cases
exist when you need to use this function, such as if
Client Side JavaScript performs page submission, as
with document.forms[0].submit(). Therefore,
controlling page submission using XSP.canSub-
mit() can provide more robust page behavior.

[xspClientDojo.js]

XSP.allowSubmit()

[All]

If the page is not submitted after a call to
canSubmit(), this should be invoked to re-enable
page submission. Avoid using this function—rare
use cases exist when you need to use this function,
such as if Client Side JavaScript performs page sub-
mission, as with document.forms[0].submit().
Therefore, controlling page submission using XSP.
allowSubmit() can provide more robust page
behavior.

[xspClientDojo.js]

XSP.setSubmitValue
(submitValue)

[All]

The SubmitValue property is the value sent to
the XPages server and is available from the context
object. This function usually can be called while
processing a client-side event, right before the event
is submitted to the server. It can be used, for exam-
ple, for passing component-related data.

[xspClientDojo.js]

XSP.getSubmitValue()

[All]

The SubmitValue property is the value sent to
the XPages server and is available from the context
object. This function can be called while processing
a client-side event, usually right before the event is
submitted to the server.

[xspClientDojo.js]

Table 4.2  Summary of the Public XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   149  

Function Name Description

XSP.validateAll(formId,
valmode, execId)

[All]

Runs client-side converters and validators before
page submission to the server. The formId param-
eter must specify the form to validate. This is useful
in a multiform page. The valmode integer param-
eter must specify a value of 0, 1, or 2. 0 = No vali-
dation. 1 = Run converters only. 2 = Run Converters
and Validators. The execId string parameter is
optional and can be used to specify a single control
within the current page to validate. If null, the
whole page is validated.

[xspClientDojo.js]

XSP.getFieldValue(node)

[All]

Returns the value of the given HTML DOM node
parameter. A string value is returned for a single
value node, or a comma-separated string is returned
for a multiple-value node (such as an option
control).

[xspClientDojo.js]

XSP.getDijitFieldValue(dj)

[All]

Returns the value of the given Dijit instance, based
on the existence of the dijit.getValue()
function.

[xspClientDojo.js]

XSP.validationError(clientId,
message)

[All]

An overridable extension point similar to the
XSP.alert() and other dialog-based functions.
This gives developers an opportunity to provide a
custom error display to the end user. The default
behavior is to display an error message dialog. The
clientId string parameter must specify the ID of
the failing control. The message string parameter is
used to relay the failing message or warning.

[xspClientDojo.js]

XSP.scrollWindow(x, y)

[All]

Scrolls the current window contents to the specified
x and y integer coordinates.

[xspClientDojo.js]

150   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP.
partialRefreshGet(refreshId,
options)

[All]

Programmatically executes GET-based partial refresh
requests to the XPages server-side runtime. The
refreshId string parameter value must specify a
fully namespaced HTML DOM element ID. This
is the target receiver of the partial refresh response
content. The options parameter is optional and
used to send custom parameters to the server side as
GET request parameters. It can also be used to spec-
ify onStart, onError, and onComplete event
function callbacks. These are triggered accordingly
during the request lifecycle.

[xspClientDojo.js]

XSP.
partialRefreshPost(refreshId,
options)

[All]

Programmatically executes POST-based partial
refresh requests to the XPages server-side runtime.
The refreshId string parameter value must specify
a fully namespaced HTML DOM element ID. This
is the target receiver of the partial refresh response
content. The options parameter is optional and
used to send custom parameters to the server side
as POST request parameters. It can also be used
to specify onStart, onError, and onComplete
event function callbacks. These are triggered accord-
ingly during the request lifecycle. An immediate
request parameter can also be included in the options
content to control validation execution.

[xspClientDojo.js]

XSP.attachClientFunction
(targetClientId, _event,
clientSideScriptName)

[All]

Connects a client-side function to an event on an
XPages control.

[xspClientDojo.js]

XSP.attachClientScript(target
ClientId, _event, clientScript)

[All]

This function is used to connect a client-side script
call to an event on an XPages control.

[xspClientDojo.js]

XSP.addOnLoad(listener)

[All]

Attaches a Client Side JavaScript function to the cur-
rent page’s onLoad event. The listener function-
reference parameter is used to specify the Client
Side JavaScript function.

[xspClientDojo.js]

XSP.showSection(sectionId,
show)

[All]

Toggles the expanded state of the specified sec-
tion control using the client-side sectionId string
parameter value and show Boolean parameter value.

[xspClientDojo.js]

Table 4.2  Summary of the Public XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   151  

Function Name Description

XSP.findForm(nodeOrId)

[All]

Returns the parent form element for the given node
or client-side element ID.

[xspClientDojo.js]

XSP.
findParentByTag(nodeOrId,
tag)

[All]

Returns the nearest parent element matching the
specified tag string parameter value.

[xspClientDojo.js]

XSP.
getElementById(elementId)

[All]

Retrieves an element from the current HTML DOM
based on the specified elementId string parameter
value. Note that the elementId represents the fully
namespaced client-side element ID.

[xspClientDojo.js]

XSP.hasDijit()

[All]

Determines the presence of any Dijit objects and the
dijit.byId() function within the current HTML
page.

[xspClientDojo.js]

XSP.trim(s)

[All]

Returns the s string parameter value, trimmed of
leading and trailing whitespace.

[xspClientDojo.js]

XSP.startsWith(s, prefix)

[All]

Returns a Boolean value indicating whether the
given s string begins with the specified prefix string
value.

[xspClientDojo.js]

XSP.endsWith(s, suffix)

[All]

Returns a Boolean value indicating whether the
given s string ends with the specified suffix string
value.

[xspClientDojo.js]

XSP.toJson(o)

[All]

Converts an object to a String serialization of that
object.

[xspClientDojo.js]

XSP.fromJson(s)

[All]

Parses a JSON string to return a JavaScript object.

[xspClientDojo.js]

XSP.log(message)

[Web/MU]

Opens a new browser window, with the given
message parameter value written into the window
contents.

[xspClientDojo.js]

152   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP.dumpObject(obj, options)

[Web/MU]

Returns a list of property/value pairs available on the
given obj parameter.

[xspClientDebug.js]

Table 4.3  Summary of the Private XSP Client Side JavaScript Object Functions

Function Name Description

XSP.getMessage(key)

[All]

Retrieves a translated string from the localized
XSP client-side locale bundles.

[xspClientDojo.js]

XSP._pushListener(listeners,
formId, clientId, scriptId,
listener)

[All]

Used internally by the XSP.addPreSubmit
Listener and addQuerySubmitListener
functions and others.

[xspClientDojo.js]

XSP._SubmitListener(formId,
listener, clientId, scriptId)

[All]

Used internally by the XSP.addPreSubmit
Listener and addQuerySubmitListener
functions and others.

[xspClientDojo.js]

XSP._processListeners(listeners,
formId, clientId)

[All]

Processes an array of listeners, either the
querySubmit or preSubmit listeners. When
processing the querySubmit listeners, it stops at
the first listener that returns false.

[xspClientDojo.js]

XSP.attachValidator(clientId,
required, converter, validator1,
..., multipleValueSeparatorString)

Connects a control with any converter and valida-
tion objects specified for that control. Calls to
this function are automatically generated by the
XPages runtime. This is a private function.

[xspClientDojo.js]

XSP._Validator(clientId,
required, converter,
validatorList, multiSep)

[All]

Used internally by the XSP.attachValida-
tor() function. This is a private function.

[xspClientDojo.js]

Table 4.2  Summary of the Public XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   153  

Function Name Description

XSP.DateConverter(dateFormat,
message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.TimeConverter(timeFormat,
message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.
DateTimeConverter(dateFormat,
timeFormat, message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.IntConverter(message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case, then
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

154   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP.NumberConverter(dot,
tho, message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.RequiredValidator
(message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.DateTimeRangeValidator
(minTime, maxTime, message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.LengthValidator(min,
max, message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case, then
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

Table 4.3  Summary of the Private XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   155  

Function Name Description

XSP.
NumberRangeValidator(min,
max, message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.RegExpValidator(expr,
message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case,
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.ExpressionValidator(expr,
message)

[All]

Instances of this object are generated by the
server-side converter. You should never need
to explicitly invoke this method in Client Side
JavaScript yourself. If you found a use case, then
there would be cross-site scripting vulnerabilities
because all client-side validation should have
matching server-side validation, to prevent invalid
data from being accepted when the browser is
compromised. This is a private function.

[xspClientDojo.js]

XSP.attachEvent(clientId,
targetClientId, _event,
clientSideScriptName, submit,
valmode, execId)

[All]

Connects an eventHandler to a control in the
client side. Therefore, when the specified event
is triggered in the client side against the tar-
getClientId control, a request is issued to the
server-side component to trigger any correspond-
ing server-side eventHandler code or simple
actions. This is a private function.

[xspClientDojo.js]

XSP._getEventData(targetNode,
targetId, eventName)

[All]

Used internally by the XSP.attachEvent()
function and others. This is a private function.

[xspClientDojo.js]

156   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP.fireEvent(evt, clientId,
targetId, clientSideScriptName,
submit, valmode, execId)

[All]

Used internally by the XSP.attachEvent()
function and others. This is a private function.

[xspClientDojo.js]

XSP._doFireEvent(evt, form,
clientId, clientSideScriptName,
submit, valmode, execId)

[All]

Used internally by the XSP.attachEvent()
function and others. This is a private function.

[xspClientDojo.js]

XSP._scrollPosition()

[All]

Used internally by the XSP.scrollWindow()
function and others. This is a private function.

[xspClientDojo.js]

XSP._setAllowDirtySubmit(flag)

[All]

Used internally by the Dirty Save feature—see the
<xp:view> properties for enableModified-
Flag. This is a private function.

[xspClientDojo.js]

XSP._isAllowDirtySubmit()

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for
enableModifiedFlag. This is a private
function.

[xspClientDojo.js]

XSP._setDirty(flag, formId)

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for
enableModifiedFlag. This is a private
function.

[xspClientDojo.js]

XSP._isDirty()

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for
enableModifiedFlag. This is a private
function.

[xspClientDojo.js]

XSP._getDirtyFormId()

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for
enableModifiedFlag. This is a private
function.

[xspClientDojo.js]

Table 4.3  Summary of the Private XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   157  

Function Name Description

XSP.attachDirtyListener(clientId)

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for
enableModifiedFlag. This is a private
function.

[xspClientDojo.js]

XSP.attachDirtyUnloadListener
(saveMessage)

[All]

Used internally by the Dirty Save feature—see the
<xp:view> properties for enableModified-
Flag and modifiedMessage. This is a private
function.

[xspClientDojo.js]

XSP._validateDirtyForm(formId,
clientId)

[All]

Used internally by the Dirty Save feature—
see the <xp:view> properties for enableModi-
fiedFlag. This is a private function.

[xspClientDojo.js]

XSP._saveDirtyForm(evt, cli-
entId, targetId, clientSideScript-
Name, submit, valmode, execId)

[All]

Used internally by the Dirty Save feature—see the
<xp:view> properties for enableModified-
Flag. This is a private function.

[xspClientDojo.js]

XSP._doFireSaveEvent(evt,
form, clientId, clientSideScript-
Name, submit, valmode, execId)

[All]

Used internally by the Dirty Save feature to
save any data sources on the current page—see
the<xp:view> properties for enableModified-
Flag. This is a private function.

[xspClientDojo.js]

XSP.attachPartial(clientId,
targetId, execId, eventName,
scriptName, valmode, refreshId,
onStart, onComplete, onError)

[All]

Used to connect a partial refresh–enabled
eventHandler to a control in the client side.
Therefore, when the specified event is triggered
in the client side against the targetId control, a
partial refresh request is issued to the server-side
component to trigger any corresponding server-
side eventHandler code or simple actions. This
is a private function.

[xspClientDojo.js]

XSP.firePartial(evt, clientId,
targetId, execId, scriptName, val-
mode, refreshId, onStart, onCom-
plete, onError)

[All]

Used internally by the XSP.attachPartial()
/partialRefreshGet/partialRefreshPost
functions. This is a private function.

[xspClientDojo.js]

158   Summary of the XSP Client Side JavaScript Object Functions

Function Name Description

XSP._partialRefresh(method,
form, refreshId, options)

[All]

Used internally by the XSP.attachPartial()
/partialRefreshGet/partialRefreshPost
functions. This is a private function.

[xspClientDojo.js]

XSP._replaceNode(refreshId,
content)

[All]

Used internally by the XSP.firePartial()
function and others. This is a private function.

[xspClientDojo.js]

XSP.processScripts(s, ex)

[All]

Used internally by the XSP object function and
others. This is a private function.

[xspClientDojo.js]

XSP.execScripts(a)

[All]

Used internally by the XSP object function and
others. This is a private function.

[xspClientDojo.js]

XSP.parseDojo(node)

[All]

Used internally by the XSP object function and
others. This is a private function.

[xspClientDojo.js]

XSP.attachSimpleConfirm
Submit(clientId, targetClientId,
_event, message)

[All]

Used to connect a confirm handler to the current
page. Generated by the Confirm Simple Action.
This is a private function.

[xspClientDojo.js]

XSP.tagCloudSliderOnChange
(sliderValue, sliderId)

[All]

Used by the Tag Cloud Custom Control in the
Discussion Template to control the visualization
of the expanding/contracting values. This is a pri-
vate function.

[xspClientDojo.js]

XSP._loaded()

[All]

Used internally by the XSP Object when a page
loads. It is used in several page load and submis-
sion functions. This is a private function.

[xspClientDojo.js]

XSP.attachViewColumn
CheckboxToggler(viewId, colId)

[All]

Used internally by the XSP Object to attach a
column header check box toggler for the View
control. This is a private function.

[xspClientDojo.js]

XSP._toggleViewColumn
CheckBoxes(viewId, colId)

[All]

Used internally by the XSP Object to process
column header check box toggling for the View
control. This is a private function.

[xspClientDojo.js]

Table 4.3  Summary of the Private XSP Client Side JavaScript Object Functions (cont’d)

Summary of the XSP Client Side JavaScript Object Functions   159  

Function Name Description

XSP.isViewPanelRowSelected
(viewId, ckId)

[All]

Used internally by the XSP Object to identify any
checked rows within a View control. This is a
private function.

[xspClientDojo.js]

XSP.initSectionScript
(targetSectionId, sectionId,
expand)

[All]

Used internally by the XSP Object to initialize
expand/collapse behavior for the Section con-
trol. This is a private function.

[xspClientDojo.js]

XSP._moveAttr
(fromNode, toNode, attrName)

[All]

Used internally by the XSP Object to move an
element attribute from one element to another by
the Section control. This is a private function.

[xspClientDojo.js]

XSP.serialize(o)

[All]

Deprecated in favor of the XSP.toJson() func-
tion. It is being preserved to avoid breakage of
existing scripts.

[xspClientDojo.js]

XSP.logw(message)

[Web/MU]

Used by the XSP.log() function. This is a pri-
vate function.

[xspClientDebug.js]

XSP._dumpObject(obj, name,
indent, depth, options)

[Web/MU]

Used by the XSP.dumpObject() function. This
is a private function.

[xspClientDebug.js]

XSP.publishEvent
(eventName, payload,
payloadType)

[CA/MU]

Empty implementation in xspClientDojo.
js. This is overridden by xspClientCA and
xspClientMashup.js implementations. This
function is automatically output by the XPages
runtime when ComponentPublish*Action
simple actions exist on the XPage. This is a pri-
vate function.

[xspClientDojo.js/xspClientCA.js/xspClientMU.js]

XSP.dispatchEvent(source,
name, value, event)

[All]

Automatically generated by the XPages runtime
for cross-communication with the XPages View
Part in the Notes client. This is a private function.

[xspClientDojo.js]

160  T he Public XSP Client Side JavaScript Object Functions

Function Name Description

XSP.setComponentMode(mode,
params)

[MU]

Empty implementation in xspClientDojo.js.
This is overridden by the xspClientMashup.
js implementation. This function is automatically
output for Set Component Mode simple actions
that exist on the XPage. This is a private function.

[xspClientDojo.js -> xspClientMashup.js]

XSP.dispatchJSONEvent(source,
name, value, event)

[CA]

Automatically generated by the XPages runtime
for cross-communication with the Composite
Application container. This is a private function.

[xspClientCA.js]

XSP.onComponentLoaded()

[MU]

Used by the XSP Object within a mashup to ini-
tialize the widget when the page loads. This is a
private function.

[xspClientMashup.js]

XSP.callJavaAction(actionId,
params, needReturn)

[Notes]

Used internally by the XSP Object in XPages
in the Notes client application. This is a private
function.

[xspClientRCP.js]

XSP._embedControl(id, handle)

[Notes]

Used internally by the XSP Object in XPages in
the Notes client application. This is a private
function.

[xspClientRCP.js]

XSP._resize()

[Notes]

Used internally by the XSP Object in XPages in
the Notes client application. This is a private
function.

[xspClientRCP.js]

The Public XSP Client Side JavaScript Object Functions

This section provides you with details on each of the publicly scoped XSP Client Side
JavaScript object functions listed in Table 4.2. Note that it does not provide any detail on
the private functions listed in Table 4.3. Notes/Domino 8.5.3 has 33 public and 58 pri-
vate XSP Client Side JavaScript object functions. You can also refer to the PCGCH04.
nsf sample application, where you will find the publicXSPFunctions XPage. This
XPage contains working examples of the 33 public XSP Client Side JavaScript object
functions. Figure 4.3 shows this XPage in a browser.

Table 4.3  Summary of the Private XSP Client Side JavaScript Object Functions (cont’d)

