Статья Парсим данные таблиц сайта в Excel с помощью Pandas

Парсинг данных. Эта штука может быть настолько увлекательной, что порой затягивает очень сильно. Ведь всегда интересно найти способ, с помощью которого можно получить те или иные данные, да еще и структурировать их в нужном виде. В статье «Простой пример работы с Excel в Python» уже был рассмотрен один из способов получить данные из таблиц и сохранить их в формате Excel на разных листах. Для этого мы искали на странице все теги, которые так или иначе входят в содержимое таблицы и вытаскивали из них данные. Но, есть способ немного проще. И, давайте, о нем поговорим.

00001.jpg

А состоит этот способ в использовании библиотеки pandas. Конечно же, ее простой не назовешь. Это очень мощный инструмент для аналитики самых разнообразных данных. И в рассмотренном ниже случае мы лишь коснемся небольшого фрагмента из того, что вообще умеет делать эта библиотека.


Что понадобиться?

Для того, чтобы написать данный скрипт нам понадобиться конечно же сам pandas. Библиотеки requests, BeautifulSoup и lxml. А также модуль для записи файлов в формате xlsx – xlsxwriter. Установить их все можно одной командой:

pip install requests bs4 lxml pandas xlsxwriter

А после установки импортировать в скрипт для дальнейшей работы с функциями, которые они предоставляют:

Python:
import requests
from bs4 import BeautifulSoup

import pandas as pd

Так же с сайта, на котором расположены целевые таблицы нужно взять заголовки для запроса. Данные заголовки не нужны для pandas, но нужны для requests. Зачем вообще использовать в данном случае запросы? Тут все просто. Можно и не использовать вовсе. А полученные таблицы при сохранении называть какими-нибудь составными именами, вроде «Таблица 1» и так далее, но гораздо лучше и понятнее, все же собрать данные о том, как называется данная таблица в оригинале. Поэтому, с помощью запросов и библиотеки BeautifulSoup мы просто будем искать название таблицы.

Но, вернемся к заголовкам. Взял я их в инструментах разработчика на вкладке сеть у первого попавшегося запроса.

Python:
headers = {
    'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.174 '
                  'YaBrowser/22.1.3.942 Yowser/2.5 Safari/537.36',
    'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,'
              'application/signed-exchange;v=b3;q=0.9 '
}

Теперь нужен список, в котором будут перечисляться года, которые представлены в виде таблиц на сайте. Эти года получаются из псевдовыпадающего списка. Я не стал использовать selenium для того, чтобы получить их со страницы. Так как обычный запрос не может забрать эти данные. Они подгружаются с помощью JS скриптов. В данном случае не так уж много данных, которые надо обработать руками. Поэтому я создал список, в которые эти данные и внес вручную:

Python:
num_year_dict = ['443', '442', '441', '440', '439', '438', '437', '436', '435', '434', '433', '432', '431', '426',
                 '425', '1', '2', '165', '884', '1851', '3226', '4385', '4959', '5582', '6297', '6886', '7371',
                 '8071', '8671']

Теперь нам нужно будет создать пустой словарь вне всяких циклов. Именно, чтобы он был глобальной переменной. Этот словарь мы и будем наполнять полученными данными, а также сохранять их него данные в таблицу Excel. Поэтому, я подумал, что проще сделать его глобальной переменной, чем тасовать из функции в функцию.


df = {}

Назвал я его df, потому как все так называют. И увидев данное название в нужном контексте становиться понятно, что используется pandas. df – это сокращение от DataFrame, то есть, определенный набор данных.

Ну вот, предварительная подготовка закончена. Самое время получать данные. Давайте для начала сходим на одну страницу с таблицей и попробуем получить оттуда данные с помощью pandas.

tables = pd.read_html('https://www.sports.ru/rfpl/table/?s=443&table=0&sub=table')

Здесь была использована функция read_html. Pandas использует библиотеку для парсинга lxml. То есть, примерно это все работает так. Получаются данные со страницы, а затем в коде выполняется поиск с целью найти все таблицы, у которых есть тэг <table>, а далее, внутри таблиц ищутся заголовки и данные под тэгами <tr> и <td>, которые и возвращаются в виде списка формата DataFrame.

Давайте выполним запрос. Но вот печатать данные пока не будем. Нужно для начала понять, сколько таблиц нашлось в запросе. Так как на странице их может быть несколько. Помимо той, что на виду, в виде таблиц может быть оформлен подзаголовок или еще какая информация. Поэтому, давайте узнаем, сколько элементов списка содержится в запросе, а соответственно, столько и таблиц. Выполняем:

print(len(tables))

И видим, что найденных таблиц две. Если вывести по очереди элементы списка, то мы увидим, что нужная нам таблица, в данном случае, находиться под индексом 1. Вот ее и распечатаем для просмотра:

print(tables[1])

И вот она полученная таблица:

screenshot1.png

Как видим, в данной таблице помимо нужных нам данных, содержится так же лишний столбец, от которого желательно избавиться. Это, скажем так, можно назвать сопутствующим мусором. Поэтому, полученные данные иногда надо «причесать». Давайте вызовем метод drop и удалим ненужный нам столбец.

tables[1].drop('Unnamed: 0', axis=1, inplace=True)

На то, что нужно удалить столбец указывает параметр axis, который равен 1. Если бы нужно было удалить строку, он был бы равен 0. Ну и указываем название столбца, который нужно удалить. Параметр inplace в значении True указывает на то, что удалить столбец нужно будет в исходных данных, а не возвращать нам их копию с удаленным столбцом.

А теперь нужно получить заголовок таблицы. Поэтому, делаем запрос к странице, получаем ее содержимое и отправляем для распарсивания в BeautifulSoup. После чего выполняем поиск названия и обрезаем из него все лишние данные.

Python:
url = f'https://www.sports.ru/rfpl/table/?s={num}&table=0&sub=table'
req = requests.get(url=url, headers=headers)
soup = BeautifulSoup(req.text, 'lxml')
title_table = soup.find('h2', class_='titleH3').text.split("-")[2].strip().replace("/", "_")

Теперь, когда у нас есть таблица и ее название, отправим полученные значения в ранее созданный глобально словарь.

df[title_table] = tables[1]

Вот и все. Мы получили данные по одной таблице. Но, не будем забывать, что их больше тридцати. А потому, нужен цикл, чтобы формировать ссылки из созданного ранее списка и делать запросы уже к страницам по ссылке. Давайте полностью оформим код функции. Назовем мы ее, к примеру, get_pd_table(). Ее полный код состоит из всех тех элементов кода, которые мы рассмотрели выше, плюс они запущены в цикле.

Python:
def get_pd_table():
    for num in num_year_dict:
        url = f'https://www.sports.ru/rfpl/table/?s={num}&table=0&sub=table'
        req = requests.get(url=url, headers=headers)
        soup = BeautifulSoup(req.text, 'lxml')
        title_table = soup.find('h2', class_='titleH3').text.split("-")[2].strip().replace("/", "_")
        print(f'Получаю данные из таблицы: "{title_table}"...')
        tables = pd.read_html(url)
        tables[1].drop('Unnamed: 0', axis=1, inplace=True)
        df[title_table] = tables[1]

Итак, когда цикл пробежится по всем ссылкам у нас будет готовый словарь с данными турниров, которые желательно бы записать на отдельные листы. На каждом листе по таблице. Давайте сразу создадим для этого функцию pd_save().

writer = pd.ExcelWriter('./Турнирная таблица ПЛ РФ.xlsx', engine='xlsxwriter')

Создаем объект писателя, в котором указываем имя записываемой книги, и инструмент, с помощью которого будем производить запись в параметре engine='xlsxwriter'.

После запускаем цикл, в котором создаем объекты, то есть листы для записи из ключей списка с таблицами df, указываем, с помощью какого инструмента будет производиться запись, на какой лист. Имя листа берется из ключа словаря. А также указывается параметр index=False, чтобы не сохранялись индексы автоматически присваиваемые pandas.

df[df_name].to_excel(writer, sheet_name=df_name, index=False)

Ну и после всего сохраняем книгу:

writer.save()

Полный код функции сохранения значений:

Python:
def pd_save():
    writer = pd.ExcelWriter('./Турнирная таблица ПЛ РФ.xlsx', engine='xlsxwriter')
    for df_name in df.keys():
        print(f'Записываем данные в лист: {df_name}')
        df[df_name].to_excel(writer, sheet_name=df_name, index=False)
    writer.save()

Вот и все. Для того, чтобы было не скучно ждать, пока будет произведен парсинг таблиц, добавим принты с информацией о получаемой таблице в первую функцию.

print(f'Получаю данные из таблицы: "{title_table}"...')

И во вторую функцию, с сообщением о том, данные на какой лист записываются в данный момент.

print(f'Записываем данные в лист: {df_name}')

Ну, а дальше идет функция main, в которой и вызываются вышеприведенные функции. Все остальное, в виде принтов, это просто декорации, для того чтобы пользователь видел, что происходят какие-то процессы.

Python:
import requests
from bs4 import BeautifulSoup

import pandas as pd

headers = {
    'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.174 '
                  'YaBrowser/22.1.3.942 Yowser/2.5 Safari/537.36',
    'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,'
              'application/signed-exchange;v=b3;q=0.9 '
}

num_year_dict = ['443', '442', '441', '440', '439', '438', '437', '436', '435', '434', '433', '432', '431', '426',
                 '425', '1', '2', '165', '884', '1851', '3226', '4385', '4959', '5582', '6297', '6886', '7371',
                 '8071', '8671']

df = {}


def get_pd_table():
    for num in num_year_dict:
        url = f'https://www.sports.ru/rfpl/table/?s={num}&table=0&sub=table'
        req = requests.get(url=url, headers=headers)
        soup = BeautifulSoup(req.text, 'lxml')
        title_table = soup.find('h2', class_='titleH3').text.split("-")[2].strip().replace("/", "_")
        print(f'Получаю данные из таблицы: "{title_table}"...')
        tables = pd.read_html(url)
        tables[1].drop('Unnamed: 0', axis=1, inplace=True)
        df[title_table] = tables[1]


def pd_save():
    writer = pd.ExcelWriter('./Турнирная таблица ПЛ РФ.xlsx', engine='xlsxwriter')
    for df_name in df.keys():
        print(f'Записываем данные в лист: {df_name}')
        df[df_name].to_excel(writer, sheet_name=df_name, index=False)
    writer.save()


def main():
    get_pd_table()
    print(' ')
    pd_save()
    print('\n[+] Данные записаны!')


if __name__ == '__main__':
    main()

И ниже результат работы скрипта с уже полученными и записанными таблицами:

screenshot2.png


Как видите, использовать библиотеку pandas, по крайней мере в данном контексте, не очень сложно. Конечно же, это только самая малая часть того, что она умеет. А умеет она собирать и анализировать данные из самых разных форматов, включая такие распространенные, как: cvs, txt, HTML, XML, xlsx.

Ну и думаю, что не всегда данные будут прилетать «чистыми». Скорее всего, периодически будут попадаться мусорные столбцы или строки. Но их не особо то трудно удалить. Нужно только понимать, что и откуда.

В общем, для себя я сделал однозначный вывод – если мне понадобиться парсить табличные значения, то лучше, чем использование pandas, пожалуй и не придумаешь. Можно просто на лету формировать данные из одного формата и переводить тут же в другой без утомительного перебора. К примеру, из формата csv в json.

Спасибо за внимание. Надеюсь, что данная информация будет вам полезна
 

Olega34

New member
29.03.2023
2
0
BIT
0
После написания статьи прошел год, и я так понимаю на сайте сменили код, и парсер не работает.
Из того, что я понял:
1). шапку таблицы через другие тэги теперь определяют,
2). имя для названий страниц в книге Excel тоже по другому нужно определять.
 

Johan Van

Green Team
13.06.2020
363
694
BIT
402
После написания статьи прошел год, и я так понимаю на сайте сменили код, и парсер не работает.
Из того, что я понял:
1). шапку таблицы через другие тэги теперь определяют,
2). имя для названий страниц в книге Excel тоже по другому нужно определять.

На самом деле, код сайта изменился незначительно.

Для работы скрипта требуется установка библиотек: pip install requests bs4 lxml pandas xlsxwriter
Как вы верно заметили, прошел год. а значит, он добавился в турнирную таблицу. Следовательно, его нужно добавить в список:

02.png


Python:
num_year_dict = ['443', '442', '441', '440', '439', '438', '437', '436', '435', '434', '433', '432', '431', '426',
                 '425', '1', '2', '165', '884', '1851', '3226', '4385', '4959', '5582', '6297', '6886', '7371',
                 '8071', '8671', '303917']

Здесь он добавлен последним. Следуя порядку в выпадающем списке.
Также изменился тег, из которого скрипт получал название таблицы.

Было: title_table = soup.find('h2', class_='titleH3').text.split("-")[2].strip().replace("/", "_")
Стало: title_table = soup.find('h1', class_='titleH1').text.strip().replace("/", "_")

01.png


Стало появляться предупреждение о том, что в следующих версиях xlsxwriter будет удален метод save(). Заменяем его на close().

После выполнения всех замен в соответствии с произошедшими изменениями получается следующий код:

Python:
import requests
from bs4 import BeautifulSoup

import pandas as pd

headers = {
    'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.174 '
                  'YaBrowser/22.1.3.942 Yowser/2.5 Safari/537.36',
    'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,'
              'application/signed-exchange;v=b3;q=0.9 '
}

num_year_dict = ['443', '442', '441', '440', '439', '438', '437', '436', '435', '434', '433', '432', '431', '426',
                 '425', '1', '2', '165', '884', '1851', '3226', '4385', '4959', '5582', '6297', '6886', '7371',
                 '8071', '8671', '303917']

df = {}


def get_pd_table():
    for num in num_year_dict:
        url = f'https://www.sports.ru/rfpl/table/?s={num}&table=0&sub=table'
        req = requests.get(url=url, headers=headers)
        soup = BeautifulSoup(req.text, 'lxml')
        title_table = soup.find('h1', class_='titleH1').text.strip().replace("/", "_")
        print(f'Получаю данные из таблицы: "{title_table}"...')
        tables = pd.read_html(url)
        tables[1].drop('Unnamed: 0', axis=1, inplace=True)
        df[title_table] = tables[1]


def pd_save():
    writer = pd.ExcelWriter('./Турнирная таблица ПЛ РФ.xlsx', engine='xlsxwriter')
    for df_name in df.keys():
        print(f'Записываем данные в лист: {df_name}')
        df[df_name].to_excel(writer, sheet_name=df_name, index=False)
    writer.close()


def main():
    get_pd_table()
    print(' ')
    pd_save()
    print('\n[+] Данные записаны!')


if __name__ == '__main__':
    main()

Результат работы в терминале:

03.png


Результат в Excel:

04.png

Как-то так ))
 
Последнее редактирование:
  • Нравится
Реакции: Olega34

Olega34

New member
29.03.2023
2
0
BIT
0
Спасибо!
Добрался до компьютера. Исправил код.
Заработало!
 
Мы в соцсетях:

Обучение наступательной кибербезопасности в игровой форме. Начать игру!